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Thrust and thrust axis
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• The LO thrust distribution has the form
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Thrust measurement by ALEPH
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Resummed vs fixed order 
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Precision determination of αs
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FIG. 13: Thrust distribution at N3LL′ order and Q = mZ

including QED and mb corrections using the best fit values
for αs(mZ) and Ω1 in the R-gap scheme given in Eq. (68). The
pink band represents the perturbative error determined from
the scan method described in Sec. VI. Data from DELPHI,
ALEPH, OPAL, L3, and SLD are also shown.

αs(mZ) is ±0.0009 compared to ±0.0021 with Ω̄1 in the
MS scheme. Also at NNLL′ and N3LL we see that the
removal of the O(ΛQCD) renormalon leads to a reduction
of the theoretical uncertainties by about a factor of two
in comparison to the results with Ω̄1 in the MS scheme
without renormalon subtraction. The proper treatment
of the renormalon subtraction is thus a substantial part
of a high-precision analysis for Ω1 as well as for αs.

It is instructive to analyze the minimal χ2 values for
the best fit points shown in Fig. 11. In Fig. 12 the dis-
tributions of the best fits in the αs-χ2

min/dof plane are
shown using the color scheme of Fig. 11. Figure 12a dis-
plays the results in R-gap scheme, and Fig. 12b the ones
in the MS scheme. For both schemes we find that the
χ2
min values and the size of the covered area in the αs-

χ2
min/dof plane systematically decrease with increasing

order. While the analysis in the MS scheme for Ω̄1 leads
to χ2

min/dof values around unity and thus an adequate
description of the entire global data set at N3LL′ order,
we see that accounting for the renormalon subtraction in
the R-gap scheme leads to a substantially improved the-
oretical description having χ2

min/dof values below unity
already at NNLL′ and N3LL orders, with the N3LL′ or-
der result slightly lower at χ2

min/dof ≃ 0.91. This demon-
strates the excellent description of the experimental data
contained in our global data set. It also validates the
smaller theoretical uncertainties we obtain for αs and Ω1

at N3LL′ order in the R-gap scheme.

As an illustration of the accuracy of the fit, in Fig. 13
we show the theory thrust distributions at Q = mZ for
the full N3LL′ order with the R-gap scheme for Ω1, for
the default theory parameters and the corresponding best
fit values shown in bold in Tabs. IV and V. The pink

Band Band Our scan
method 1 method 2 method

N3LL′ with ΩRgap
1 0.0004 0.0008 0.0009

N3LL′ with Ω̄MS
1 0.0016 0.0019 0.0021

N3LL′ without Smod
τ 0.0018 0.0021 0.0034

O(α3
s) fixed-order 0.0018 0.0026 0.0046

TABLE VI: Theoretical uncertainties for αs(mZ) obtained at
N3LL′ order from two versions of the error band method, and
from our theory scan method. The uncertainties in the R-gap
scheme (first line) include renormalon subtractions, while the
ones in the MS scheme (second line) do not and are therefore
larger. The same uncertainties are obtained in the analysis
without nonperturbative function (third line). Larger uncer-
tainties are obtained from a pure O(α3

s) fixed-order analysis
(lowest line). Our theory scan method is more conservative
than the error band method.

band displays the theoretical uncertainty from the scan
method. The fit result is shown in comparison with data
from DELPHI, ALEPH, OPAL, L3, and SLD, and agrees
very well. (Note that the theory values displayed are
actually binned according to the ALEPH data set and
then joined by a smooth interpolation.)

Band Method

It is useful to compare our scan method to determine the
perturbative errors with the error band method [26] that
was employed in the analyses of Refs. [20, 22, 25]. In the
error band method first each theory parameter is varied
separately in the respective ranges specified in Tab. III
while the rest are kept fixed at their default values. The
resulting envelope of all these separate variations with
the fit parameters αs(mZ) and Ω1 held at their best fit
values determines the error bands for the thrust distri-
bution at the different Q values. Then, the perturbative
error is determined by varying αs(mZ) keeping all the-
ory parameters to their default values and the value of
the moment Ω1 to its best fit value. The resulting per-
turbative errors of αs(mZ) for our full N3LL′ analysis in
the R-gap scheme are given in the first line of Tab. VI.
In the second line the corresponding errors for αs(mZ)
in the MS scheme for Ω̄1 are displayed. The left column
gives the error when the band method is applied such
that the αs(mZ) variation leads to curves strictly inside
the error bands for all Q values. For this method it turns
out that the band for the highest Q value is the most
restrictive and sets the size of the error. The resulting
error for the N3LL′ analysis in the R-gap scheme is more
than a factor of two smaller than the error obtained from
our theory scan method, which is shown in the right col-
umn. Since the high Q data has a much lower statistical
weight than the data from Q = mZ , we do not consider
this method to be sufficiently conservative and conclude
that it should not be used. The middle column gives the
perturbative error when the band method is applied such
that the αs(mZ) variation minimizes a χ2 function which

Abbate, Fickinger, Hoang, Mateu and Stewart 1004.4894
(hadronisation)
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Global Fit of αs(mZ) to Thrust at N3LL Order with
Power Corrections
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From soft-collinear effective theory one can derive a factorization formula for the e+e− thrust
distribution dσ/dτ with τ = 1−T that is applicable for all τ . The formula accommodates avail-
able O(α3

s ) fixed-order QCD results, resummation of logarithms at N3LL order, a universal non-
perturbative soft function for hadronization effects, factorization of nonperturbative effects in
subleading power contributions, bottom mass effects and QED corrections. We emphasize that
the use of Monte Carlos to estimate hadronization effects is not compatible with high-precision,
high-order analyses. We present a global analysis of all available e+e− thrust data measured at
Q = 35 to 207 GeV in the tail region, where a two-parameter fit can be carried out for αs(mZ)

and Ω1, the first moment of the soft function. To obtain small theoretical errors it is essential
to define Ω1 in a short-distance scheme, free of an O(ΛQCD) renormalon ambiguity. We find
αs(mZ) = 0.1135± (0.0002)expt± (0.0005)Ω1 ± (0.0009)pert with χ2/dof = 0.9.

RADCOR 2009 - 9th International Symposium on Radiative Corrections (Applications of Quantum Field
Theory to Phenomenology), October 25-30 2009, Ascona, Switzerland
Preprint: MIT-CTP 4118, MPP-2010-8

∗Speaker.

c⃝ Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/
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Figure 12: Comparison between theoretical predictions in effective field theory at first order
and fourth order, as defined in table 1, and pythia at the parton and hadron level. aleph

data is included in the first panel.

matching the perturbative soft and non-perturbative shape functions were discussed recently
in [58].

Since neither Monte-Carlo hadronization corrections nor a simple non-perturbative shift
model are satisfactory, we conclude that the best option at this point is to fit the parton-
level distribution. To estimate the hadronization uncertainties, we simply lift the errors from
previous studies of the aleph and opal data. Numerically this is essentially equivalent to
using ariadne to calculate the hadronization and quark-mass corrections and the difference
to pythia as an estimate of the resulting uncertainty, as can be seen in Tables 2 and 3. With
the increased perturbative precision of our result, it would be important to get better control
over hadronization effects and to have a more reliable way to assess the associated uncertainty.
As we discussed above, this can be achieved with a dedicated shape-function analysis involving
also lower energy data.

6 Conclusions

We have resummed the leading logarithmic corrections to the thrust distribution to N3LL.
Our calculation is based on an all-order factorization theorem for the thrust distribution in
the two-jet region T → 1. The traditional method for resummation of event shapes is limited
to NLL. The present paper goes beyond this not only by one but by two orders in logarithmic
accuracy.

The factorization theorem, obtained using Soft-Collinear Effective Theory, separates the
contributions associated with different energy scales in a transparent way. Those associated
with higher energy scales are absorbed into Wilson coefficients. Solving the renormalization-
group equations resums large perturbative logarithms of scale ratios. An advantage of the
effective theory treatment is that the factorization theorem is derived at the operator level. The
different building blocks in the factorization theorem are given by operator matrix elements
and appear in a variety of other processes. With the exception of the two-loop constant in the

25
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We have resummed the leading logarithmic corrections to the thrust distribution to N3LL.
Our calculation is based on an all-order factorization theorem for the thrust distribution in
the two-jet region T → 1. The traditional method for resummation of event shapes is limited
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The factorization theorem, obtained using Soft-Collinear Effective Theory, separates the
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group equations resums large perturbative logarithms of scale ratios. An advantage of the
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Another example: qT resummation at LHC

Cannot use fixed-order computation in peak region.

11

Framework
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Appendix

Confront with data
Conclusions

VS Z ATLAS 8 TeV

Good agreement with data: [Becher,TL,Neubert,Wilhelm]pgr.

ATLAS hep-ex/1512.0219 Z/�⇤ 20.3 fb�1 at 8TeV.
Cuts for d�fiducial/dqT : 66 < Mll/GeV < 116,

pT ,l > 20GeV, |⌘l | < 2.4, excluding 1.37 < |⌘l | < 1.52

Suppressed tail and overshoot �exp
Z/�⇤!l+ l�

= 537.10pb by ⇠ +6%.

At this precision, potentially relevant �n and �0 log0 � ↵3
s contributions:

KqT/GeV2[10,20] ⇠ 0.9 , KqT/GeV2[20,40] ⇠ 0.95
[Gehrmann-De Ridder, Gehrmann, Glover, Huss, Morgan].

All three experiments well described. No specific tuning.

Thomas Lübbert qT spectra at NNLL’+NNLO with CuTe 17

CuTe 2.0 TB, Lübbert, Neubert, Wilhelm



Cone jets & NGLs
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Hard function. 
m hard partons along  

fixed directions {n1, …, nm} 

Factorization theorem

Soft function 
with m Wilson lines

integration over the m 
directions 

color trace

Figure 3. omparison of our analytic results (solid lines) for the coe�cients of the three color
structures in the two-loop coe�cient dB/d ln ⇢h for the heavy-jet mass distribtion with numerical
results (points with invisibly small error bars) obtained using the Event2 event generator [13].

Putting everything together, inverting the Laplace transformation, and using relation

(1.5) we then obtain the following result for the logarithms in the light-jet cross section

d�

d⇢`
= (4.9)

This can be compared to numerical results obtained from running fixed-order event

generators such as Event2 [13] or eerad3 [? ] at low values of the jet mass.

[Write what we conclude from this comparison...]

5 Conclusions

• Non-global observables all have similar structure, key feature are multi-Wilson-line

operators tracking hard partons.

• Briefly discuss resummation.

• Numerical trouble with event generators?

�(�) =
1X

m=2

⌦Hm({n}, Q, µ)⌦ Sm({n}, Q�, µ)
↵
, (5.1)

– 16 –

TB, Neubert, Rothen, Shao ’15 ’16, see also Caron-Huot ‘15

First all-order factorization theorem for non-global 
observable. Achieves scale separation!



• Renormalization of hard Wilson coefficients 

• Same Z-factor must render Sm  finite! 
• Associated anomalous dimension ΓH
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– 16 –

High-E physics 
Wilson coefficients

Low-E physics 
EFT Operator

of logarithmically-enhanced contributions to all orders in perturbation theory. This re-

summation is achieved by evolving the Wilson coefficients of these operators from the high

scale µ ∼ Q down to the scale where the low-energy physics takes place. Let us first

discuss the wide-angle cross section for which the factorization theorem has been given in

(2.15). In our effective theory, the hard functions Hm are the Wilson coefficients of the

Wilson-line matrix elements Sm and we regularize both quantities in d = 4−2ϵ dimensions.

The effective field theory matrix elements contain UV divergences since the short-distance

structure of the full theory is not resolved. The corresponding 1/ϵ poles can be removed

by renormalizing the hard Wilson coefficients according to

Hm({n}, Q, δ, ϵ) =
m∑

l=2

Hl({n}, Q, δ, µ)ZH
lm({n}, Q, δ, ϵ, µ) . (2.35)

In practice, it is easiest to obtain the bare Wilson coefficients from on-shell matching

calculations, where the poles arise from IR divergences. However, these IR poles are in

one-to-one correspondence to UV divergences since the effective-theory loop-integrals in

such matching computations are scaleless, see e.g. [13] for a detailed explanation of this

point within SCET. We have discussed this correspondence after (2.15). It implies that

we can understand the UV divergences of Hm from the structure of the IR divergences

in the real and virtual diagrams which contribute to these quantities. Given that the

coefficients Hm are fixed-multiplicity QCD amplitudes squared, integrated over energy, it

is clear that the matrix ZH
lm({n}, Q, δ, ϵ, µ) cannot be diagonal: lower-multiplicity virtual

diagrams are needed to cancel the divergences of real-emission diagrams. In order to achieve

this cancellation, the renormalization matrix must have the form

Z
H({n}, Q, δ, ϵ, µ) ∼

⎛

⎜⎜⎜⎜⎜⎜
⎝

1 αs α2
s α3

s . . .

0 1 αs α2
s . . .

0 0 1 αs . . .

0 0 0 1 . . .
...

...
...

...
. . .

⎞

⎟⎟⎟⎟⎟⎟
⎠

, (2.36)

where we indicate the perturbative order of each element. At each higher order in per-

turbation theory, more off-diagonal contributions fill in. We have anticipated the upper

diagonal structure of the matrix in (2.35) by restricting the sum to l ≤ m. Note that

ZH
lm({n}, Q, δ, ϵ, µ) has logarithmic Q dependence, because the fixed-multiplicity ampli-

tudes involve both soft and collinear divergences. This dependence is a familiar feature of

Sudakov-type processes.

By consistency, the matrix ZH must render the soft functions finite, i.e. we must find

that the functions

S l({n}, Qβ, δ, µ) =
∞∑

m=l

Z
H
lm({n}, Q, δ, ϵ, µ) ⊗̂Sm({n}, Qβ, δ, ϵ) (2.37)

are finite for ϵ → 0. The structure of this result is at first sight quite surprising, since

Wilson-line matrix elements can usually be renormalized multiplicatively. However, in the

– 15 –

present case additional UV divergences in the real-emission diagrams arise because the

soft radiation is not constrained inside the jet. It is precisely those types of divergences

which lead to NGLs. Furthermore, the upper triangular form of ZH
lm implies that higher-

multiplicity soft functions are needed to absorb the divergences of matrix elements with

fewer Wilson lines. The symbol ⊗̂ indicates that in (2.37) one has to integrate over the

(m − l) additional directions of the unresolved partons on which the bare function Sm

depends.

The scale dependence of the renormalized hard and soft functions is governed by the

RG equations

d

d lnµ
Hm({n}, Q, δ, µ) = −

m∑

l=2

Hl({n}, Q, δ, µ)ΓH
lm({n}, Q, δ, µ) , (2.38)

d

d lnµ
S l({n}, Qβ, δ, µ) =

∞∑

m=l

ΓH
lm({n}, Q, δ, µ) ⊗̂Sm({n}, Qβ, δ, µ) , (2.39)

which ensure that the cross section (2.15) is scale independent. The anomalous-dimension

matrix is obtained from the standard relation

d

d lnµ
Z

H
km({n}, Q, δ, ϵ, µ) =

m∑

l=k

Z
H
kl ({n}, Q, δ, ϵ, µ) ⊗̂ΓH

lm ({n}, Q, δ, µ) , (2.40)

and it has linear dependence on ln(Q/µ) as is familiar from Sudakov-type problems. How-

ever, the wide-angle cross section we consider only contain only a single large logarithm at

each order. The Sudakov double logarithms must cancel in the sum over multiplicities in

(2.15). A related observation is that the RG equation (2.39) for the soft functions is only

consistent if the Q-dependence of the anomalous dimension drops out after the integrals

over the unresolved partons have been performed, since the expression on the left-hand

side only involves the soft scale Qβ. This implies a set of highly nontrivial consistency

relations among the entries of the anomalous-dimension matrix. At one-loop order this

will be studied in Section 5.

Solving the RG equations (2.38) and (2.39) one can resum all large logarithms in

the wide-angle jet cross section (2.15). At the soft scale µs ≈ Qβ the soft functions do

not involve large logarithms, and hence they can be calculated in a perturbative series in

powers of αs(µs). Likewise, at the hard scale µh ≈ Q the hard functions do not involve

large logarithms, and hence they can be calculated in a perturbative series in powers of

αs(µh). The large logarithms of the scale ratio µh/µs are resummed by evolving the soft

functions up to the hard scale (or vice versa),

Sl({n}, Qβ, δ, µh) =
∑

m≥l

U
S
lm({n}, δ, µs, µh) ⊗̂Sm({n}, Qβ, δ, µs) , (2.41)

with an evolution matrix of the form

U
S({n}, δ, µs, µh) = P exp

[ ∫ µh

µs

dµ

µ
ΓH({n}, δ, µ)

]
. (2.42)

– 16 –



Resummation by RG evolution
Wilson coefficients fulfill renormalization 
group (RG) equations 

  
1. Compute Hm at a characteristic high 

scale µh ~ Q  

2. Evolve Hm to the scale of low energy 
physics µl ~ Qβ  

Avoids large logarithms αsn lnn(β) of scale 
ratios which can spoil convergence of 
perturbation theory.

R
G

 evolution

d

dt
Hn(t) = Hn(t)Vn +Hn�1(t)Rn�1(t) (11)

H2(th = 0) = 1, Hn>2(th = 0) = 1 (12)

Hn(t) =

Z t

0
dt0Hn�1(t

0
)Rn�1(t

0
)e�(t0�t)Vn

(13)

�LL =

1X

n=2

Hn(ts)⌦ Sn(ts) (14)

d

d lnµ
Hm({n}, Q, �, µ) = �

mX

l=2

Hl({n}, Q, µ)�H
lm({n}, Q, µ) (15)

d

d lnµ
Hm(Q,µ) = �

mX

l=2

Hl(Q,µ)�H
lm(Q,µ) (16)

2

Q

Qβ



RG = Parton Shower
• Ingredients for LL 

• RG 

• Equivalent to parton shower equation

16

divergence from the lower end of the energy integration, the total result for the divergent

part becomes

αs

4π
z
(1)
m,m({n}, Q, δ, ϵ, µ) +

αs

4π

∫
dΩ(nm+1)

4π
z
(1)
m,m+1({n, nm+1}, Q, δ, ϵ, µ)

= − αs

2πϵ

∑

(ij)

Ti · Tj

∫
dΩ(nk)

4π
W k

ij Θ
nn̄
out(nk) . (5.8)

Since the color factors are contracted with the trivial tree-level soft function, we do not need

to distinguish the left and right color generators. Note that inside the cone the real and

virtual corrections have cancelled, so that the net result only gets contributions from out-

of-cone radiation and precisely cancels against the divergence of the soft function. We see

that the renormalization indeed works at the one-loop level. We have repeated the same

exercise also for the narrow-jet case, see Appendix C. In this case, we can give explicit

expressions for the angular integrals. Again, we find that the divergences cancel as they

should.

5.2 Renormalization-group evolution at leading logarithmic level

We now discuss the anomalous-dimension matrix ΓH defined in (2.40), which governs the

RG evolution of the hard (2.38) and soft functions (2.39), and verify the agreement between

the perturbative expansion of the BMS equation and our RG-based resummation method.

In order to resum the leading logarithmic terms, the anomalous-dimension matrix is needed

up to O(αs). It can be expressed as

ΓH ({n}, Q, δ, µ) =
αs

4π
Γ(1) ({n}, Q, δ, µ) +O(α2

s) , (5.9)

where

Γ(1) =

⎛

⎜⎜⎜⎜⎜⎜
⎝

V2 R2 0 0 . . .

0 V3 R3 0 . . .

0 0 V4 R4 . . .

0 0 0 V5 . . .
...

...
...

...
. . .

⎞

⎟⎟⎟⎟⎟⎟
⎠

. (5.10)

It follows from the discussion in the previous section that, in the soft approximation, the

corresponding matrix elements are given by

Vm = Γ(1)
m,m = −2

∑

(ij)

(Ti,L · Tj,L + Ti,R · Tj,R)

∫
dΩ(nk)

4π
W k

ij

[
Θnn̄

in (k) +Θnn̄
out(k)

]
,

Rm = Γ
(1)
m,m+1 = 4

∑

(ij)

Ti,L · Tj,RWm+1
ij Θnn̄

in (nm+1) . (5.11)

The anomalous dimensions Vm and Rm depend on the directions {n} = {n1, . . . , nm} and

colors of the hard partons, and the indices i, j in the sum run from 1 to m. The quantities

Rm also depend on the additional direction nm+1 of the real emission. The integration over

this direction is performed after the multiplication with the soft function. At first sight,
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lm(Q,µ) (16)
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1-loop anomalous dimension

• Contain dipoles → dipole shower 

• Trivial color structure at large Nc : 
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must find that
∑

l≥m

Z
H
ml({n}, Q, δ, ϵ, µ) ⊗̂S l({n}, Qβ, δ, ϵ) = Sm({n}, Qβ, δ, µ) = finite . (5.2)

Due to the structure of the matrix, only the diagonal terms zm,m, and the terms zm,m+1

above the diagonal can contribute to the renormalization of Sm at the one-loop-level.

Explicitly, the finiteness condition at one-loop order reads

αs

4π
z
(1)
m,m({n}, Q, δ, ϵ, µ) +

αs

4π

∫
dΩ(nm+1)

4π
z
(1)
m,m+1({n, nm+1}, Q, δ, ϵ, µ)

+ Sm({n}, Qβ, δ, ϵ) = finite , (5.3)

where we have used Sm = 1+ O(αs), so that the Z-factors multiply the identity matrix.

In the second term we integrate over the angle of the additional emission.

One can easily obtain the divergent part of the one-loop soft functions, since it is given

by a sum of exchanges between two legs. A sample Feynman diagram is shown in Figure 10.

We get

Sm({n}, Qβ, δ, ϵ) = 1+
αs

2πϵ

∑

(ij)

Ti · Tj

∫
dΩ(nk)

4π
W k

ij Θ
nn̄
out(nk) , (5.4)

where we have introduced the dipole radiator

W k
ij =

ni · nj

ni · nk nj · nk
. (5.5)

The function Θnn̄
out(nk) = 1 − Θnn̄

in (nk) ensures that the gluon is outside the two jet cones

around the n and n̄ directions. Note that the angular integral does not suffer from collinear

divergences, since the vectors ni and nj lie inside the jet cones, while the direction nk

associated with the soft emission points outside the cone. (The soft radiation can also be

emitted inside the cone, but as mentioned earlier this contribution is scaleless, since it does

not have an upper limit on the energy of the emission.)

In (5.3), the quantity zm,m represents the divergences of the virtual corrections to

the amplitude with m legs, while zm,m+1 gives the divergences from an additional real

emission. Let us now consider the real and virtual corrections together, since all collinear

divergences drop out and only a single soft divergence remains. The leading divergence can

be obtained by using the soft approximation for the emitted (real or virtual) gluon. In the

soft approximation, the real-emission contribution factorizes as

g2s
∑

(ij)

∫
dd−1k

2Ek(2π)d−1

1

E2
k

W k
ij Ti,L · Tj,RΘ

nn̄
in (k)Hm({n}, Q− Ek) . (5.6)

In this approximation, one can write the virtual correction in the same form as the real-

emission contribution, because the principal-value part of the propagator of the emission

does not contribute. The virtual correction then reads

−g2s
∑

(ij)

∫
dd−1k

2Ek(2π)d−1

1

E2
k

W k
ij
1

2
(Ti,L·Tj,L+Ti,R·Tj,R)Hm({n}, Q−Ek)

[
Θnn̄

in (k) +Θnn̄
out(k)

]
.

(5.7)
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Ti · Tj → −
Nc

2
δj,i±1 . (26)

A(β, δ) = CF

[
− 8 ln δ lnβ − 1 + 6 ln 2− 6 ln δ − 6δ2 +

(
9

2
− 6 ln 2

)
δ4 + 4Li2(δ

2)− 4 Li2(−δ2)
]
. (20)

B(β, δ) = C2
FBF + CFCABA + CFTFnfBf , (21)

with

BF =32 ln2 δ ln2 β +
8

3

[

4 ln3 δ + 12 ln 2 ln2 δ + 9 ln2 δ − 6 ln2
(
1 + δ2

)
ln δ − π2 ln

(
1 + δ2

)

+ 12 ln2 2 ln δ − 18 ln 2 ln δ −
5

2
π2 ln δ + 24 ln δ − 9 Li2

(
−δ2

)
+ 24 ln δ Li2

(
−δ2

)

− 12 ln
(
1 + δ2

)
Li2

(
−δ2

)
+ 12 ln2 Li2

(
−δ2

)
+ 6Li3

(
δ2

1 + δ2

)
− 6 Li3

(
1

1 + δ2

)

−
3π2

4
+ π2 ln 2−

3

16
M

[1]
F (δ)

]

lnβ + cF2 (δ) ,

BA =
4

3

[

11 ln δ −
π2

2
+ 3Li2(δ

4)

]

ln2 β +
4

3

[

11 ln2 δ −
67 ln δ

3
+

4δ4 ln δ

(1− δ4)2
+

1

1− δ4

+ 36 ln δ ln2
(
1− δ2

)
− 12 ln δ ln2

(
1 + δ2

)
+ 22 ln δ ln

(
1− δ2

)
− 5π2 ln

(
1− δ2

)

+ 22 ln δ ln
(
1 + δ2

)
− π2 ln

(
1 + δ2

)
− 4 ln3

(
1 + δ2

)
+ 33Li2

(
−δ2

)
+ 22Li2

(
δ2
)

+ 48 ln δ Li2
(
−δ2

)
− 12 ln

(
1− δ2

)
Li2

(
−δ2

)
− 36 ln

(
1 + δ2

)
Li2

(
−δ2

)

+ 12 ln 2 Li2
(
−δ2

)
+ 24 ln δ Li2

(
δ2
)
+ 24 ln

(
1− δ2

)
Li2

(
δ2
)
+ 12 ln 2 Li2

(
δ2
)

+ 12 ln
(
1− δ4

)
Li2

(
1− δ2

)
− 6 Li3

(
1− δ4

)
+ 24Li3

(
1− δ2

)
− 36 Li3

(
−δ2

)

− 36 Li3
(
δ2
)
+ 24Li3

(
δ2

1 + δ2

)
− 12 ζ3 −

11π2

12
−

1

2
− π2 ln 2−

3

8
M

[1]
A (δ)

]

lnβ

+ cA2 (δ) ,

Bf =−
16

3
ln δ ln2 β −

8

3

[
1

1− δ4
+

4δ4 ln δ

(1− δ4)2
+ 4 ln(1− δ4) ln δ + 2 ln2 δ −

10

3
ln δ

+ 6Li2(−δ2) + 4Li2(δ
2)−

π2

6
−

1

2

]

lnβ + cf2 (δ) . (22)

W j
kl =

nk · nl

nk · nj nl · nj
. (23)

W k
ij =

ni · nj

ni · nk nj · nk
. (24)

Vm = Γ
(1)
m,m = 2

∑

(ij)

(Ti,L · Tj,L + Ti,R · Tj,R)

∫
dΩ(nk)

4π
W k

ij ,

Rm = Γ
(1)
m,m+1 = −4

∑

(ij)

Ti,L · Tj,R Wm+1
ij Θnn̄

in (nm+1) . (25)
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• Equivalent to the dipole shower used by Dasgupta 
and Salam ’02.

18

parton shower

e+e− → 2 jets 
rapidity gap Δy=1



Work in progress
• Finite Nc 

• nontrivial color structure, interference 

• MC over colors? Expand in 1/Nc ?  Plätzer, 
Sjödahl ’12, Plätzer ‘13 

• Subleading logarithms 

• Hadronic collisions and super-leading logs
19

For the moment, we will work in the large Nc limit. Using component notation, the

leading-order RG can then be written in the form

d

dt
Hm(t) = Hm(t)Vm +Hm−1(t)Rm−1 . (2.4)

Also the second term lives in them-parton space because Rm−1 adds an additional emission

to Hm−1(t). To write this in a form suitable for MC implementation, let us now consider

the evolution from a time t1 to time t. The solution for this can be written in the form

Hm(t) = Hm(t1)e
(t−t1)Vn +

∫ t

t1

dt′Hm−1(t
′)Rm−1e

(t−t′)Vn (2.5)

It is easy to verify that Hm(t) defined in this way fulfills the RG equation (2.4) by taking

the derivative with respect to t. This form is exactly what is implemented in a standard

parton shower Monte-Carlos. The first term is the contribution in which no emission

occurred between t1 and t, while the second term is the contribution from all terms which

had their last emission at t′ between t1 and t.

Together with the LO initial conditions that H2(0) = σ0, while all higher hard func-

tions vanish for t = 0, equation (2.5) provides a natural framework for a Monte-Carlos

computation of the hard functions. One first obtains a MC sample of

H2(t) = σ0 e
tV2 (2.6)

by generating a set of random values of t according the distribution p2(∆t) = V2etV2 . For

each of these, one then generates H3(t+∆t)’s by adding a first emission at t and generating

a next step ∆t with distribution p3(∆t) = V3e∆tV3 .

3 Two-loop anomalous dimension matrix

We expand the anomalous dimension matrix as

Γ =
αs

4π
Γ(1) +

(αs

4π

)2
Γ(2) (3.1)

The one- and two-loop matrices have the form

Γ(1) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

V2 R2 0 0 . . .

0 V3 R3 0 . . .

0 0 V4 R4 . . .

0 0 0 V5 . . .
...

...
...

...
. . .

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, Γ(2) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

v2 r2 d2 0 . . .

0 v3 r3 d2 . . .

0 0 v4 r4 . . .

0 0 0 v5 . . .
...

...
...

...
. . .

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (3.2)

Where we now put superscripts to distinguish the one and two-loop entries. The

quantities vm encode divergencies due to two-loop virtual corrections, rm includes the one-

loop corrections to single emissions and the double branching terms d2 describe divergences

in the correlated emission of two gluons.
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vm:  two-loop virtual 
rm:  real-virtual 
dm: double real

see Caron-Huot ‘15


