References

• EFT: hep-ph/9606222

• Power Counting: arXiv:1601.07551

• Matching in HQET and field redefinitions: hep-ph/9701294

• Invariants: arXiv:0907.4763, 1010.3161, 1503.07537, 1512.03433, 1706.08520

• SMEFT holomorphy: 1409.0868

Problems v6

- 1. Show that for a *connected* graph, V I + L = 1. What is the formula if the graph has n connected components?
- 2. Work out the properties of fermion bilinears $\overline{\psi}(\mathbf{x},t)\Gamma P_L\chi(\mathbf{x},t)$ under $C,\ P,\ T$, where $\Gamma=1,\gamma^\mu,\sigma^{\mu\nu}$. The results for $P_L\to P_R$ can be obtained by using $L\leftrightarrow R$.
- 3. Fierz identities are relations of the form

$$(\overline{A}\Gamma B)(\overline{C}\Gamma D) = \sum_{i} (\overline{C}\Gamma_{i}B)(\overline{A}\Gamma_{i}D)$$

where A, B, C, D are fermion fields. They are much simpler if written in terms of chiral fields, where $\Gamma_i = 1, \gamma^{\mu}, \sigma^{\mu\nu}$. Work out the Fierz relations for

$$(\overline{A}P_LB)(\overline{C}P_LD), (\overline{A}P_LB)(\overline{C}P_RD), (\overline{A}\gamma^{\mu}P_LB)(\overline{C}\gamma_{\mu}P_LD), (\overline{A}\gamma^{\mu}P_LB)(\overline{C}\gamma_{\mu}P_RD), (\overline{A}\sigma^{\mu\nu}P_LB)(\overline{C}\sigma_{\mu\nu}P_LD), (\overline{A}\sigma^{\mu\nu}P_LB)(\overline{C}\sigma_{\mu\nu}P_RD)$$

The P_R P_R identities are given by using $L \leftrightarrow R$ on the L L identities. Do not forget the Fermi minus sign.

- 4. In d=4 spacetime dimensions, work out the field content of Lorentz-invariant operators with dimension n for $n=1,\ldots,6$. At this point, do not try and work out which operators are independent, just the possible structure of allowed operators. Use the notation ϕ for a scalar, ψ for a fermion, $X_{\mu\nu}$ for a field strength, and D for a derivative. For example, an operator of type ϕ^2D such as $\phi D_{\mu}\phi$ is not allowed because it is not Lorentz-invariant. An operator of type ϕ^2D^2 could be either $D_{\mu}\phi D^{\mu}\phi$ or $\phi D^2\phi$, so a ϕ^2D^2 operator is allowed, and we will worry later about how many independent operators ϕ^2D^2 we can construct.
- 5. For d=2,3,4,5,6 dimensions, work out the field content of operators with dimension $n \leq d$, i.e. the "renormalizable" operators.

- 6. Show that if $\alpha_s(\mu)$ is fixed at some high scale, say $\mu = 1 \text{ TeV}$, then $m_p \propto m_t^{2/27}$, where m_p is the proton mass and m_t is the top quark mass.
- 7. (a) Compute in dimensional regularization in $d = 4 2\epsilon$ dimensions

$$I_F = -i\mu^{2\epsilon} \int \frac{\mathrm{d}^d k}{(2\pi)^d} \frac{1}{(k^2 - m^2)(k^2 - M^2)} + \text{c.t.}$$

$$I_{\text{EFT}} = -i\mu^{2\epsilon} \int \frac{\mathrm{d}^d k}{(2\pi)^d} \frac{1}{(k^2 - m^2)} \left[-\frac{1}{M^2} - \frac{k^2}{M^4} + \dots \right] + \text{c.t.}.$$

Both integrals only have UV divergences, so the $1/\epsilon$ pieces are canceled by the counterterms. Determine the counterterm contributions $I_{F,ct}$, $I_{\text{EFT},ct}$.

- (b) Compute $I_M \equiv (I_F + I_{F,ct}) (I_{EFT} + I_{EFT,ct})$ and show that it is analytic in m.
- (c) Compute $I_F^{\text{(exp)}}$, i.e. I_F with the IR m scale expanded out

$$I_F^{(\exp)} = -i\mu^{2\epsilon} \int \frac{\mathrm{d}^d k}{(2\pi)^d} \frac{1}{(k^2 - M^2)} \left[\frac{1}{k^2} + \frac{m^2}{k^4} + \dots \right]$$

Note that the first term in the expansion has a $1/\epsilon$ UV divergence, and the remaining terms have $1/\epsilon$ IR divergences.

- (d) Compute $I_F^{(\exp)} + I_{F,ct}$. Show that the UV divergence cancels, and the remaining $1/\epsilon$ IR divergence is the same as the UV divergent counterterm $I_{\text{EFT},ct}$ in the EFT.
- (e) Compute $I_{\rm EFT}^{\rm (exp)}$, i.e. $I_{\rm EFT}$ with the IR m scale expanded out. Show that it is a scaleless integral which vanishes. Using the known UV divergence from (a), write it in the form

$$I_{\rm EFT}^{(\rm exp)} = rac{1}{16\pi^2} \left[rac{C}{\epsilon_{
m UV}} - rac{C}{\epsilon_{
m IR}}
ight]$$

and that the IR divergence agrees with that in $I_F^{(exp)} + I_{F,ct}$.

- (f) Compute $\left(I_F^{(\exp)} + I_{F,ct}\right) \left(I_{EFT}^{(\exp)} + I_{EFT,ct}\right)$ and show that all the $1/\epsilon$ divergences (both UV and IR) cancel, and the result is equal to I_M found in (b).
- (g) Make sure you understand why you can compute I_M simply by taking $I_F^{(\exp)}$ and dropping all $1/\epsilon$ terms (both UV and IR).
- 8. Show that for SU(N),

$$[T^A]^{\alpha}_{\ \beta}[T^A]^{\lambda}_{\ \sigma} = \frac{1}{2}\delta^{\alpha}_{\sigma}\delta^{\lambda}_{\beta} - \frac{1}{2N}\delta^{\alpha}_{\beta}\delta^{\lambda}_{\sigma}$$

and the color Fierz identities

$$\begin{split} \delta^{\alpha}_{\ \beta}\delta^{\lambda}_{\ \sigma} &= \frac{1}{N}\delta^{\alpha}_{\sigma}\delta^{\lambda}_{\beta} + 2[T^A]^{\alpha}_{\ \sigma}[T^A]^{\lambda}_{\ \beta} \\ [T^A]^{\alpha}_{\ \beta}[T^A]^{\lambda}_{\ \sigma} &= \frac{N^2-1}{2N^2}\delta^{\alpha}_{\sigma}\delta^{\lambda}_{\beta} - \frac{1}{N}[T^A]^{\alpha}_{\ \sigma}[T^A]^{\lambda}_{\ \beta} \end{split}$$

9. Compute the one-loop scalar graph with a scalar of mass m and interaction $-\lambda \phi^4/4!$ in the $\overline{\rm MS}$ scheme.

10. * Compute the decay rate $\Gamma(b \to ce^-\overline{\nu}_e)$ with the interaction Lagrangian

$$L = -\frac{4G_F}{\sqrt{2}} V_{cb} (\overline{c} \gamma^{\mu} P_L b) (\overline{\nu}_e \gamma_{\mu} P_L e)$$

with $m_e \to 0$, $m_\nu \to 0$, but retaining the dependence on $\rho = m_c^2/m_b^2$. It is convenient to write the three-body phase space in terms of the variables $x_1 = 2E_e/m_b$ and $x_2 = 2E_\nu/m_b$.

- 11. Compute the anomalous dimension of $\bar{q}q$ in QCD. Start with massless QCD, and treat $L = -m\bar{q}q$ as an operator insertion.
- 12. * Compute the anomalous dimension mixing matrix of

$$O_1 = (\overline{b}^{\alpha} \gamma^{\mu} P_L c_{\alpha}) (\overline{u}^{\alpha} \gamma^{\mu} P_L d_{\alpha}) \qquad O_2 = (\overline{b}^{\alpha} \gamma^{\mu} P_L c_{\beta}) (\overline{u}^{\beta} \gamma^{\mu} P_L d_{\alpha})$$

$$\mu \frac{\mathrm{d}}{\mathrm{d}\mu} \left[\begin{array}{c} c_1 \\ c_2 \end{array} \right] = \left[\begin{array}{cc} \gamma_{11} & \gamma_{12} \\ \gamma_{21} & \gamma_{22} \end{array} \right] \left[\begin{array}{c} c_1 \\ c_2 \end{array} \right] .$$

Two other often used bases are

$$Q_1 = (\overline{b}\gamma^{\mu}P_L c)(\overline{u}\gamma^{\mu}P_L d) \qquad Q_2 = (\overline{b}\gamma^{\mu}P_L T^A c)(\overline{u}\gamma^{\mu}P_L T^A d)$$

and

$$O_{\pm} = O_1 \pm O_2$$

So let

$$\mathcal{L} = c_1 O_1 + c_2 O_2 = d_1 Q_1 + d_2 Q_2 = c_+ O_+ + c_- O_-$$

and work out the transformation between the anomalous dimensions for $d_{1,2}$ and $c_{+,-}$ in terms of those for $c_{1,2}$,

13. The equation of motion for $\lambda \phi^4$ theory,

$$L = \frac{1}{2}(\partial_{\mu}\phi)^{2} - \frac{1}{2}m^{2}\phi^{2} - \frac{\lambda}{4!}\phi^{4}$$

$$E = (-\partial^{2} - m^{2})\phi - \frac{\lambda}{3!}\phi^{3}$$

The EOM Ward identity for $\theta = F(\phi)E$ is

$$\langle 0|T\left\{\phi(x_1)\dots\phi(x_n)\theta(z)\right\}|0\rangle = i\sum_{r=1}^n \delta(z-x_r)\langle 0|T\left\{\phi(x_1)\dots\phi(x_r)\dots\phi(x_n)F(z)\right\}|0\rangle$$

In momentum space, integrate both sides with

$$\int \mathrm{d}z e^{-iq\cdot z} \prod_{i} \int \mathrm{d}x_{i} e^{-ip_{i}\cdot x_{i}}$$

to give the momentum space version

$$\langle 0|T\left\{\widetilde{\phi}(p_1)\ldots\widetilde{\phi}(p_n)\widetilde{\theta}(q)\right\}|0\rangle = i\sum_{r=1}^n \delta(z-x_r)\langle 0|T\left\{\widetilde{\phi}(p_1)\ldots\widetilde{\phi}(p_r)\ldots\widetilde{\phi}(x_n)\widetilde{F}(q+p_r)\right\}|0\rangle$$

(a) Consider the equation of motion operator

$$\theta_1 = \phi E = \phi(-\partial^2 - m^2)\phi - \frac{\lambda}{3!}\phi^4$$

and verify the Ward identity by explicit calculation at order λ (i.e. tree level) for $\phi\phi$ scattering, i.e. a graph with four ϕ fields, n=4.

(b) Take the on-shell limit $p_r^2 \to m^2$ at fixed $q \neq 0$ of

$$\prod_r (-i)(p_r^2 - m^2) \times \text{Ward Identity}$$

and verify that both sides of the Ward identity vanish. Note that both sides do not vanish if one first takes q=0 and then takes the on-shell limit.

- (c) * Repeat the above calculation to order λ^2 , i.e. one loop.
- (d) * Repeat (to one loop) for the equation of motion operator

$$\theta_2 = \phi^3 E = \phi^3 (-\partial^2 - m^2)\phi - \frac{\lambda}{3!}\phi^6$$

14. Take the heavy quark Lagrangian

$$\mathcal{L}_{v} = \bar{Q}_{v} \left\{ iv \cdot D + i \not \!\!\! D_{\perp} \frac{1}{2m + iv \cdot D} i \not \!\!\! D_{\perp} \right\} Q_{v}$$

$$= \bar{Q}_{v} \left\{ iv \cdot D - \frac{1}{2m} \not \!\!\! D_{\perp} \not \!\!\! D_{\perp} + \frac{1}{4m^{2}} \not \!\!\! D_{\perp} (iv \cdot D) \not \!\!\! D_{\perp} + \ldots \right\} Q_{v}$$

and use a sequence of field redefinitions to eliminate the $1/m^2$ suppressed $v \cdot D$ term. $(iv \cdot D)Q_v = 0$ is the equation of motion for the heavy quark field, so this example shows how you eliminate equation of motion operators. Here v^{μ} is a velocity vector with $v \cdot v = 1$, and for a four-vector A,

$$D^{\mu}_{\perp} \equiv D^{\mu} - (v \cdot D)v^{\mu}$$

If you prefer, you can work in the rest frame of the heavy quark, where $v^{\mu} = (1, 0, 0, 0)$, $v \cdot D = D^0$ and $D^{\mu}_{\perp} = (0, \mathbf{D})$.

- 15. Compute the on-shell electron form factors $F_1(q^2)$ and $F_2(q^2)$ expanded to first order in q^2/m^2 using dimensional regularization to regulate the IR and UV divergences. This gives the one-loop matching to heavy-electron EFT. The non-Abelian version (in hep-ph/9701294) gives the one-loop matching to the HQET Lagrangian. Note that it is much simpler to first expand and then do the Feynman parameter integrals. $F_{1,2}(q^2)$ are given in many field theory textbooks, but usually not in pure dim reg.
- 16. The SCET matching for the vector current $\overline{\psi}\gamma^{\mu}\psi$ can be done by repeating the previous problem with external masses $m \to 0$ and $p^2 \to 0$, and doing the integral in pure dim reg with $Q^2 = -q^2 \neq 0$. Here Q^2 is the big scale, whereas in the previous problem q^2 was the small scale. The spacelike calculation $Q^2 > 0$ avoids having to deal with the $+i0^+$ terms in the Feynman propagator which lead to imaginary parts. The timelike result $Q^2 < 0$ can then be obtained by analytic continuation.
- 17. Show that the power counting formula

$$L \sim rac{\Lambda^4}{16\pi^2} \left[rac{\partial}{\Lambda}
ight]^{N_p} \left[rac{4\pi \, \phi}{\Lambda}
ight]^{N_\phi} \left[rac{4\pi \, A}{\Lambda}
ight]^{N_A} \left[rac{4\pi \, \psi}{\Lambda^{3/2}}
ight]^{N_\psi} \left[rac{g}{4\pi}
ight]^{N_g} \left[rac{y}{4\pi}
ight]^{N_y} \left[rac{\lambda}{16\pi^2}
ight]^{N_\lambda},$$

for an EFT Lagrangian is self-consistent, i.e. an arbitrary graph with insertions of vertices of this form generates an interaction which maintains the same form. [See 1601.07551 and NPB 234 (1984) 189]

18. Show (by explicit calculation) for a general 2×2 matrix A that

$$0 = \frac{1}{6} \langle A \rangle^3 - \frac{1}{2} \langle A \rangle \langle A^2 \rangle + \frac{1}{3} \langle A^3 \rangle, \qquad 0 = \frac{1}{2} \langle A \rangle^2 - \frac{1}{2} \langle A^2 \rangle - \langle A \rangle A + A^2$$

and for general 2×2 matrices A, B, C that

$$0 = \langle A \rangle \, \langle B \rangle \, \langle C \rangle - \langle A \rangle \, \langle BC \rangle - \langle B \rangle \, \langle AC \rangle - \langle C \rangle \, \langle AB \rangle + \langle ABC \rangle + \langle ACB \rangle \ .$$

Identities analogous to this for 3×3 matrices are used to remove L_0 and replaced it by $L_{1,2,3}$ in χ PT, as discussed by Pich in his lectures.

- 19. Compute the Hilbert series for the ring of invariants generated by
 - (a) x, y (each of dimension 1), and invariant under the transformation $(x, y) \to (-x, -y)$.
 - (b) x, y, z (each of dimension 1), and invariant under the transformation $(x, y, z) \to (-x, -y, -z)$.

- 20. Show that $(\psi_{Lr}^T C \psi_{Ls})$ is symmetric in rs and $(\psi_{Lr}^T C \sigma^{\mu\nu} \psi_{Ls})$ is antisymmetric in rs.
- 21. (a) Show that the unique dimension 5 operator in the SMEFT for $n_g=1$ generation is

$$c_5 (l_i^T C l_j) H_k H_l \epsilon^{ik} \epsilon^{jl}$$

- (b) How many such operators are there for n_g generations?
- (c) Show that this operator generates a Majorana neutrino mass when H gets a VEV, and find M_{ν} in terms of c_5 and v.
- 22. In the SMEFT for n_g generations, how many operators are there of the following kind:
 - (a) Q_{He}
 - (b) Q_{ledq}
 - (c) $Q_{lq}^{(1)}$
 - (d) $Q_{qq}^{(1)}$
 - (e) Q_{ll}
 - (f) Q_{uu}
 - (g) Q_{ee}