References

- EFT: hep-ph/9606222
- Power Counting: arXiv:1601.07551
- Matching in HQET and field redefinitions: hep-ph/9701294
- Invariants: arXiv:0907.4763, 1010.3161, 1503.07537, 1512.03433, 1706.08520
- SMEFT holomorphy: 1409.0868

Problems v6

1. Show that for a connected graph, $V-I+L=1$. What is the formula if the graph has n connected components?
2. Work out the properties of fermion bilinears $\bar{\psi}(\mathbf{x}, t) \Gamma P_{L} \chi(\mathbf{x}, t)$ under C, P, T, where $\Gamma=$ $1, \gamma^{\mu}, \sigma^{\mu \nu}$. The results for $P_{L} \rightarrow P_{R}$ can be obtained by using $L \leftrightarrow R$.
3. Fierz identities are relations of the form

$$
(\bar{A} \Gamma B)(\bar{C} \Gamma D)=\sum_{i}\left(\bar{C} \Gamma_{i} B\right)\left(\bar{A} \Gamma_{i} D\right)
$$

where A, B, C, D are fermion fields. They are much simpler if written in terms of chiral fields, where $\Gamma_{i}=1, \gamma^{\mu}, \sigma^{\mu \nu}$. Work out the Fierz relations for

$$
\begin{aligned}
& \left(\bar{A} P_{L} B\right)\left(\bar{C} P_{L} D\right),\left(\bar{A} P_{L} B\right)\left(\bar{C} P_{R} D\right),\left(\bar{A} \gamma^{\mu} P_{L} B\right)\left(\bar{C} \gamma_{\mu} P_{L} D\right),\left(\bar{A} \gamma^{\mu} P_{L} B\right)\left(\bar{C} \gamma_{\mu} P_{R} D\right), \\
& \left(\bar{A} \sigma^{\mu \nu} P_{L} B\right)\left(\bar{C} \sigma_{\mu \nu} P_{L} D\right),\left(\bar{A} \sigma^{\mu \nu} P_{L} B\right)\left(\bar{C} \sigma_{\mu \nu} P_{R} D\right)
\end{aligned}
$$

The $P_{R} P_{R}$ identities are given by using $L \leftrightarrow R$ on the $L L$ identities. Do not forget the Fermi minus sign.
4. In $d=4$ spacetime dimensions, work out the field content of Lorentz-invariant operators with dimension n for $n=1, \ldots, 6$. At this point, do not try and work out which operators are independent, just the possible structure of allowed operators. Use the notation ϕ for a scalar, ψ for a fermion, $X_{\mu \nu}$ for a field strength, and D for a derivative. For example, an operator of type $\phi^{2} D$ such as $\phi D_{\mu} \phi$ is not allowed because it is not Lorentz-invariant. An operator of type $\phi^{2} D^{2}$ could be either $D_{\mu} \phi D^{\mu} \phi$ or $\phi D^{2} \phi$, so a $\phi^{2} D^{2}$ operator is allowed, and we will worry later about how many independent operators $\phi^{2} D^{2}$ we can construct.
5. For $d=2,3,4,5,6$ dimensions, work out the field content of operators with dimension $n \leq d$, i.e. the "renormalizable" operators.
6. Show that if $\alpha_{s}(\mu)$ is fixed at some high scale, say $\mu=1 \mathrm{TeV}$, then $m_{p} \propto m_{t}^{2 / 27}$, where m_{p} is the proton mass and m_{t} is the top quark mass.
7. (a) Compute in dimensional regularization in $d=4-2 \epsilon$ dimensions

$$
\begin{aligned}
I_{F} & =-i \mu^{2 \epsilon} \int \frac{\mathrm{~d}^{d} k}{(2 \pi)^{d}} \frac{1}{\left(k^{2}-m^{2}\right)\left(k^{2}-M^{2}\right)}+\text { c.t. } \\
I_{\mathrm{EFT}} & =-i \mu^{2 \epsilon} \int \frac{\mathrm{~d}^{d} k}{(2 \pi)^{d}} \frac{1}{\left(k^{2}-m^{2}\right)}\left[-\frac{1}{M^{2}}-\frac{k^{2}}{M^{4}}+\ldots\right]+\text { c.t.. }
\end{aligned}
$$

Both integrals only have UV divergences, so the $1 / \epsilon$ pieces are canceled by the counterterms. Determine the counterterm contributions $I_{F, c t}, I_{\mathrm{EFT}, c t}$.
(b) Compute $I_{M} \equiv\left(I_{F}+I_{F, c t}\right)-\left(I_{\mathrm{EFT}}+I_{\mathrm{EFT}, c t}\right)$ and show that it is analytic in m.
(c) Compute $I_{F}^{(\exp)}$, i.e. I_{F} with the IR m scale expanded out

$$
I_{F}^{(\exp)}=-i \mu^{2 \epsilon} \int \frac{\mathrm{~d}^{d} k}{(2 \pi)^{d}} \frac{1}{\left(k^{2}-M^{2}\right)}\left[\frac{1}{k^{2}}+\frac{m^{2}}{k^{4}}+\ldots\right]
$$

Note that the first term in the expansion has a $1 / \epsilon$ UV divergence, and the remaining terms have $1 / \epsilon$ IR divergences.
(d) Compute $I_{F}^{(\exp)}+I_{F, c t}$. Show that the UV divergence cancels, and the remaining $1 / \epsilon \operatorname{IR}$ divergence is the same as the UV divergent counterterm $I_{\mathrm{EFT}, \mathrm{ct}}$ in the EFT.
(e) Compute $I_{\mathrm{EFT}}^{(\exp)}$, i.e. I_{EFT} with the IR m scale expanded out. Show that it is a scaleless integral which vanishes. Using the known UV divergence from (a), write it in the form

$$
I_{\mathrm{EFT}}^{(\exp)}=\frac{1}{16 \pi^{2}}\left[\frac{C}{\epsilon_{\mathrm{UV}}}-\frac{C}{\epsilon_{\mathrm{IR}}}\right]
$$

and that the IR divergence agrees with that in $I_{F}^{(\exp)}+I_{F, c t}$.
(f) Compute $\left(I_{F}^{(\exp)}+I_{F, c t}\right)-\left(I_{\mathrm{EFT}}^{(\exp)}+I_{\mathrm{EFT}, c t}\right)$ and show that all the $1 / \epsilon$ divergences (both UV and IR) cancel, and the result is equal to I_{M} found in (b).
(g) Make sure you understand why you can compute I_{M} simply by taking $I_{F}^{(\exp)}$ and dropping all $1 / \epsilon$ terms (both UV and IR).
8. Show that for $S U(N)$,

$$
\left[T^{A}\right]_{\beta}^{\alpha}\left[T^{A}\right]_{\sigma}^{\lambda}=\frac{1}{2} \delta_{\sigma}^{\alpha} \delta_{\beta}^{\lambda}-\frac{1}{2 N} \delta_{\beta}^{\alpha} \delta_{\sigma}^{\lambda}
$$

and the color Fierz identities

$$
\begin{aligned}
\delta_{\beta}^{\alpha} \delta_{\sigma}^{\lambda} & =\frac{1}{N} \delta_{\sigma}^{\alpha} \delta_{\beta}^{\lambda}+2\left[T^{A}\right]_{\sigma}^{\alpha}\left[T^{A}\right]_{\beta}^{\lambda} \\
{\left[T^{A}\right]_{\beta}^{\alpha}\left[T^{A}\right]_{\sigma}^{\lambda} } & =\frac{N^{2}-1}{2 N^{2}} \delta_{\sigma}^{\alpha} \delta_{\beta}^{\lambda}-\frac{1}{N}\left[T^{A}\right]_{\sigma}^{\alpha}\left[T^{A}\right]_{\beta}^{\lambda}
\end{aligned}
$$

9. Compute the one-loop scalar graph with a scalar of mass m and interaction $-\lambda \phi^{4} / 4$! in the $\overline{\mathrm{MS}}$ scheme.

10. * Compute the decay rate $\Gamma\left(b \rightarrow c e^{-} \bar{\nu}_{e}\right)$ with the interaction Lagrangian

$$
\left.L=-\frac{4 G_{F}}{\sqrt{2}} V_{c b} \overline{\left(c \gamma^{\mu}\right.} P_{L} b\right)\left(\bar{\nu}_{e} \gamma_{\mu} P_{L} e\right)
$$

with $m_{e} \rightarrow 0, m_{\nu} \rightarrow 0$, but retaining the dependence on $\rho=m_{c}^{2} / m_{b}^{2}$. It is convenient to write the three-body phase space in terms of the variables $x_{1}=2 E_{e} / m_{b}$ and $x_{2}=2 E_{\nu} / m_{b}$.
11. Compute the anomalous dimension of $\bar{q} q$ in QCD. Start with massless QCD, and treat $L=$ $-m \bar{q} q$ as an operator insertion.
12. * Compute the anomalous dimension mixing matrix of

$$
\begin{array}{cl}
O_{1}=\left(\bar{b}^{\alpha} \gamma^{\mu} P_{L} c_{\alpha}\right)\left(\bar{u}^{\alpha} \gamma^{\mu} P_{L} d_{\alpha}\right) & O_{2}=\left(\bar{b}^{\alpha} \gamma^{\mu} P_{L} c_{\beta}\right)\left(\bar{u}^{\beta} \gamma^{\mu} P_{L} d_{\alpha}\right) \\
\mu \frac{\mathrm{d}}{\mathrm{~d} \mu}\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]=\left[\begin{array}{ll}
\gamma_{11} & \gamma_{12} \\
\gamma_{21} & \gamma_{22}
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right] .
\end{array}
$$

Two other often used bases are

$$
Q_{1}=\left(\bar{b} \gamma^{\mu} P_{L} c\right)\left(\bar{u} \gamma^{\mu} P_{L} d\right) \quad Q_{2}=\left(\bar{b} \gamma^{\mu} P_{L} T^{A} c\right)\left(\bar{u} \gamma^{\mu} P_{L} T^{A} d\right)
$$

and

$$
O_{ \pm}=O_{1} \pm O_{2}
$$

So let

$$
\mathcal{L}=c_{1} O_{1}+c_{2} O_{2}=d_{1} Q_{1}+d_{2} Q_{2}=c_{+} O_{+}+c_{-} O_{-}
$$

and work out the transformation between the anomalous dimensions for $d_{1,2}$ and $c_{+,-}$in terms of those for $c_{1,2}$,
13. The equation of motion for $\lambda \phi^{4}$ theory,

$$
L=\frac{1}{2}\left(\partial_{\mu} \phi\right)^{2}-\frac{1}{2} m^{2} \phi^{2}-\frac{\lambda}{4!} \phi^{4} \quad E=\left(-\partial^{2}-m^{2}\right) \phi-\frac{\lambda}{3!} \phi^{3}
$$

The EOM Ward identity for $\theta=F(\phi) E$ is

$$
\langle 0| T\left\{\phi\left(x_{1}\right) \ldots \phi\left(x_{n}\right) \theta(z)\right\}|0\rangle=i \sum_{r=1}^{n} \delta\left(z-x_{r}\right)\langle 0| T\left\{\phi\left(x_{1}\right) \ldots \phi\left(x_{r}\right) \ldots \phi\left(x_{n}\right) F(z)\right\}|0\rangle
$$

In momentum space, integrate both sides with

$$
\int \mathrm{d} z e^{-i q \cdot z} \prod_{i} \int \mathrm{~d} x_{i} e^{-i p_{i} \cdot x_{i}}
$$

to give the momentum space version

$$
\langle 0| T\left\{\widetilde{\phi}\left(p_{1}\right) \ldots \widetilde{\phi}\left(p_{n}\right) \widetilde{\theta}(q)\right\}|0\rangle=i \sum_{r=1}^{n} \delta\left(z-x_{r}\right)\langle 0| T\left\{\widetilde{\phi}\left(p_{1}\right) \ldots \widetilde{\phi}\left(p_{r}\right) \ldots \widetilde{\phi}\left(x_{n}\right) \widetilde{F}\left(q+p_{r}\right)\right\}|0\rangle
$$

(a) Consider the equation of motion operator

$$
\theta_{1}=\phi E=\phi\left(-\partial^{2}-m^{2}\right) \phi-\frac{\lambda}{3!} \phi^{4}
$$

and verify the Ward identity by explicit calculation at order λ (i.e. tree level) for $\phi \phi$ scattering, i.e. a graph with four ϕ fields, $n=4$.
(b) Take the on-shell limit $p_{r}^{2} \rightarrow m^{2}$ at fixed $q \neq 0$ of

$$
\prod_{r}(-i)\left(p_{r}^{2}-m^{2}\right) \times \text { Ward Identity }
$$

and verify that both sides of the Ward identity vanish. Note that both sides do not vanish if one first takes $q=0$ and then takes the on-shell limit.
(c) $*$ Repeat the above calculation to order λ^{2}, i.e. one loop.
(d) $*$ Repeat (to one loop) for the equation of motion operator

$$
\theta_{2}=\phi^{3} E=\phi^{3}\left(-\partial^{2}-m^{2}\right) \phi-\frac{\lambda}{3!} \phi^{6}
$$

14. Take the heavy quark Lagrangian

$$
\begin{aligned}
\mathcal{L}_{v} & =\bar{Q}_{v}\left\{i v \cdot D+i \not D_{\perp} \frac{1}{2 m+i v \cdot D} i \not D_{\perp}\right\} Q_{v} \\
& =\bar{Q}_{v}\left\{i v \cdot D-\frac{1}{2 m} \not D_{\perp} \not D_{\perp}+\frac{1}{4 m^{2}} \not D_{\perp}(i v \cdot D) \not D_{\perp}+\ldots\right\} Q_{v}
\end{aligned}
$$

and use a sequence of field redefinitions to eliminate the $1 / m^{2}$ suppressed $v \cdot D$ term. (iv . $D) Q_{v}=0$ is the equation of motion for the heavy quark field, so this example shows how you eliminate equation of motion operators. Here v^{μ} is a velocity vector with $v \cdot v=1$, and for a four-vector A,

$$
D_{\perp}^{\mu} \equiv D^{\mu}-(v \cdot D) v^{\mu}
$$

If you prefer, you can work in the rest frame of the heavy quark, where $v^{\mu}=(1,0,0,0)$, $v \cdot D=D^{0}$ and $D_{\perp}^{\mu}=(0, \mathbf{D})$.
15. Compute the on-shell electron form factors $F_{1}\left(q^{2}\right)$ and $F_{2}\left(q^{2}\right)$ expanded to first order in q^{2} / m^{2} using dimensional regularization to regulate the IR and UV divergences. This gives the oneloop matching to heavy-electron EFT. The non-Abelian version (in hep-ph/9701294) gives the one-loop matching to the HQET Lagrangian. Note that it is much simpler to first expand and then do the Feynman parameter integrals. $F_{1,2}\left(q^{2}\right)$ are given in many field theory textbooks, but usually not in pure dim reg.
16. The SCET matching for the vector current $\bar{\psi} \gamma^{\mu} \psi$ can be done by repeating the previous problem with external masses $m \rightarrow 0$ and $p^{2} \rightarrow 0$, and doing the integral in pure dim reg with $Q^{2}=-q^{2} \neq 0$. Here Q^{2} is the big scale, whereas in the previous problem q^{2} was the small scale. The spacelike calculation $Q^{2}>0$ avoids having to deal with the $+i 0^{+}$terms in the Feynman propagator which lead to imaginary parts. The timelike result $Q^{2}<0$ can then be obtained by analytic continuation.
17. Show that the power counting formula

$$
L \sim \frac{\Lambda^{4}}{16 \pi^{2}}\left[\frac{\partial}{\Lambda}\right]^{N_{p}}\left[\frac{4 \pi \phi}{\Lambda}\right]^{N_{\phi}}\left[\frac{4 \pi A}{\Lambda}\right]^{N_{A}}\left[\frac{4 \pi \psi}{\Lambda^{3 / 2}}\right]^{N_{\psi}}\left[\frac{g}{4 \pi}\right]^{N_{g}}\left[\frac{y}{4 \pi}\right]^{N_{y}}\left[\frac{\lambda}{16 \pi^{2}}\right]^{N_{\lambda}},
$$

for an EFT Lagrangian is self-consistent, i.e. an arbitrary graph with insertions of vertices of this form generates an interaction which maintains the same form. [See 1601.07551 and NPB 234 (1984) 189]
18. Show (by explicit calculation) for a general 2×2 matrix A that

$$
0=\frac{1}{6}\langle A\rangle^{3}-\frac{1}{2}\langle A\rangle\left\langle A^{2}\right\rangle+\frac{1}{3}\left\langle A^{3}\right\rangle, \quad 0=\frac{1}{2}\langle A\rangle^{2}-\frac{1}{2}\left\langle A^{2}\right\rangle-\langle A\rangle A+A^{2}
$$

and for general 2×2 matrices A, B, C that

$$
0=\langle A\rangle\langle B\rangle\langle C\rangle-\langle A\rangle\langle B C\rangle-\langle B\rangle\langle A C\rangle-\langle C\rangle\langle A B\rangle+\langle A B C\rangle+\langle A C B\rangle .
$$

Identities analogous to this for 3×3 matrices are used to remove L_{0} and replaced it by $L_{1,2,3}$ in $\chi \mathrm{PT}$, as discussed by Pich in his lectures.
19. Compute the Hilbert series for the ring of invariants generated by
(a) x, y (each of dimension 1), and invariant under the transformation $(x, y) \rightarrow(-x,-y)$.
(b) x, y, z (each of dimension 1), and invariant under the transformation $(x, y, z) \rightarrow(-x,-y,-z)$.
20. Show that $\left(\psi_{L r}^{T} C \psi_{L s}\right)$ is symmetric in $r s$ and $\left(\psi_{L r}^{T} C \sigma^{\mu \nu} \psi_{L s}\right)$ is antisymmetric in $r s$.
21. (a) Show that the unique dimension 5 operator in the SMEFT for $n_{g}=1$ generation is

$$
c_{5}\left(l_{i}^{T} C l_{j}\right) H_{k} H_{l} \epsilon^{i k} \epsilon^{j l}
$$

(b) How many such operators are there for n_{g} generations?
(c) Show that this operator generates a Majorana neutrino mass when H gets a VEV, and find M_{ν} in terms of c_{5} and v.
22. In the SMEFT for n_{g} generations, how many operators are there of the following kind:
(a) $Q_{H e}$
(b) $Q_{l e d q}$
(c) $Q_{l q}^{(1)}$
(d) $Q_{q q}^{(1)}$
(e) $Q_{l l}$
(f) $Q_{u u}$
(g) $Q_{e e}$

