Séminaire LPC Clermont-Ferrand

Lyman-alpha Forests: Neutrino Masses & Warmth of Dark Matter

Julien Baur

PhD student Nathalie Palanque-Delabrouille & Christophe Yèche

Irfu / SPP - CEA

Neutrino Masses

LPC Clermont-Ferrand

Dec 2 , 2016

Baur Julien

Cosmic Microwave Background

Dec 2 , 2016

Baur Julien

Neutrino Masses

LPC Clermont-Ferrand

Dec 2 , 2016

Baur Julien

Sterile Neutrino DM

LPC Clermont-Ferrand

Dec 2 , 2016

Baur Julien

Sterile Neutrino DM

Cold Dark Matter > 10 keV

Hot Dark Matter <

Free Streaming Horizon

$$\lambda_{ ext{FSH}}^0 = \int_0^{t_0} rac{\langle v
angle}{a} dt$$

LPC Clermont-Ferrand

Dec 2 , 2016

Baur Julien

Matter Power Spectrum (3D)

Matter Power Spectrum (1D)

Roadmap

1 Neutrino Masses in Cosmology

2 The Ly– α Forest Observable

B Hydrodynamics Simulations

4 Some Interesting Results ...

LPC Clermont-Ferrand

Dec 2 , 2016

Dec 2 , 2016

Baur Julien

LPC Clermont-Ferrand

Dec 2 , 2016

Baur Julien

LPC Clermont-Ferrand Dec 2 , 2016 Baur Julien Lya Forest Constraints: Neutrino Masses & WDM

estimated by subtracting different exposures of same quasar

$$\sigma_{\rm syst}$$
 ~ 2% (high k, low z)

LPC Clermont-Ferrand

Dec 2 , 2016

Fourier Transform $\delta(x) = \frac{F(x) - \langle F \rangle}{\langle F \rangle}$ normalised transmitted flux fraction $\| \delta(k) \|^2 = \left(P_{Ly\alpha}(k) + P_{nuis}(k) \right) \times W^2(k) + P_{noise}(k)$

Ly α power spectrum

$$P_{Ly\alpha}(k) = \left\langle \frac{\left|\delta(k)\right|^2 - P_{noise}(k)}{W^2(k)} \right\rangle$$

LPC Clermont-Ferrand Dec 2, 2016 Baur Julien Lya Forest Constraints: Neutrino Masses & WDM

LPC Clermont-Ferrand

Dec 2 , 2016

Flux Power Spectrum

Roadmap

1 Neutrino Masses in Cosmology

2 The Ly- α Forest Observable

3 Hydrodynamics Simulations

4 Some Interesting Results ...

Hydro Simulations

LPC Clermont-Ferrand

Dec 2 , 2016

Baur Julien

Parameters

						r 4T	
parameter	central	range					
$\Sigma m_v / eV$	v less	+0.4 +0.8	Λ –CDM ν only		p_{1-}	best guess	p_{1+} p_{1+}
keV/m_{X}	0.0	+0.2 +0.4	$\Lambda-$ WDM only				$\rightarrow p_1$
h	0.675	±0.05					
$\Omega_{_M}$	0.31	±0.05				p_{2-}	
$\sigma_{_8}$	0.83	±0.05	Cosmology				
n _s	0.96	±0.05		כ	nd order Ta	ylor evnan	eion
Z _{reio}	12	±4	Intergalactio				51011
$T_0^{z=3} / K$	14,000	±7,000	Medium				
$\gamma^{z=3}$	1.3	±0.3		$\langle F \rangle = e^{-\tau_{eff}}$			
$A^{ au}$	0.0025	±0.0020		fixin	g UV photoio	nization rate	
$\eta^{ au}$	3.7	±0.4	Optical Depth	\bigcap	AT	(1)	n^{τ}
				τ_{e}	$_{\rm eff} = A'$	$\times (1+z)$)"

LPC Clermont-Ferrand

Dec 2 , 2016

Lya Forest Constraints: Neutrino Masses & WDM

 p_{2}

 $n_{2\perp}$

 $n_1 \perp n_2 \perp$

Splicing the Power Spectrum

 $\sigma_{syst} \sim 3\%$ (high k, high z)

LPC Clermont-Ferrand

Dec 2 , 2016

Baur Julien

Ly α Power Spectrum (1D)

Λ -WDM

 Λ -CDMv

Roadmap

1 Neutrino Masses in Cosmology

2 The Ly- α Forest Observable

B Hydrodynamics Simulations

4 Some Interesting Results ...

Nuissance Parameters

Palanque-Delabrouille et al., 2015 JCAP 02 045

Reference (Ly α +CMB) : $\Sigma m_v < 0.15 \text{ eV}$ (95% CL)

		σ_8	n _s	Σm_v
Technical:	Simulation Splicing	± 0.001	± 0.002	±0.03
	Spectrograph Resolution	+0.000	+0.000	+0.00
Astrophysical:	IGM state	+0.000	-0.001	+0.02
	AGN feedback	-0.001	+0.001	+0.02
	SN feedback	+0.001	-0.001	-0.01
	UV fluctuations	+0.001	-0.002	-0.03
	Damped Lya Absorbers	+0.000	+0.002	+0.03

LPC Clermont-Ferrand

Dec 2 , 2016

Constraints on Neutrino Masses

2m, < 0.72 eV 95% eB

Planck

Σm, < 1.1 eV [95% CL]

BOSS

LPC Clermont-Ferrand

Dec 2 , 2016

Baur Julien

Constraints on Neutrino Masses

Palanque-Delabrouille *et al.*, 2015 JCAP 11 011 BOSS + Planck (TT+lowP) : $\Sigma m_v < 0.12 \text{ eV}$ (95% CL)

LPC Clermont-Ferrand

Dec 2 , 2016

Constraints on Neutrino Masses

Palanque-Delabrouille et al., 2015 JCAP 11 011

BOSS + Planck (TT+lowP) : $\Sigma m_v < 0.12 \text{ eV}$ (95% CL)

Dec 2, 2016

Constraints on WDM

Dec 2 , 2016

Upcoming: higher k with XQ-100

LPC Clermont-Ferrand

Dec 2 , 2016

Takeaway

- Ly α forests probe Mpc scales <=>v free streaming scale
- Complementary probe to CMB, WL, galaxy clustering
- -~14,000 med-res QSO sample and most resolute hydro simulations
- 11 simu + 13 nuissance + 12 noise parameters marginalised over
- BOSS DR9: $\Sigma m_v < 0.12 \text{ eV} (95\% \text{CL})$ and $m_{wdm} > 4.1 \text{ keV} (95\% \text{CL})$

Thank You ! julien.baur@cea.fr

Normal Ordering

LPC Clermont-Ferrand

Dec 2 , 2016

Baur Julien

Inverted Ordering

LPC Clermont-Ferrand Dec 2 , 2016

LPC Clermont-Ferrand

Dec 2 , 2016

Baur Julien

LPC Clermont-Ferrand

Dec 2 , 2016

Fit results

Baryon Oscillations Spectroscopic Survey

SDSS : wide f.o.v. (7 deg²) telescope

~10,000 deg² celestial coverage

5 filter CCD cameras (u g r i z)

BOSS: photometry target selection (~180,000 quasars) drill plate (coordinates) spectrograph (1,000 spectra / hr) probes $z \in [2.1, 4.5]$ range (Ly- α)

20/02/15

BAUR Julien

PhD presentation – APC