Introduction to SCET: Supplementary Slides II

Thomas Becher
Bern University

Lectures on Soft-Collinear Effective Field Theory
Les Houches Summer School, July 2017

Thrust

Thrust and thrust axis

Logarithmically enhanced contributions

- The LO thrust distribution has the form

$$
\begin{aligned}
& \frac{1}{\sigma_{0}} \frac{\mathrm{~d} \sigma}{\mathrm{~d} \tau}=\frac{2 \alpha_{s}}{3 \pi}\left[-\frac{3}{\tau}+6+9 \tau+\frac{\left(6 \tau^{2}-6 \tau+4\right)}{(1-\tau) \tau} \ln \frac{1-2 \tau}{\tau}\right] \\
&=\frac{2 \alpha_{s}}{3 \pi}\left[\frac{-4 \ln \tau-3}{\tau}+d_{\text {regular }}(\tau)\right] \\
& \text { singular terms }
\end{aligned}
$$

- Integral over the end-point is

$$
R(\tau)=\int_{0}^{\tau} d \tau^{\prime} \frac{1}{\sigma_{0}} \frac{d \sigma}{d \tau^{\prime}}=\frac{2 \alpha_{s}}{3 \pi}\left[-2 \ln ^{2} \tau-3 \ln \tau+\ldots\right]
$$

Sudakov double logarithm

Thrust measurement by ALEPH

Resummed vs fixed order

$$
\tau=1-T
$$

- For $\alpha_{s}\left(M_{z}\right)=0.118$
- This is the region relevant for α_{s} determination

Precision determination of α_{s}

$$
\alpha_{s}\left(m_{Z}\right)=0.1135 \pm(0.0002)_{\mathrm{expt}} \pm(0.0005)_{\Omega_{1}} \pm(0.0009)_{\text {pert }}
$$

Abbate, Fickinger, Hoang, Mateu and Stewart I 004.4894

Another example: $q_{\text {т }}$ resummation at LHC

CuTe 2.0 TB, Lübbert, Neubert, Wilhelm

Cannot use fixed-order computation in peak region.

Cone jets \& NGLs

Factorization theorem

TB, Neubert, Rothen, Shao '15 '16, see also Caron-Huot '15

Hard function.
m hard partons along fixed directions $\left\{\mathrm{n}_{1}, \ldots, \mathrm{n}_{\mathrm{m}}\right\}$

$$
\sigma(\beta)=\sum_{m=2}^{\infty}\left\langle\mathcal{H}_{m}(\{\underline{n}\}, Q, \mu) \otimes \mathcal{S}_{m}(\{\underline{n}\}, Q \beta, \mu)\right\rangle
$$

color trace

Soft function with m Wilson lines
integration over the m directions

First all-order factorization theorem for non-global observable. Achieves scale separation!

$$
\sigma(\beta)=\sum_{m=2}^{\infty}\left\langle\mathcal{H}_{m}(\{\underline{n}\}, Q, \mu) \otimes \mathcal{S}_{m}(\{\underline{n}\}, Q \beta, \mu)\right\rangle,
$$

High-E physics
Wilson coefficients

Low-E physics EFT Operator

- Renormalization of hard Wilson coefficients

$$
\mathcal{H}_{m}(\{\underline{n}\}, Q, \delta, \epsilon)=\sum_{l=2}^{m} \mathcal{H}_{l}(\{\underline{n}\}, Q, \delta, \mu) \boldsymbol{Z}_{l m}^{H}(\{\underline{n}\}, Q, \delta, \epsilon, \mu)
$$

- Same Z-factor must render S_{m} finite!
- Associated anomalous dimension $\boldsymbol{\Gamma}^{H}$

$$
\frac{d}{d \ln \mu} \boldsymbol{Z}_{k m}^{H}(\{\underline{n}\}, Q, \delta, \epsilon, \mu)=\sum_{l=k}^{m} \boldsymbol{Z}_{k l}^{H}(\{\underline{n}\}, Q, \delta, \epsilon, \mu) \hat{\otimes} \boldsymbol{\Gamma}_{l m}^{H}(\{\underline{n}\}, Q, \delta, \mu)
$$

Resummation by RG evolution

Wilson coefficients fulfill renormalization group (RG) equations

$$
\frac{d}{d \ln \mu} \boldsymbol{\mathcal { H }}_{m}(Q, \mu)=-\sum_{l=2}^{m} \mathcal{H}_{l}(Q, \mu) \boldsymbol{\Gamma}_{l m}^{H}(Q, \mu)
$$

1. Compute \mathcal{H}_{m} at a characteristic high scale $\mu_{h} \sim Q$
2. Evolve \mathcal{H}_{m} to the scale of low energy physics $\mu_{l} \sim Q \beta$

Avoids large logarithms $\alpha_{s}{ }^{n} \ln ^{n}(\beta)$ of scale ratios which can spoil convergence of
 perturbation theory.

RG = Parton Shower

- Ingredients for LL

$$
\begin{aligned}
& \mathcal{H}_{2}(\mu=Q)=\sigma_{0} \\
& \mathcal{H}_{m}(\mu=Q)=0 \text { for } m>2 \\
& \mathcal{S}_{m}(\mu=\beta Q)=1
\end{aligned}
$$

$$
\boldsymbol{\Gamma}^{(1)}=\left(\begin{array}{ccccc}
\boldsymbol{V}_{2} & \boldsymbol{R}_{2} & 0 & 0 & \ldots \\
0 & \boldsymbol{V}_{3} & \boldsymbol{R}_{3} & 0 & \ldots \\
0 & 0 & \boldsymbol{V}_{4} & \boldsymbol{R}_{4} & \cdots \\
0 & 0 & 0 & \boldsymbol{V}_{5} & \ldots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right)
$$

- RG

$$
\frac{d}{d t} \mathcal{H}_{m}(t)=\mathcal{H}_{m}(t) \boldsymbol{V}_{m}+\mathcal{H}_{m-1}(t) \boldsymbol{R}_{m-1} . \quad t=\int_{\alpha(\mu)}^{\alpha(Q)} \frac{d \alpha}{\beta(\alpha)} \frac{\alpha}{4 \pi}
$$

- Equivalent to parton shower equation

$$
\mathcal{H}_{m}(t)=\mathcal{H}_{m}\left(t_{1}\right) e^{\left(t-t_{1}\right) V_{n}}+\int_{t_{1}}^{t} d t^{\prime} \mathcal{H}_{m-1}\left(t^{\prime}\right) \boldsymbol{R}_{m-1} e^{\left(t-t^{\prime}\right) \boldsymbol{V}_{n}}
$$

1-loop anomalous dimension

$$
\begin{aligned}
& \boldsymbol{V}_{m}=\boldsymbol{\Gamma}_{m, m}^{(1)}=2 \sum_{(i j)}\left(\boldsymbol{T}_{i, L} \cdot \boldsymbol{T}_{j, L}+\boldsymbol{T}_{i, R} \cdot \boldsymbol{T}_{j, R}\right) \int \frac{d \Omega\left(n_{k}\right)}{4 \pi} W_{i j}^{k}, \\
& \boldsymbol{R}_{m}=\boldsymbol{\Gamma}_{m, m+1}^{(1)}=-4 \sum_{(i j)} \boldsymbol{T}_{i, L} \cdot \boldsymbol{T}_{j, R} W_{i j}^{m+1} \Theta_{\mathrm{in}}^{n \bar{n}}\left(n_{m+1}\right) .
\end{aligned}
$$

- Contain dipoles \rightarrow dipole shower

$$
W_{i j}^{k}=\frac{n_{i} \cdot n_{j}}{n_{i} \cdot n_{k} n_{j} \cdot n_{k}}
$$

- Trivial color structure at large N_{c} :

$$
\boldsymbol{T}_{i} \cdot \boldsymbol{T}_{j} \rightarrow-\frac{N_{c}}{2} \delta_{j, i \pm 1}
$$

- Equivalent to the dipole shower used by Dasgupta and Salam '02.

Work in progress

- Finite N_{c}
- nontrivial color structure, interference
- MC over colors? Expand in $1 / \mathrm{N}_{\mathrm{c}}$? Plätzer, Sjödahl '12, Plätzer '13
- Subleading logarithms

$$
\Gamma^{(2)}=\left(\begin{array}{ccccc}
v_{2} & r_{2} & d_{2} & 0 & \ldots \\
0 & v_{3} & r_{3} & d_{2} & \ldots \\
0 & 0 & v_{4} & r_{4} & \ldots \\
0 & 0 & 0 & v_{\ldots} & \ldots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right) \quad \begin{aligned}
& v_{m}: \text { two-loop virtual } \\
& r_{m}: \text { real-virtual } \\
& d_{m}: \text { double real } \\
& \\
& \text { see Caron-Huot '15 }
\end{aligned}
$$

- Hadronic collisions and super-leading logs

