Measurement of the branching ratio of $B^0_s ightarrow \eta_c \phi$ at LHCb

S. Akar¹, J. He^{2,3}, O. Leroy¹ (director), **M. Martin**¹ (third year), R. Cardinale^{4,5}, C. Patrignani^{6,7}, A. Pistone^{4,5}

CPPM PhD days

23 Sept, 2016

- ¹ CPPM, Aix Marseille Université CNRS/IN2P3, Marseille, France;
 - ² University of Chinese Academy of Sciences, Beijing, China;
- ³ Center for High Energy Physics, Tsinghua University, Beijing, China;
 - ⁴ Università degli Studi di Genova, Genova, Italy;
 - ⁵ Sezione INFN di Genova, Genova, Italy;
 - ⁶ Università degli Studi di Bologna, Bologna, Italy;
 - ⁷ Sezione INFN di Bologna, Bologna, Italy.

Weak phase ϕ_s

 \Rightarrow Make the first observation of $B_s^0 \rightarrow \eta_c \phi$ with Run 1 data

Analysis of $B_s^0 \rightarrow \eta_c (\rightarrow 4h, p\bar{p}) \phi(K^+K^-)$

- $\eta_c \rightarrow p\bar{p}$: Bologna team
 - $\eta_c \to 4h$: CPPM team, where $4h = \{K^+K^-\pi^+\pi^-, \pi^+\pi^-\pi^+\pi^-, K^+K^-K^+K^-\}$
 - \Rightarrow 6 hadrons in the final state
- Measure the decay mode branching fraction with respect to reference channel with identical final state for η_c and J/ψ :

$$\mathcal{B}_{\text{meas}}(B^0_{\mathcal{S}} \to \eta_{\mathcal{C}}\phi) = \frac{N_{\eta_{\mathcal{C}}}^{\text{iff}}}{N_{J/\psi}^{\text{iff}}} \times \mathcal{B}(B^0_{\mathcal{S}} \to J/\psi \phi) \times \frac{\mathcal{B}(J/\psi \to 4h, p\bar{p})}{\mathcal{B}(\eta_{\mathcal{C}} \to 4h, p\bar{p})} \times \frac{\varepsilon_{B^0_{\mathcal{S}} \to J/\psi (\to 4h, p\bar{p})\phi}}{\varepsilon_{B^0_{\mathcal{S}} \to \eta_{\mathcal{C}}(\to 4h, p\bar{p})\phi}}$$

- $\frac{N_{n_c}^{\text{tr}}}{N_{n_c}^{\text{tr}}}$ from unbinned maximum likelihood fit to data
- Branching fraction taken from PDG
- Efficiency corrections estimated from MC and control samples

Analysis of $B_s^0 \rightarrow \eta_c (\rightarrow 4h, p\bar{p}) \phi(K^+K^-)$

- $\eta_c \rightarrow p\bar{p}$: Bologna team
 - $\eta_c \to 4h$: CPPM team, where $4h = \{K^+K^-\pi^+\pi^-, \pi^+\pi^-\pi^+\pi^-, K^+K^-K^+K^-\}$
 - \Rightarrow 6 hadrons in the final state
- Measure the decay mode branching fraction with respect to reference channel with identical final state for η_c and J/ψ :

$$\mathcal{B}_{\text{meas}}(B^0_{\mathcal{S}} \to \eta_{\mathcal{C}}\phi) = \frac{N_{\eta_{\mathcal{C}}}^{\text{iff}}}{N_{\mathcal{J}\psi}^{\text{iff}}} \times \mathcal{B}(B^0_{\mathcal{S}} \to J/\psi \phi) \times \frac{\mathcal{B}(J/\psi \to 4h, p\bar{p})}{\mathcal{B}(\eta_{\mathcal{C}} \to 4h, p\bar{p})} \times \frac{\varepsilon_{B^0_{\mathcal{S}} \to J/\psi (\to 4h, p\bar{p})\phi}}{\varepsilon_{B^0_{\mathcal{S}} \to \eta_{\mathcal{C}}(\to 4h, p\bar{p})\phi}}$$

- $\frac{N_{\eta_c}^{m}}{N_{\mu_c}^{m}}$ from unbinned maximum likelihood fit to data
- Branching fraction taken from PDG
- Efficiency corrections estimated from MC and control samples
- Fitting strategy (Two-step procedure):
 - **1** Two-dimentional fit to the $(4h, p\bar{p})K^+K^- \times K^+K^-$ invariant mass spectra:
 - Individual 2D fits for each 4 final states
 - Compute the sWeights (optimal backgroung substraction procedure) corresponding to $B_s^0 \rightarrow (4h, p\bar{p})\phi$ event category

Analysis of $B_s^0 \rightarrow \eta_c (\rightarrow 4h, p\bar{p}) \phi(K^+K^-)$

- $\eta_c \rightarrow p\bar{p}$: Bologna team
 - $\eta_c \to 4h$: CPPM team, where $4h = \{K^+K^-\pi^+\pi^-, \pi^+\pi^-\pi^+\pi^-, K^+K^-K^+K^-\}$
 - \Rightarrow 6 hadrons in the final state
- Measure the decay mode branching fraction with respect to reference channel with identical final state for η_c and J/ψ :

$$\mathcal{B}_{\text{meas}}(B^0_{\mathcal{S}} \to \eta_{\mathcal{C}}\phi) = \frac{N_{\eta_{\mathcal{C}}}^{\text{fit}}}{N_{\mathcal{J}\psi}^{\text{fit}}} \times \mathcal{B}(B^0_{\mathcal{S}} \to J/\psi \phi) \times \frac{\mathcal{B}(J/\psi \to 4h, p\bar{p})}{\mathcal{B}(\eta_{\mathcal{C}} \to 4h, p\bar{p})} \times \frac{\varepsilon_{B^0_{\mathcal{S}} \to J/\psi}(\to 4h, p\bar{p})\phi}{\varepsilon_{B^0_{\mathcal{S}} \to \eta_{\mathcal{C}}(\to 4h, p\bar{p})\phi}}$$

- $\frac{N_{\eta_c}^m}{N_{L_c}^m}$ from unbinned maximum likelihood fit to data
- Branching fraction taken from PDG
- Efficiency corrections estimated from MC and control samples
- Fitting strategy (Two-step procedure):
 - **1** Two-dimentional fit to the $(4h, p\bar{p})K^+K^- \times K^+K^-$ invariant mass spectra:
 - Individual 2D fits for each 4 final states
 - Compute the sWeights (optimal backgroung substraction procedure) corresponding to $B_s^0 \to (4h, p\bar{p})\phi$ event category
 - Simultaneous amplitude fit to the 4 weighted $(4h, p\bar{p})$ invariant mass spectra:
 - the branching fraction is directly measured in the data, taking advantage of the correlations between η_c and J/ψ yields
 - the branching fraction is a <u>common parameter</u> over the 4 categories in the simultaneous fit

- Use full Run 1 data sample \sim 3 fb⁻¹ (2011-2012)
- Three final states: $4h = \{KK\pi\pi, \pi\pi\pi\pi, KKKK\}$
- A lot of background because we have purelly hadronic modes
- Challenging hadronic trigger with 6 soft hadrons in the final state

- Use full Run 1 data sample \sim 3 fb⁻¹ (2011-2012)
- Three final states: $4h = \{KK\pi\pi, \pi\pi\pi\pi, KKKK\}$
- A lot of background because we have purelly hadronic modes
- Challenging hadronic trigger with 6 soft hadrons in the final state

Offline selection:

- Dedicated multivariate BDT (Boosted Decision Tree) selection for each 3 final states
- Particle identification selection cuts on pions and kaons

2D fit model (Monte-Carlo)

- $4hK^+K^-$ invariant mass:
 - B⁰_s: Hypatia¹ with mean and resolution free (other params fixed to MC)
 - B⁰: Hypatia with mean free and resolution constrained to be the same as the one B⁰_s (other params fixed to MC)
 - Combinatorial bkg: Exponential

¹Modified Gaussian with asymetric tails

- K⁺K⁻ invariant mass:
 - ϕ (1020): RBW² \otimes Gaussian with mean and resolution free
 - (ϕ barrier radius fixed to 3.0 GeV⁻¹)
 - Non-resonant: Exponential

²Relativistic Breit-Wigner

 B_s^0 MC events

 ϕ MC events

2D fit results (real data example: $KK\pi\pi$)

• 15 free parameters:

• sWeights computed for $B_s^0 \rightarrow X\phi$ events used latter in the simultaneous amplitude fit to $2K2\pi$, 4π , 4K, $p\bar{p}$

Simultaneous amplitude fit model to the 4 n_c modes

- After applying the $B_{0}^{0} \rightarrow X\phi$ sWeights obtained from the 2D fit, only four (two) categories are statistically left in the 4h $(p\bar{p})$ invariant mass spectra:
 - $B_s^0
 ightarrow \eta_c(4h, p\bar{p})\phi$ $B_s^0
 ightarrow J/\psi (4h, p\bar{p})\phi$ $B_s^0
 ightarrow (4h)_{S-wave}\phi$ $B_s^0
 ightarrow (4h)_{NR}\phi$
- Take into account interference between η_c and S-wave: Total amplitude for each final state modeled as: $|A(m_f; c_k, \vec{x})|^2 = \sum_{l} |\sum_{k} c_k R_{k}^{l}(m_f; \vec{x})|^2$
 - see back up for details
- Fitting function taking into account detector resolution: $PDF(m_f) = |A(m_f; c_k, \vec{x})|^2 \otimes \mathcal{R}(\vec{x}'(m_f))$ Hypatia with mass-dependent parameters taken from MC
- The branching fraction is a common parameter over the 4 categories in the simultaneous fit

Simultaneous amplitude fit results

• Most of the information comes from $p\bar{p}$ due to (η_c -S-wave) interference in the 4h modes

Systematical uncertainties	$+1\sigma$	-1σ
Fixed PDF parameters	0.10	0.10
ϕ (1020) range parameter	0.08	0.08
Efficiency ratios	0.02	0.02
Total systematics	0.13	0.13
External B	0.56	0.56

Preliminary:

 $\mathcal{B}(B_s^0 o \eta_c \phi) = (4.95 \pm 0.53 \, (\text{stat}) \pm 0.13 \, (\text{syst}) \pm 0.56 \, (\mathcal{B})) \times 10^{-4}$

First observation of this decay mode

• Conclusions:

• $B^0_s
ightarrow \eta_c \phi$

- First observation of this decay mode
- Branching ratio slighty lower naive expectation
- Systematic uncertainties dominated by input branching ratio

 $\mathcal{B}(B^0_s o \eta_c \phi) = (4.95 \pm 0.53 \, (\mathrm{stat}) \pm 0.13 \, (\mathrm{syst}) \pm 0.56 \, (\mathcal{B})) imes 10^{-4}$

Prospects:

- Finalizing systematics: validation of the fit model using toy MC
- Analysis under LHCb internal review

Backup

• Using *d* = *s* hypothesis, i.e. assuming

$$\frac{\mathcal{B}(B_{s}^{0} \rightarrow \eta_{c}\phi)}{\mathcal{B}(B_{s}^{0} \rightarrow J/\psi \phi)} = \frac{\mathcal{B}(B^{0} \rightarrow \eta_{c}K^{0})}{\mathcal{B}(B^{0} \rightarrow J/\psi K^{0})}$$

- We can predict the expected $\mathcal{B}_{\text{predict.}}(B_s^0 \to \eta_c \phi) = (9.7 \pm 1.7) \times 10^{-4}$
- We measured: $\mathcal{B}(B_s^0 \to \eta_c \phi) = (4.95 \pm 0.53 \,(\text{stat}) \pm 0.13 \,(\text{syst}) \pm 0.56 \,(\mathcal{B})) \times 10^{-4}$

Efficiency corrections

$$\mathcal{B}_{\text{meas}}(B^0_s \to \eta_c \phi) = \frac{N^{\text{int}}_{\eta_c}}{N^{\text{int}}_{J/\psi}} \times \mathcal{B}(B^0_s \to J/\psi \phi) \times \frac{\mathcal{B}(J/\psi \to 4h, p\bar{p})}{\mathcal{B}(\eta_c \to 4h, p\bar{p})} \times \frac{\varepsilon_{J/\psi}}{\varepsilon_{\eta_c}}$$

• The overall efficiencies can be factorized for each considered mode such as:

$$\frac{\varepsilon_{J/\psi}^{\text{tot}}}{\varepsilon_{\eta_{\mathcal{C}}}^{\text{tot}}} = \frac{\varepsilon_{J/\psi}^{\text{geo}}}{\varepsilon_{\eta_{\mathcal{C}}}^{\text{geo}}} \times \frac{\varepsilon_{J/\psi}^{\text{reco+sel}}}{\varepsilon_{\eta_{\mathcal{C}}}^{\text{reco+sel}}} \times \frac{\varepsilon_{J/\psi}^{\text{PID}}}{\varepsilon_{\eta_{\mathcal{C}}}^{\text{reco}}} \times \frac{F_{\text{inferme}}^{\text{lifetime}}}{F_{\text{corr}\eta_{\mathcal{C}}}^{\text{lifetime}}}$$

$$\begin{split} & \varepsilon^{gco} \colon \text{geometric efficiency tables} \\ & \varepsilon^{reco+sel} = \varepsilon^{reco} \times \varepsilon^{trigger} \times \varepsilon^{stripping} \times \varepsilon^{BDT} \\ & \varepsilon^{PD} \colon \text{calculated using PIDCalib} \\ & F^{\text{inferme}}_{\text{corr, mode}} \colon \text{factor correcting MC lifetimes} \end{split}$$

_lifatima

• Using exclusive signal MC samples: (without F^{lifetime})

$$\begin{pmatrix} \frac{\varepsilon J/\psi}{\varepsilon_{\eta_c}} \end{pmatrix}_{\text{tot w/o}}^{2K2\pi} = 1.015 \pm 0.011 \\ \begin{pmatrix} \frac{\varepsilon J/\psi}{\varepsilon_{\eta_c}} \end{pmatrix}_{\text{tot w/o}}^{2K2\pi} = 1.032 \\ \frac{\varepsilon J/\psi}{\varepsilon_{\eta_c}} \end{pmatrix}_{\text{tot w/o}}^{4\pi} = 1.035 \pm 0.015 \\ \begin{pmatrix} \frac{\varepsilon J/\psi}{\varepsilon_{\eta_c}} \end{pmatrix}_{\text{tot w/o}}^{4\pi} = 0.931 \pm 0.027 \\ \begin{pmatrix} \frac{\varepsilon J/\psi}{\varepsilon_{\eta_c}} \end{pmatrix}_{\text{tot w/o}}^{4\pi} = 0.931 \pm 0.027 \\ \begin{pmatrix} \frac{\varepsilon J/\psi}{\varepsilon_{\eta_c}} \end{pmatrix}_{\text{tot w/o}}^{2\mu} = 1.002 \pm 0.009 \\ \end{pmatrix} \begin{pmatrix} \frac{\varepsilon J/\psi}{\varepsilon_{\eta_c}} \end{pmatrix}_{\text{tot w/o}}^{p\bar{p}} = x.xxx$$

• Due to linear relation between efficiency ratio and $\mathcal{B}_{\text{meas}}(B_s^0 \to \eta_c \phi)$ we expect $\sim +3\%$ variation on the branching ratio result

Simultaneous amplitude fit model to the 4 η_c modes

• After applying the $B_s^0 \rightarrow X\phi$ **sWeights** obtained from the 2D fit, only four (two) categories are statistically left in the 4*h* ($p\bar{p}$) invariant mass spectra:

•
$$B_s^0 \rightarrow \eta_c(4h, p\bar{p})\phi$$

• $B_s^0 \rightarrow J/\psi(4h, p\bar{p})\phi$

•
$$B_s^0 \rightarrow (4h)_{\rm S-wave} \phi$$

•
$$B_s^0 \rightarrow (4h)_{\rm NR} \phi$$

• Total amplitude for each final state modeled as:

 $|A(m_f; c_k, \vec{x})|^2 = \sum_J |\sum_k c_k R_k^J(m_f; \vec{x})|^2$

•
$$R_k^J(m_f; \vec{x})$$
: line shape

•
$$c_k = \alpha_k e^{i\phi_k}$$

 α_k : magnitude
 ϕ_k : phase
 k : componante with spin J

• Fitting function taking into account detector resolution: $PDF(m_f) = |A(m_f; c_k, \vec{x})|^2 \otimes \mathcal{R}(\vec{x}'(m_f))$ **Hypatia** with mass-dependent parameters taken from MC

- Line shape:
 - η_c : Relativistic Breit-Wigner with mass-independent width
 - $B_s^0 \rightarrow (4h)_{S-wave}\phi$: Exponential (allowed to interfere with η_c)
 - Interference term: $2\Re[c_{\eta_c}R_{\eta_c}(m_f;\vec{x})c_S^*R_S^*(m_f;\vec{x})]$
 - B⁰_s → (4h, pp̄)_{NR}φ: Exponential (not allowed to interfere with η_c) sum of remaining backgrounds with a flat distribution in m_{4h}
 - J/ψ : Relativistic Breit-Wigner with mass-independent width
- Fixed parameters: Γ_{η_c} (PDG), $\alpha_{J/\psi} = 1$, all resolution parameters (MC), input branching fractions (PDG) and efficiency ratio (MC)
- Free parameters (individualy different for each mode): κ_S, κ_{NR}, Δφ, NR and S-wave fractions
- Free common parameters: $\mathcal{B}(B^0_s o \eta_c \phi), \, m_{\eta_c}$ and $m_{J/\psi}$

$$\begin{split} I(m_f; \boldsymbol{c}_{\eta_c}, \boldsymbol{c}_{\mathrm{S}}, \vec{x}) &= 2 \Re [\boldsymbol{c}_{\eta_c} \boldsymbol{R}_{\eta_c}(m_f; \vec{x}) \boldsymbol{c}_{\mathrm{S}}^* \boldsymbol{R}_{\mathrm{S}}^*(m_f; \vec{x})] \\ &= 2 \alpha_{\eta_c} \alpha_{\mathrm{S}} \Re [\boldsymbol{R}_{\eta_c}(m_f; \vec{x}) \boldsymbol{R}_{\mathrm{S}}^*(m_f; \vec{x}) \boldsymbol{e}^{i(\phi_{\eta_c} - \phi_{\mathrm{S}})}] \\ &= 2 \alpha_{\eta_c} \alpha_{\mathrm{S}} \boldsymbol{R}_{\mathrm{S}} \big(\cos(\Delta \phi) \Re [\boldsymbol{R}_{\eta_c}(m_f; \vec{x})] \big) \\ &- \sin(\Delta \phi) \Im [\boldsymbol{R}_{\eta_c}(m_f; \vec{x})] \big) \,, \end{split}$$

 $B_s^0 \rightarrow \eta_c (\rightarrow 4h) \phi (\rightarrow)$: Stripping BDT inputs

A total of 23 variables are used to optimize the BDT selection:

- The B_s^0 meson flight distance (FDS)
- The *B*⁰_s meson angle between reconstructed momentum and flight distance direction (DIRA)
- The B_s^0 , η_c and ϕ mesons vertex χ^2
- The transverse momentum of the η_c and ϕ mesons and all *K* and π particles (log(p_T)).
- The track impact parameter χ^2 of the B_s^0 , η_c and ϕ mesons and all *K* and π particles ($\sqrt{IP \chi^2}$).
- The sum of track impact parameter χ^2 of hadrons from η_c ($\sum IP \chi^2$).

$B_s^0 \rightarrow \eta_c(\rightarrow 4h)\phi(\rightarrow)$: Stripping BDT inputs

Rank	Variable	Importance × 10 ⁻²
1	B _S ⁰ : DIRA	8.549
2	$B_{s}^{0}: \sqrt{IP \chi^{2}}$	8.206
3	η_{C} : log(p_{T})	7.773
4	ϕ : log(p_T)	6.085
5	B _S ⁰ : FDS	5.679
6	η_c : vertex χ^2	5.429
7	$\eta_c: \sum IP \chi^2$	4.604
8	$K^-: \eta_C \log(p_T)$	4.441
9	$\phi: \sqrt{IP \chi^2}$	4.369
10	$K^+: \phi \log(p_T)$	4.343
11	ϕ : vertex χ^2	4.256
12	$\pi^-: \eta_c \log(p_T)$	4.208
13	K^+ : $\eta_c \log(p_T)$	4.150
14	$K^-: \phi \log(p_T)$	4.060
15	π^+ : $\eta_c \log(p_T)$	3.722
16	π^+ : $\eta_c \sqrt{IP \chi^2}$	3.354
17	π^- : $\eta_c \sqrt{IP \chi^2}$	3.332
18	$K^+: \phi \sqrt{IP \chi^2}$	3.070
19	$\eta_{c}: \sqrt{IP \chi^{2}}$	2.942
20	$K^-: \phi \sqrt{IP \chi^2}$	2.634
21	$K^+: \eta_c \sqrt{IP \chi^2}$	2.541
22	$K^-: \eta_c \sqrt{IP \chi^2}$	1.419
23	B_S^0 : vertex χ^2	0.833

 $B_s^0 \rightarrow \eta_c (\rightarrow 4h) \phi(\rightarrow)$: Offline BDT inputs

A total of 12 variables are used to optimize the MVA selection:

- The B_s^0 , η_c and ϕ mesons vertex χ^2
- The maximum logarithm value of impact parameter χ^2 and track quality in all hadrons (Log_Max_IP χ^2 and Max_TRACK_ χ^2).
- The minimum logarithm value of transverse momentum in all hadrons (Log_Min_p_T).
- The B_s^0 and η_c meson flight distance (FD)
- The *B*⁰_s meson angle between reconstructed momentum and flight distance direction (DIRA)
- The track impact parameter χ^2 of the η_c (*IP* χ^2).
- The transverse momentum of the B_s^0 and ϕ mesons (log(p_T)).

$B_s^0 \to \eta_c(\to 4h)\phi(\to)$: Offline BDT inputs

Mode	B
$B^0_s ightarrow D^s (ightarrow K^+ K^- \pi^-) \pi^+ \pi^- \pi^+$	($3.4 \pm 0.6) imes 10^{-4}$
$\overline{B^0_s ightarrow D^+_s (ightarrow K^+ K^- \pi^+) D^s (ightarrow K^+ K^- \pi^-)}$	$(13.1 \pm 1.6) imes 10^{-6}$
$B^0_s ightarrow D^+_s (ightarrow K^+ K^- \pi^+) D^s (ightarrow \pi^+ \pi^- \pi^-)$	$(26.1 \pm 3.3) imes 10^{-7}$
$B^0_s ightarrow D^+_s (ightarrow K^+ \pi^+ \pi^-) D^s (ightarrow K^+ K^- K^-)$	($6.3 \pm 1.0) imes 10^{-9}$
$B^0_s ightarrow D^+_s (ightarrow K^+ K^- K^+) D^s (ightarrow K^+ K^- K^-)$	(2.1 ± 0.4) $ imes$ 10 ⁻¹⁰
$\overline{B^0_s} ightarrow\overline{D^0}(ightarrow K^+K^-\pi^-)K^-\pi^+)$	($2.2\pm0.5) imes10^{-7}$
$B^0_s ightarrow D^s (ightarrow K^+ K^- K^-) K^+ \pi^+ \pi^-$	($7.2 \pm 1.7) \times 10^{-8}$
$B^0_s ightarrow D^s (ightarrow K^+ K^- \pi^-) D^+ (ightarrow K^+ K^- \pi^+)$	$(15.2\pm2.8){ imes}10^{-8}$
$B^0_s ightarrow D^s (ightarrow K^+ K^- \pi^-) D^+ (ightarrow \pi^+ \pi^- \pi^+)$	($5.0 \pm 1.0) imes 10^{-8}$
$\overline{B^0_s ightarrow D^+ (ightarrow K^+ K^- \pi^+) D^- (ightarrow K^+ K^- \pi^-)}$	($2.2 \pm 0.6) imes 10^{-8}$
$B^0_s ightarrow D^+ (ightarrow K^+ K^- \pi^+) D^- (ightarrow \pi^+ \pi^- \pi^-)$	($7.2 \pm 2.0) imes 10^{-9}$
$\overline{ B^0_s ightarrow D^0 (ightarrow K^+ K^- K^- \pi^+) \overline{D^0} (ightarrow K^+ \pi^-) }$	($1.7 \pm 0.5) \times 10^{-9}$

Study of background contributions: $B_s^0 \rightarrow D_s^+ D_s^-$

- Naively dangerous background because final state identical to our signal and due to its large branching fraction
- Studied B⁰_s → D⁺_s(→ KKπ)D⁻_s(→ KKπ) [top] and B⁰_s → D⁺_s(→ KKπ)D⁻_s(→ πππ) [bottom] MC samples with only stripping and corresponding final state PID selections

- Similar estimated branching fraction compared to our signal
- Only one proton mis-identification
- Using $\Lambda_b \rightarrow \eta_c p K$ MC sample, no events passed the full selection
- Assuming similar visible branching fractions, we could put the upper limit:

$$N_{\Lambda_b o \eta_c
ho K} \leq N_{B^0_s o \eta_c \phi} imes 10^{-2}$$

Negligible contribution compared to our signal

Parameter	Mode				
	2Κ2π 4π		4 <i>K</i>	pp	
N _B 0 ф	586 ± 34	502 ± 33	148 ± 14	448 ± 25	
μ _B 0	5370.0 ± 0.7	5371.9 ± 1.6	5369.8 ± 1.3	5370.3 ± 0.8	
μ ₆ 0	5287 ± 16	5284.7 ± 2.8	5272 ± 12	5271 ± 13	
μ_{ϕ}	1019.38 ± 0.12	1019.65 ± 0.13	1019.53 ± 0.24	1019.99 ± 0.15	
$\sigma_{B_{S}^{0}}$	16.4 ± 1.0	17.4 ± 1.0	15.5 ± 1.5	15.8 ± 0.8	
σ_{ϕ}	0.99 ± 0.22	1.20 ± 0.26	0.9 ± 0.5	0.6 ± 0.4	
$\kappa(4h, p\bar{p})_{\text{comb.}, \phi}$	-0.0033 ± 0.0030	-0.0102 ± 0.0015	-0.0027 ± 0.0023	0.0033 ± 0.0030	
$\kappa(4h, p\bar{p})_{comb., KK}$	0.0043 ± 0.0010	0.0069 ± 0.0007	0.0071 ± 0.0033	-0.0004 ± 0.0013	
κ(KK) _{B,KK}	0.012 ± 0.011	0.012 ± 0.007	-0.08 ± 0.11	-0.028 ± 0.050	
$\kappa(KK)_{comb.,KK}$	0.006 ± 0.004	0.0132 ± 0.0030	0.025 ± 0.012	0.0052 ± 0.0077	
N _{B⁰KK}	18 ± 16	67 ± 24	0.0 ± 0.7	-4 ± 4	
N _B 0 _d	7 ± 17	77 ± 23	6 ± 5	11 ± 7	
N _B 0KK	86 ± 21	112 ± 25	3 ± 3	10 ± 11	
N _{comb, KK}	329 ± 33	599 \pm 43	34 ± 9	109 ± 18	
$N_{\text{comb.}\phi}$	418 \pm 39	380 ± 43	50 ± 13	43 ± 17	
N _{mis-ID} _{ppKπ}	n/a	n/a	n/a	11 ± 13	
$\kappa(KK)_{\text{mis-ID},K\pi}$	n/a	n/a	n/a	-0.0325 ± 0.0002	

2D fit results

Hypatia model

- D. Martinez Santos and F. Dupertuis, Mass distributions marginalized over per-event errors, Nucl. Instrum. Meth. A764 (2014) 150, arXiv:1312.5000
- Resolution function:
 - asymetric radiation
 - mass resolution with mass-dependence

$$I(m, \mu, \sigma, \lambda, \zeta, \beta, a_1, a_2, n_1, n_2) \propto \begin{cases} \frac{A}{(B+m-\mu)^{n_1}}, \text{ if } m - \mu < -a_1\sigma, \\ \frac{C}{(D+m-\mu)^{n_2}}, \text{ if } m - \mu > a_2\sigma, \\ \left((m-\mu)^2 + \delta^2\right)^{\frac{1}{2}\lambda - \frac{1}{4}} e^{\beta(m-\mu)} K_{\lambda - \frac{1}{2}} \left(\alpha \sqrt{(m-\mu)^2 + \delta^2}\right), \text{ otherwise}, \end{cases}$$
(1)

where $K_{\nu}(z)$ is the modified Bessel function of the second kind, $\delta \equiv \sigma \sqrt{\frac{\zeta K_{\lambda}(\zeta)}{K_{\lambda+1}(\zeta)}}, \alpha \equiv \frac{1}{\sigma} \sqrt{\frac{\zeta K_{\lambda+1}(\zeta)}{K_{\lambda}(\zeta)}}, \text{ and } A, B, C, D \text{ are obtained by imposing continuity and differentiability.}$

Systematics: RBW with mass-dependant width

• The RBW parametrization used to describe the $\phi(1020)$ resonance in the 2D fit model is defined as:

•
$$R_j(m) = \frac{1}{(m_0^2 - m^2) - im_0 \Gamma(m)}$$

- m₀ is the nominal mass of the resonance
- Γ(m) is the mass-dependent width

•
$$\Gamma(m) = \Gamma_0 \left(\frac{|\mathbf{q}|}{|\mathbf{q}|_0}\right)^{2J+1} \left(\frac{m_0}{m}\right) \frac{X_J^2(|\mathbf{q}|r)}{X_J^2(|\mathbf{q}|_0r)}$$

- The *X_J*(|**q**|*r*) function describes the Blatt-Weisskopf barrier factor with a barrier radius of *r*
- For the K^* and the ρ resonances, literature reports values between $[2-4] \, {\rm GeV}^{-1}$
- No good external inputs for the ϕ radius...
- Variation the ϕ radius value in the range [1.5 5.0] GeV⁻¹
- Take the difference between the maximum and the minimum branching fractions as systematics

Systematics: Fit model

- Fixed parameters to the MC in the fit procedure
- Natural width of the η_c and the natural width of the ϕ have been fixed to the average value reported in the PDG
- Generated 1000 values from the covariance matrix for each fixed parameter in the fit procedure
- For the natural width of the η_c and the natural width of the ϕ generated as a Gaussian with mean and error taken from the PDG
- For each new set of values, we performed the 2D fit of the ppKK and KK invariant masses extracting the corresponding sWeights
- For each new set of sWeight, we performed the *pp̄* fit varying simultaneously the fixed parameters of the *J*/ψ and of the η_c
- The uncertainty is taken as the difference between the nominal value and the value at $1\sigma(-1\sigma)$ of the branching fractions distribution

Systematics: Fit model

• Distribution of $\mathcal{B}(B^0_s \to \eta_c \phi)$ obtained after varying the fixed PDF parameters in both the two-dimensional and simultaneous amplitude fit models. The vertical blue line corresponds to the nominal value of $\mathcal{B}(B^0_s \to \eta_c \phi)$ and the dashed red lines correspond to the plus- and minus-one sigma values

Variable	Mode/Year					
	2K2π		4π		4 <i>K</i>	
	2011	2012	2011	2012	2011	2012
B_s0_ENDVERTEX_CHI2	1.004 ± 0.039	1.005 ± 0.025	1.001 ± 0.041	0.998 ± 0.026	0.993 ± 0.134	0.949 ± 0.087
B_s0_FD_OWNPV	0.998 ± 0.038	0.999 ± 0.024	0.996 ± 0.039	0.999 ± 0.025	0.920 ± 0.126	0.997 ± 0.089
B_s0_DIRA_OWNPV	0.999 ± 0.037	0.999 ± 0.024	0.997 ± 0.039	0.995 ± 0.025	0.998 ± 0.132	0.991 ± 0.088
log10(B_s0_PT)	0.999 ± 0.037	0.999 ± 0.024	0.999 ± 0.039	0.999 ± 0.025	0.992 ± 0.132	0.961 ± 0.086
log10(phi_1020_PT)	0.996 ± 0.037	0.998 ± 0.024	0.993 ± 0.039	0.998 ± 0.025	0.901 ± 0.125	0.983 ± 0.087
phi_1020_ENDVERTEX_CHI2	0.996 ± 0.038	0.999 ± 0.024	0.995 ± 0.039	0.996 ± 0.025	0.960 ± 0.131	0.996 ± 0.090
etac_1S_ENDVERTEX_CHI2	0.994 ± 0.038	0.994 ± 0.024	0.988 ± 0.040	0.998 ± 0.025	0.996 ± 0.133	0.991 ± 0.090
etac_1S_IPCHI2_OWNPV	0.989 ± 0.038	0.988 ± 0.024	0.981 ± 0.039	0.979 ± 0.025	0.885 ± 0.126	0.965 ± 0.087
log10(etac_1S_FD_ORIVX)	1.016 ± 0.039	1.008 ± 0.025	1.000 ± 0.040	1.001 ± 0.025	1.000 ± 0.135	1.006 ± 0.091
Max_TRACK	1.001 ± 0.038	1.003 ± 0.024	0.983 ± 0.039	1.002 ± 0.025	1.003 ± 0.134	0.983 ± 0.088
log10(Max_IPCHI2)	0.998 ± 0.038	0.995 ± 0.024	0.994 ± 0.039	0.991 ± 0.025	0.980 ± 0.131	0.986 ± 0.087
log10(Min_h_Pt)	0.997 ± 0.037	0.995 ± 0.024	0.977 ± 0.039	0.978 ± 0.024	0.971 ± 0.129	0.980 ± 0.088

- Using the likelihood information from each fit, an event-per-event set of weights, w_i, are computed based on the sPlot procedure [arXiv:physics/0402083].
- These weights are further corrected based on the procedure given in [arXiv:0905.0724], such as:

 $\mathbf{w}_i^{\text{corr}} = \mathbf{w}_i \left(\sum_j \mathbf{w}_j / \sum_j \mathbf{w}_j^2\right)$

and are used to statistically subtract the backgrounds not corresponding to decays of the type $B_s^0 \rightarrow (4h, p\bar{p})\phi$