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Basic terminology

Planar map: a graph embedded in R2 so that vertices are
mapped to points and edges to non-intersecting curves.

(a) Triangulation: each face has three edges.
(b) Quadrangulation: each face has four edges.

The simple random walk on a graph starts at an arbitrary
vertex and in each step moves to a uniformly chosen neighbor.
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The basic questions

Is the random walk recurrent or transient?

Are there bounded harmonic functions on the graph?

What is the typical distance of the walker from the starting
point?

These are geometric/probabilistic questions, intimately related to
volume growth, isoperimetric profile, and resistance growth.

Lastly, can we analyze models of statistical physics on such
graphs? (percolation, self-avoiding walk, Ising model)
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Circle packing

Let G be a finite simple planar graph.

What would be a nice (canonical) way of drawing G in the plane?

Theorem (Koebe 1936, Andreev 1970, Thurston 1985)

A finite simple planar graph is a tangency graph of a circle packing.

If G is a triangulation, then the drawing is unique up to Möbius
transformations and reflections.
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Infinite circle packings

How does the theory extend to infinite graphs?

A circle packing always exists (as long as G has finite degrees)
as one can exhaust the graph and take some limit of the finite
circle packings.

No rigidity: different limits may lead to very different looking
packings (that are not Möbius equivalent). However, under
some natural conditions, the type of the limiting packing is
determined.

The main point: the type of the packing encapsulates
probabilistic information: recurrence/transience of the random
walk, existence of non-trivial bounded harmonic functions,
speed of the random walk, etc.
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Circle packing definitions

A circle packing P = {Cv} is a set of circles in the plane
with disjoint interiors.

The tangency graph of P is a graph G (P) in which the
vertex set is the set of circles, and two circles are adjacent
when they are tangent.

An accumulation point of P is a point y ∈ R2 such that
every neighborhood of it intersects infinitely many circles of P.

From now on we assume that G is an infinite triangulation.
The carrier of P is the union over all faces (except for the
outer face, if it exists) of the three circles of the face together
with the bounded space between them (the interstice).

The set of accumulation points A(P) is the boundary of the
carrier carr(P).
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Picture due to Ken Stephenson.
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Infinite triangulations

The carrier of P is the union of all the circles of the packing,
together with the curved triangular regions bounded between
each triplet of mutually tangent circles corresponding to a
face.

We call a circle packing of an infinite triangulation a packing
in the disc if its carrier is the unit disc D, and in the plane if
its carrier is C.

Theorem (He-Schramm ’95)

Any simple triangulation of the plane can be circle packed in the
plane C or the unit disc D, but not both ( CP parabolic vs. CP
Hyperbolic).

Theorem (Schramm’s rigidity ’91)

The above circle packing is unique up to Möbius transformations
of the plane or the sphere as appropriate.
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7-regular hyperbolic tessellation
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Circle packing also gives us a drawing of the graph with either
straight lines or hyperbolic geodesics depending on the type.

Asaf Nachmias Random walks on random planar triangulations



In the bounded degree case, the type of the packing
encapsulates a lot probabilistic information: recurrence/transience
of the random walk, existence of non-trivial bounded harmonic
functions, resistance estimates, etc.

Theorem (He-Schramm ’95)

Assume G is a bounded degree triangulation of the plane. Then it
is CP parabolic if and only if the random walk on G is recurrent.

Theorem (Benjamini-Schramm ’96)

Assume G is a bounded degree, CP hyperbolic triangulation of the
plane circle packed in the unit disc D. Then the random walk
converges to ∂D, the exit measure is non-atomic and has full
measure.
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A dichotomy for bounded degree plane triangulations

If G is bounded degrees triangulation of the plane, then either:

Random walk on G is recurrent, G is CP parabolic and
all bounded harmonic functions are constant,

or

Random walk on G is transient, G is CP hyperbolic and
any bounded Borel g : ∂D → R+ extends to G .

Theorem: There are no other bounded harmonic functions (Angel,
Barlow, Gurel-Gurevich, N. ’13).
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More examples

The 7-degree hyperbolic half-space glued with the 6-degree
triangular half-space.
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More examples

Rings of degree 7 (grey) are separated by growing bands of degree
six vertices (white), causing the hyperbolic radii of circles to decay.
The bands of degree six vertices can grow surprisingly quickly
without the triangulation becoming recurrent.
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Without bounded degree, there is no theory!

However, we would like to rebuild the theory for random
triangulations without a bounded degree assumption. This requires
a new approach.

Question 1: Is there an analogue of the He-Schramm
Theorem to characterise the CP type of a random graph by
probabilistic properties?
Question 2: Can we easily determine the CP type of a given
random triangulation?

And, in the hyperbolic case,

Question 3: Does the walker converge to a point in the
boundary of the disc? Does the law of the limit have full
support and no atoms almost surely?
Question 4: Is the unit circle a realisation of the Poisson
boundary?

Asaf Nachmias Random walks on random planar triangulations



Without bounded degree, there is no theory!

However, we would like to rebuild the theory for random
triangulations without a bounded degree assumption. This requires
a new approach.

Question 1: Is there an analogue of the He-Schramm
Theorem to characterise the CP type of a random graph by
probabilistic properties?
Question 2: Can we easily determine the CP type of a given
random triangulation?

And, in the hyperbolic case,

Question 3: Does the walker converge to a point in the
boundary of the disc? Does the law of the limit have full
support and no atoms almost surely?
Question 4: Is the unit circle a realisation of the Poisson
boundary?

Asaf Nachmias Random walks on random planar triangulations



Without bounded degree, there is no theory!

However, we would like to rebuild the theory for random
triangulations without a bounded degree assumption. This requires
a new approach.

Question 1: Is there an analogue of the He-Schramm
Theorem to characterise the CP type of a random graph by
probabilistic properties?

Question 2: Can we easily determine the CP type of a given
random triangulation?

And, in the hyperbolic case,

Question 3: Does the walker converge to a point in the
boundary of the disc? Does the law of the limit have full
support and no atoms almost surely?

Question 4: Is the unit circle a realisation of the Poisson
boundary?

Asaf Nachmias Random walks on random planar triangulations



Without bounded degree, there is no theory!

However, we would like to rebuild the theory for random
triangulations without a bounded degree assumption. This requires
a new approach.

Question 1: Is there an analogue of the He-Schramm
Theorem to characterise the CP type of a random graph by
probabilistic properties?

Question 2: Can we easily determine the CP type of a given
random triangulation?

And, in the hyperbolic case,

Question 3: Does the walker converge to a point in the
boundary of the disc? Does the law of the limit have full
support and no atoms almost surely?

Question 4: Is the unit circle a realisation of the Poisson
boundary?

Asaf Nachmias Random walks on random planar triangulations



Without bounded degree, there is no theory!

However, we would like to rebuild the theory for random
triangulations without a bounded degree assumption. This requires
a new approach.

Question 1: Is there an analogue of the He-Schramm
Theorem to characterise the CP type of a random graph by
probabilistic properties?

Question 2: Can we easily determine the CP type of a given
random triangulation?

And, in the hyperbolic case,

Question 3: Does the walker converge to a point in the
boundary of the disc? Does the law of the limit have full
support and no atoms almost surely?

Question 4: Is the unit circle a realisation of the Poisson
boundary?

Asaf Nachmias Random walks on random planar triangulations



Example: Poisson-Voronoi triangulation
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Random planar maps

Let Gn be a uniform random triangulation or quadrangulation on n
vertices. [Efficient sampling: Tutte’s enumeration or Schaeffer’s
bijections.]

(image by Nicolas Curien)

When n → ∞, what does it look like?
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The scaling limit of random planar maps

At the large scale a random planar map looks like this:

(image by Jean-Francois Marckert)

This is what you get when you scale graph distances by a factor of
n−1/4 so that the diameter is roughly a constant, then take a
Gromov-Hausdorf limit. The resulting limit is called the Brownian
map and is a random compact metric space homeomorphic to the
sphere (Le-Gall 2011, Miermont 2011).
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Local limits

The other extremal option is: don’t scale distances and aim to get
an infinite graph in the limit.

Definition. Given a sequence of finite graphs Gn let ρn be a
uniform random vertex of Gn. We say that the random rooted
graph (G , ρ) is the distributional limit of Gn if for any r > 0

BGn(ρn, r)
(d)

=⇒ BG (ρ, r) ,

where BG (ρ, r) is the ball of radius r in graph distance around ρ.
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Examples

Gn = path of length n =⇒

Z.

Gn = G (n, cn ) =⇒ Galton-Watson tree with offspring
distribution Poisson(c).

Gn = binary tree of height n =⇒ .
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The uniform infinite planar triangulation/quadrangulation

Let Gn be a uniform random triangulation or quadrangulation on n
vertices. Does it have a distributional limit?

Theorem (Angel-Schramm 2003, Krikun 2005)

The limit exists, and it is an infinite triangulation/quadrangulation
of the plane.

The limit is commonly known as the uniform infinite planar
triangulation/quadrangulation (UIPT/UIPQ).

Universality: Other models of random planar graphs are expected
to have a distributional limit with similar properties.

Asaf Nachmias Random walks on random planar triangulations



The uniform infinite planar triangulation/quadrangulation

Let Gn be a uniform random triangulation or quadrangulation on n
vertices. Does it have a distributional limit?

Theorem (Angel-Schramm 2003, Krikun 2005)

The limit exists, and it is an infinite triangulation/quadrangulation
of the plane.

The limit is commonly known as the uniform infinite planar
triangulation/quadrangulation (UIPT/UIPQ).

Universality: Other models of random planar graphs are expected
to have a distributional limit with similar properties.

Asaf Nachmias Random walks on random planar triangulations



The uniform infinite planar triangulation/quadrangulation

Let Gn be a uniform random triangulation or quadrangulation on n
vertices. Does it have a distributional limit?

Theorem (Angel-Schramm 2003, Krikun 2005)

The limit exists, and it is an infinite triangulation/quadrangulation
of the plane.

The limit is commonly known as the uniform infinite planar
triangulation/quadrangulation (UIPT/UIPQ).

Universality: Other models of random planar graphs are expected
to have a distributional limit with similar properties.
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Properties of the UIPT/UIPQ vs. Euclidean geometry

The UIPT/UIPQ behaves like Z2 in some aspects:

One-ended (Angel-Schramm 2003).

pc = 1
2 (Angel 2003).

Liouville, that is, no bounded nonconstant harmonic functions
(Benjamini-Curien 2010).

but not all aspects:

Unbounded degrees.

Balls of radius r have size roughly r4 (Angel 2003,
Chassaing-Schaeffer 2004).

Strictly sub-diffusive (Benjamini-Curien 2012).

Question: is it recurrent or transient a.s.?
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Recurrence?

Conjecture (Benjamini-Schramm 2001, Angel-Schramm 2003)

The UIPT/UIPQ is almost surely recurrent.
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If only the UIPT had bounded degrees...

Theorem (Benjamini-Schramm 2001)

Any distributional limit of finite, planar graphs with bounded
degrees is almost surely recurrent.

Examples: Z, Z2, the canopy tree.
Remark: Bounded degree is a necessary condition:
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Recurrence criterion for planar graph limits

Theorem (Gurel-Gurevich & N. 2013)

Any distributional limit of finite, planar graphs where the degree of
the root has an exponential tail is almost surely recurrent.

Corollary (Gurel-Gurevich & N. 2013)

The UIPT/UIPQ is almost surely recurrent.

Indeed, it is known that the degree of the root of the UIPT/UIPQ
has an exponential tail (Angel-Schramm 2003, Benjamini-Curien
2012).

Sharpness: slightly fatter tail than exponential is not enough.
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The plan:

1 Crash course on electric networks and their probabilistic
interpretation.

2 The He-Schramm Theorem (part 1 and 2 only).

3 Recurrence of random planar maps.

4 Random hyperbolic maps and the mass transport principle.
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