

Search for SuperSymmtric Particles with 2 Same Sign or Three Leptons with Jets in the Final State

Mahmoud I. Alstaty

Supervisors: Farès Djama and Pascal Pralavorio

CPPM PhD Days

Oct, 7, 2016

PhD Research Subjects

- Research has two aspects:
- **The Pixel Detector studies**: commissioning of the ATLAS Pixel Detector after the insertion of a new inner-most layer called the Insertable B-Layer (IBL), before Run 2 started.
- **Physics SUSY Analysis**: looking for theoretically predicted SuperSymmetric (SUSY) particles.

SuperSymmetric (SUSY) Particles

- Standard Model (SM): 3 generations of ٠ quarks and leptons, 4 gauge bosons and the Higgs boson.
- SuperSymmetry (SUSY): a partner for ٠ every SM particle (differs in its spin by half an integer).

- SUSY solves many problems of the SM: ٠
 - Higgs mass fine tuning. •
 - Provides a good candidate for **Dark** ٠ Matter.
 - Electro-weak & strong **unification** (at **10¹⁶ GeV)**.

CPPN

Sbottom and Gluino Search

• **SUSY search**: through several SUSY models (**Direct Sbottom SUSY** and **Gtt** Models).

- Final state in our analysis: include either 2 same sign or 3 leptons (SS/3L)
 + missing E_T + jets (low SM background).
- A **paper** (1602.09058) and a **CONF note** (ATLAS-CONF-2015-078) were published with 13 TeV, 3.2 fb⁻¹.
- This analysis is extended with 2016 data, and a **Signal Region Reoptimization** process is needed.

• Aims to determine the **best kinematical cuts** to be applied to make our "**signal visibility**" as **optimal** as possible, with 2016 data: 13 TeV, 13.3 fb⁻¹ (ICHEP).

Status after 2015 SS/3L Analysis

•	Objective: update the Signal Region			SR1b	SR3b
	Optimization studies performed		Observed events	7	1
	analysis.		Total background events $p(s = 0)$	4.5 ± 1.0 0.15	$0.80 \pm 0.25 \\ 0.36$
		Reducible detector bkg	Fake/non-prompt leptons	0.8 ± 0.8 0.60 + 0.12	0.13 ± 0.17 0.19 + 0.06
•	Use Monte Carlo simulations:		tīW	1.1 ± 0.4	0.10 ± 0.00 0.10 ± 0.05
	simulate our signal and background	(tīZ	0.92 ± 0.31	0.14 ± 0.06
	events.	Irreducible SM bkg	WZ	0.18 ± 0.11	< 0.02
		ttbar dominated	$W^{\pm}W^{\pm}jj$	0.03 ± 0.02	< 0.01
			ZZ	< 0.03	< 0.03
			Rare	0.8 ± 0.4	0.24 ± 0.14

• Figure of merit: the signal discovery significance (Z = f(S, B, Δ B), Δ B = 30%).

 Focus on Direct Sbottom SUSY Model with 1 b-jet in the final state (SR1b). Direct Gluino Direct Sbottom

Signal regions event yield for the 3.2 fb⁻¹ scenario from 2015 analysis.

	Signal region	N _{lept}	$N_{b-{ m jets}}^{20}$	$N_{\rm jets}^{50}$	$E_{\rm T}^{\rm miss}$ [GeV]	$m_{\rm eff} [{ m GeV}]$
uino	SR3b	≥2	≥3	-	>125	>650
ttom	SR1b	≥2	≥1	≥4	>150	>550
	SR0b5j	≥2	==0	≥5	>125	>650
	SR0b3j	≥3	==0	≥3	>200	>550

Signal regions definition for the 3.2 fb⁻¹ scenario from 2015 analysis.

Re-optimization of these kinematical variables: the **missing transverse energy (MET), effective mass** (**Meff**) and the particle **jet multiplicity (nJet)** and **transverse momentum (pT)**.

• The **effective mass**: the scalar sum of the pT of the signal leptons and jets (regardless of their flavour) in the event plus MET.

Optimal Significance Grids With Corresponding MET, Meff, JET Multiplicity [JET pT 25 GeV, ΔB = 30%, L = 10 fb⁻¹]

- **Optimized** for **each signal point** → **too many** signal regions.
- As a compromise, **two regions** are chosen (**loss of nor more than 5%** of signal sensitivity).

Signal Significance with Cuts to Maximum Significance Ratio Grids [JET pT 25 GeV, $\Delta B = 30\%$, L = 10 fb⁻¹]

Z+jets	-		Z+jets	-	
W	-		W	-	
VV, VVV	0.83 ± 0.53		VV, VVV	0.10 ± 0.08	
ttbar	2.43 ± 0.24		ttbar	1.38 ± 0.18	
ttbarV, tZ, 4t	4.46 ± 0.20		ttbarV, tZ, 4t	2.33 ± 0.15	
ttH, ggH, VBFH	0.72 ± 0.26		ttH, ggH,	0.49 ± 0.16	
	8.44 ± 0.67 (stat) ± 2.53 (30%)		VBFH	0.45 ± 0.10	
TOTAL			TOTAL	4.30 ± 0.29 (stat) ± 1.29 (30%)	

- The MET, Meff and JET multiplicity cuts proposed for our two regions are:
- (150, 600) GeV and 6 JET25 for SR1b(1).
- (200, 650) GeV and 6 JET25 for SR1b(2).

The process was done for the L = 10 fb⁻¹ scenario. (amount of data that accumulated by August 2016, before the ICHEP 2016 conference was 13.3 fb⁻¹).

- Background break-down tables for the corresponding kinematical cuts in both SR1b(1) and SR1b(2) regions.

- Most detector "tricky" background: fake leptons from ttbar events.
- The Matrix Method is a **data driven method** used for the **Fake Lepton Background Estimation**, which needs as an input **real** and **fake** lepton (e, μ) **efficiencies**.

- **Objective**: to **update** the **Real Lepton Efficiency measurement** of the 2015 analysis for the 2016 analysis. (Previously done by Sebastien Kahn).
- **Real Lepton Efficiency** corresponds to the **ratio** of **baseline** (pre-selected/loose) to **signal** (tight) leptons.

Tag & Probe Method for Real Lepton Efficiency Measurement

- MC used to simulate prompt leptons (Z → ee/mumu) : leptons are selected via Z decays.
- A Tag lepton should satisfy:
- 1) Signal lepton definition cuts.
- 2) Signal lepton trigger match.
- A Probe lepton should satisfy:
- **1)** Baseline lepton definition cuts.
- 2) Mll (tag, probe) inside [80, 100] GeV window.
- **3)** Opposite sign leptons.

CPPN

Real Lepton Efficiency Measurement

Need to subtract background for the first two bins. MC/data deviation was observed Only for leptons with (pT<20 GeV) → Background Subtraction.

Systematics: background subtraction, cuts, ttbar.

Real Electron Efficiencies (errors are statistical only).

$p_{\rm T} [{\rm GeV}] \eta $	[0-0.8]	[0.8-1.37]	[1.52-2]
[10-15]	63.88 ± 0.53	75.71 ± 0.43	68.45 ± 0.47
[15-20]	71.06 ± 0.28	77.91 ± 0.27	75.39 ± 0.30
[20-25]	77.60 ± 0.16	82.62 ± 0.17	81.09 ± 0.20
[25-30]	83.28 ± 0.10	87.39 ± 0.10	85.92 ± 0.13
[30-35]	87.26 ± 0.06	89.74 ± 0.08	87.81 ± 0.10
[35-40]	90.31 ± 0.05	91.39 ± 0.06	89.98 ± 0.08
[40-50]	93.32 ± 0.03	93.77 ± 0.03	92.75 ± 0.05
[50-60]	95.25 ± 0.05	95.67 ± 0.06	94.37 ± 0.10
[60-80]	96.87 ± 0.06	97.24 ± 0.07	95.99 ± 0.13
$p_{\rm T} > 80$	98.12 ± 0.08	97.97 ± 0.11	97.08 ± 0.19

٠

Validation of Background Estimates

Predictions and data agree fairly well.

Results and Conclusion

Irreducible SM bkg ttbar dominated

Reducible detector bkg

	SR1b
Observed	12
Total SM background	11.4 ± 2.8
tīZ	1.6 ± 0.6
tĪW	2.0 ± 0.7
Diboson	0.5 ± 0.4
Rare	2.7 ± 0.9
Fake/non-prompt leptons	3.3 ± 2.1
Charge-flip	1.43 ± 0.19

Within the models considered, exclusion limits are

extended by 150–400 GeV in \tilde{g} mass, 100–350 GeV in $\tilde{\chi}_1^0$ mass and 150 GeV in \tilde{b}_1 mass with respect to previous results.

- Joined a **SUSY physics** analysis team:
- ➔ Finished signal region optimization study for the direct sbottom and gtt models.
- → Contributed to the real lepton efficiency measurement using 2015 and 2016 data, as part of the SS/3L 2016 analysis.
- → An ATLAS **CONF note** was published (ATLAS-CONF-2016-037).
 - Currently writing my thesis.

Backup

The ATLAS Pixel Detector

- **Inner-most** at the ID of ATLAS.
- A **semiconductor** detector made of silicon modules.
- Two parts:
 - Old Pixel: **3 barrel layers and 2 x 3 end-cap layers**.
 - **IBL** (installed on May 2014).
- **IBL insertion** required a beam pipe radius reduction $(29.0 \rightarrow 23.5 \text{ mm}).$

Motivations for the Insertable B-Layer (IBL)

- **High performance** despite the radiation damage.
- Enhancement of **tracking robustness** and precision.
- Improvement of **vertexing** and **b-tagging** performance.
- **Higher sensitivity** for physics channels involving bjets.

The Lorentz Angle in the Pixel Detector

- Lorentz Angle (α_L) is the angle by which charge carriers inside the silicon sensors are deflected from their normal paths, due to the **solenoid magnetic field**. $\tan(\alpha_L) = r_H \mu_e B$
- μ_e is the electron mobility. r_H is Hall factor. α_L decreases as temperature increases.
- α_L should be taken into account when determining the real position of the particle track.

The Lorentz Angle Measurements

Technology	a [pixels]	α_L [mrad]	b [pixels]	σ [mrad]	$\chi^2/d.o.f$			
Pixel Layers	3.28 ± 0.02	201 ± 1	1.14 ± 0.01	80 ± 4	64/23			
IBL Planar	2.35 ± 0.06	224 ± 4	1.18 ± 0.03	112 ± 21	41/23			
IBL 3D	2.90 ± 0.07	-10 ± 5	1.08 ± 0.03	64 ± 20	19/23			

- α_L is 0 for 3D, because charge carriers will drift to the same electrodes even after bent by B (different structure from planar).
- IBL & Pixel commissioning enabled us to gain a good understanding of the IBL settings and performance.
- IBL took valuable **data during 2015**.

Mean Cluster Transverse Width [pixels]

The Lorentz Angle Data/Monte Carlo Comparison

• Data is used to **tune** MC.

CPPN

- The Lorentz angle MC in Run 1 was scaled by 0.9 to match data. No additional scaling is needed for Run 2.
- The source discrepancy between data and MC at large incidence angle for cosmics is **understood** although it is not important for collisions.

IBL Planar Lorentz Angle Vs Temperature

- Astonishing agreement:
 - The linear fit slope is
 -0.74 ± 0.21 mrad/°C for the
 IBL Planar in 2015.
 - The linear fit slope is

 -0.74 ± 0.06 mrad/°C for the
 Pixel layers in 2008-2009.

