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Abstract: PRELIMINARY: INCOMPLETE FINAL SECTIONS AND REFERENCES

These notes present an introduction to inflationary cosmology with an emphasis on

some of the ways effective field theories are used in its analysis. Based on lectures pre-

pared for the Les Houches Summer School Effective Field Theory in Particle Physics

and Cosmology, July 2017. Parts of these lectures draw on my earlier notes Lectures on

Cosmic Inflation and its Potential Stringy Realizations [1] as well as Quantum Gravity

in everyday life: General Relativity as an Effective Field Theory [2] and Who You

Gonna Call? Runaway Ghosts, Higher Derivatives and Time-Dependence in EFTs [3].
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These lectures are meant to provide a brief overview of two topics: the standard

(Hot Big Bang, or ΛCDM) model of cosmology and the inflationary universe that

presently provides our best understanding of the standard cosmology’s peculiar initial

conditions. There are several goals to this presentation: the first of which is to provide

a particle-physics audience with some of the tools required by later lecturers in this

school. After all, cosmology has become a mainstream topic within particle physics,

largely because cosmology provides several of the main pieces of observational evidence

for the incompleteness of the Standard Model of particle physics.

A second goal of these lectures is to touch on the important role played in cos-

mology by many of the same methods of effective field theory (EFT) used elsewhere in

physics. This second goal is particularly important for the cosmology of the very early

universe (such as inflationary or ‘bouncing’ models) for which a central claim is that

quantum fluctuations provide an explanation of the properties of primordial fluctua-

tions presently found writ large across the sky. If true, this claim would imply not only

that quantum gravity effects are observable; the claim is that their imprint has already

been observed cosmologically. Such claims sharpen the need to clarify what parame-

ters control the size of quantum effects in gravity, and along the way more generally to

identify the domain of validity of semi-classical methods is cosmology.

In practice the lectures are divided into two parts: homogeneous, isotropic cosmolo-

gies and the fluctuations about them. The first part provides a very brief description

of the classic homogeneous and isotropic cosmological models usually encountered in

introductory cosmology courses. One goal of this section is to highlight both the great

success these models have describing the Universe as we find it around us. The second

goal is to describe the peculiar initial conditions that are required by this observational

success. This section then highlights how these puzzling initial conditions suggest the

Universe once underwent an earlier epoch of accelerated expansion. It closes by de-

scribing several simple and representative single-field inflationary models that have

been proposed to provide this earlier accelerated epoch.

The second part of the lectures repeats the same picture, but now for fluctuations

about both standard and inflationary cosmologies. This section starts by describing
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the very successful picture of structure formation within the standard ΛCDM model,

in which both fluctuations in the cosmic microwave background (CMB) and the distri-

bution of galaxies is attributed to the amplification by gravity of a simple primordial

spectrum of small fluctuations. Again the success of standard cosmology proves to rely

on a specific choice for the initial spectrum of primordial fluctuations, and again the

required initial spectrum can be understood as being produced by quantum fluctua-

tions if there were an earlier epoch of accelerated expansion. Accelerated expansion

plays double duty: potentially both explaining the initial conditions of the background

homogeneous Universe and of the primordial spectrum of fluctuations within it.

Because of the important role played by gravitating quantum fluctuations, EFT

methods are central to assessing the domain of validity of the entire picture. Conse-

quently the the third section of these notes summarizes several of the ways they do so,

and how their application can differ in cosmology from those encountered elsewhere

in particle physics. This starts by extending standard power-counting arguments to

identify the small parameters that control the underlying semiclassical expansion im-

plicitly used in essentially all cosmological models. In passing we comment on why

control over the semiclassical expansion tends to favour inflationary models over their

alternatives (such as bouncing cosmologies).1 Other EFT topics discussed include sev-

eral new issues of principle to do with how to define EFTs in explicitly time-dependent

situations, and quantifying the robustness of inflationary predictions to any peculiar-

ities of unknown higher-energy physics. This section closes with a short description

of the practical EFT of fluctuations in single-field inflationary models used to identify

potential observational signals in as model-independent way as possible.

1 Cosmology: Background

This section summarizes the standard discussion of background cosmology, both for

ΛCMD models and their inflationary precursors.

1.1 Standard ΛCDM cosmology

The starting point is the standard cosmology of the expanding Universe revealed to us

by a astronomical observations.

1Of course, although this explains the current preference amongst cosmologists for inflationary

models, it does not mean that Nature prefers them. Rather, these EFT arguments just set the bar to

which formulations of alternative proposals should also aspire to achieve equal credence.
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1.1.1 FRW geometries

Cosmology became a science once Einstein’s discovery of General Relativity related the

observed distribution of stress-energy to the measurable geometry of space-time. This

implies the geometry of the Universe as a whole can be tied to the overall distribution

of matter at the largest scales. These days it is an experimental fact that the stress-

energy of the Universe appears to be very homogeneous and isotropic on the largest

scales visible. One piece of evidence to this effect is the very small — one part in 105

— temperature fluctuations of the CMB (more about which later).

On such large scales the geometry of space-time might also be expected to be

homogeneous and isotropic, and the most general such a geometry in 3+1 dimensions

is described by the Friedmann-Robertson-Walker (FRW) metric. The line-element for

this metric can be written as2

ds2 = gµν dxµdxν = −dt2 + a2(t)

[
dr2

1− κr2/R2
0

+ r2 dθ2 + r2 sin2 θ dφ2

]
(1.1)

= −dt2 + a2(t)
[
d`2 + r2(`) dθ2 + r2(`) sin2 θ dφ2

]
,

where R0 is a constant with dimension length and κ can take one of the following three

values: κ = 1, 0,−1. The coordinate ` is related to r by d` = dr/(1− κr2/R2
0)1/2, and

so

r(`) =


R0 sin(`/R0) if κ = +1

` if κ = 0

R0 sinh(`/R0) if κ = −1

. (1.2)

The quantity a(t)R0 represents the radius of curvature of the spatial slices at fixed

t, which are 3-spheres when κ = 0; 3-hyperbolae for κ = −1 and are flat for κ = 0. It

is conventional to scale R0 out of the metric by re-scaling the coordinates `→ R0 ` and

r → R0 r while at the same time rescaling a(t) → a(t)/R0. This redefinition makes r

and ` dimensionless while giving a(t) units of length, and it is often useful to choose

cosmological units for which a(t0) = 1 for some t0 (such as at present). The case

κ = 0 turns out to be of particular interest because all current evidence (coming, for

instance, from the measured properties of the CMB) indicates that the spatial slices in

the Universe are consistent with being flat.

Trajectories along which only t varies are time-like geodesics of this metric and

represent the motion of a natural set of static ‘co-moving’ observers. The co-moving

2For those rusty on what a metric means and perhaps needing a refresher course on General

Relativity using the same conventions as those used here, feel free to refresh you memory with General

Relativity: The Notes at http/www.physics.mcmaster.ca/~cburgess/Notes/GRNotes/pdf.
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distance, ∆`, between two such observers at a fixed time t is related to their physical

distance — as measured by the metric (1.1) — by

D(∆`, t) = ∆` a(t) , (1.3)

so the ‘scale-factor’ a(t) describes the common time-evolution of spatial scales. So long

as a(t) is monotonic one can use t or a interchangeably as measures of the passage of

time.

The trajectories of photons play a special role in cosmology since until very recently

they brought us all of our information about the universe at large. Since they move at

the speed of light their trajectories satisfy ds2 = 0 and so

gµν

(
dxν

ds

)(
dxν

ds

)
= 0 , (1.4)

which for radial motion specializes to dt/ds = ±a(t)(d`/ds). Choosing coordinates

that place us at the origin means all photons sent to us move along a radial trajectory.

A photon arriving at t = 0 from a galaxy situated at fixed co-moving position

` = L must have departed at time t = −T where

L =

∫ T

0

dt

a(t)
. (1.5)

Since the universe expands by an amount a0/a in this time (where a0 = a(0) is the

present-day scale factor and a = a(−T ) is its value when the light was emitted), the

redshift, z, of the light is given by z := (λobs − λem)/λem, with λobs/λem = a0/a.

Consequently z and a are related by

1 + z =
a0

a
. (1.6)

This very usefully ties the Universal expansion to the more easily measured redshift of

distant objects.3

For later purposes, it is worth introducing another useful time coordinate when

discussing the evolution of light rays in FRW geometries. Defining ‘conformal time’, τ ,

by

τ =

∫
dt

a(t)
, (1.7)

3In practice the redshift of any particular object depends also on its ‘peculiar’ motion relative to

the co-moving observers, but in practice this is negligible compared with the cosmic redshift for all

but relatively nearby galaxies.
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allows the metric (1.1) to be written

ds2 = a2(τ)
[
−dτ 2 + d`2 + r2(`) dθ2 + r2(`) sin2 θ dφ2

]
. (1.8)

The utility of this coordinate system is that the scale-factor a(τ) completely drops out

of the evolution of photons, which simplifies the identification of many of the causal

properties of the spacetime (i.e. identifying which events can communicate with each

other by exchanging photons).

1.1.2 Implications of Einstein’s equations

So far so good, but the story so far is largely just descriptive. The FRW metric, with

a(t) specified, says much about how particles move over cosmological distances. But

we also need to know how to relate a(t) to the Universe’s stress-energy content. This

connection is made using Einstein’s equations,4

Rµν −
1

2
Rgµν + 8πGTµν = 0 , (1.9)

where G is Newton’s constant of universal gravitation, Rµν = Rα
µαν is the geometry’s

Ricci tensor (where Rα
µβν is its Riemann tensor) and R = gµνRµν .

The twin requirements of homogeneity and isotropy dictate that the most general

form for the Universe’s stress-energy tensor, Tµν , is that of a perfect fluid,

Tµν = p gµν + (p+ ρ)UµUν , (1.10)

where p and ρ are respectively the fluid’s pressure and energy density, while Uµ∂µ = ∂t

(or, equivalently, Uµ dxµ = −dt) is the 4-velocity of the co-moving observers.

Specialized to the metric (1.1) the Einstein equations boil down to the following

two independent equations:

H2 +
κ

a2
=

8πG

3
ρ =

ρ

3M2
p

(Friedmann equation) (1.11)

and

ρ̇+ 3H(p+ ρ) = 0 (energy conservation) (1.12)

where over-dots denote differentiation with respect to t and the Hubble function is

defined by H = ȧ/a. The last equality in eq. (1.11) also defines the ‘reduced’ Planck

4Besides using metric signature (−+ ++), unless explicitly stated otherwise I also use units with

~ = c = kB = 1, and follow Weinberg’s curvature conventions [4] (which differ from the popular MTW

conventions [5] only by an overall sign in the definition of the Riemann curvature, Rµνλρ).
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mass: M2
p = (8πG)−1 ' 1018 GeV. Differentiating (1.11) and using (1.12) gives a useful

formula for the cosmic acceleration

ä

a
= − 1

6M2
p

(ρ+ 3p) . (1.13)

Mathematically speaking, finding the evolution of the universe as a function of time

requires the integration of eqs. (1.11) and (1.12), but in themselves these two equations

are inadequate to determine the evolution of the three unknown functions, a(t), ρ(t)

and p(t). Another condition is required in order to make the problem well-posed. The

missing condition is furnished by the equation of state for the matter in question, which

for the present purposes we take to be an expression for the pressure as a function of

energy density, p = p(ρ). In particular, the equations of state of interest in ΛCDM

cosmology have the general form

p = w ρ , (1.14)

where w is a t-independent constant.

The first step in solving for a(t) is to determine how p and ρ depend on a, since this

is dictated by energy conservation. Using eq. (1.14) in (1.12) allows it to be integrated

to obtain

ρ = ρ0

(a0

a

)σ
with σ = 3(1 + w) . (1.15)

Eq. (1.14) implies the pressure satisfies an identical dependence on a. Similarly using

eq. (1.15) to eliminate ρ from (1.11) leads to the following differential equation for a(t):

ȧ2 + κ =
8πGρ0a

2
0

3

(a0

a

)σ−2

. (1.16)

When κ = 0 this equation is easily integrated to give

a(t) = a0

(
t

t0

)α
with α =

2

σ
=

2

3(1 + w)
. (1.17)

1.1.3 Equations of state

In the ΛCDM model of cosmology the total energy density is regarded as the sum of

several components, each of which separately satisfies one of the following three basic

equations of state.

Nonrelativistic matter

An ideal gas of non-relativistic particles in thermal equilibrium has a pressure and

energy density given by

p = nT and ρ = nm+
nT

γ − 1
, (1.18)
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where n is the number of particles per unit volume, m is the particle’s rest mass and

γ = cp/cv is its ratio of specific heats, with γ = 5/3 for a gas of monatomic atoms. For

non-relativistic particles the total number of particles is usually also conserved,5 which

implies that
d

dt

[
n a3

]
= 0 . (1.19)

Since m� T (or else the atoms would be relativistic) the equation of state for this

gas may be taken to be

p

ρ
∼ T

m
� 1 and so w ' 0 . (1.20)

Since w ' 0 energy conservation implies σ = 3(1+w) ' 3 and so ρ a3 is a constant. This

is appropriate for nonrelativistic matter for which the energy density is dominated by

the particle rest-masses, ρ ' nm, because in this case energy conservation is equivalent

to conservation of particle number, which (1.19) states implies n ∝ a−3.

Finally, whenever the total energy density is dominated by non-relativistic matter

we know w = 0 also implies α = 2/σ = 2/3 and so if κ = 0 then the universal scale

factor expands like a ∝ t2/3.

Radiation

Thermal equilibrium dictates that a gas of relativistic particles (like photons) must

have an energy density and pressure given by

ρ = aB T
4 and p =

1

3
aB T

4 , (1.21)

where aB = π2/15 = 0.6580 is the Stefan-Boltzmann constant (in units where kB =

c = ~ = 1) and T is the temperature. Together, these ensure that ρ and p satisfy the

equation of state

p =
1

3
ρ and so w =

1

3
. (1.22)

Eq. (1.22) also applies to any other particle whose temperature dominates its rest mass,

and so in particular applies to neutrinos for most of the Universe’s history.

5If their number happens not to be both conserved and constrained to be nonzero, then once

the temperature becomes low enough (T <∼ m) for nonrelativistic kinematics to apply their density

becomes quite small if they remain in thermal equilibrium. This is due to the Boltzmann suppression,

n ∝ e−m/T , that arises because at these temperatures the annihilation of particles and antiparticles

is not compensated by their pair-production, due to there being insufficient thermal energy.
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Since w = 1/3 it follows that σ = 3(1 + w) = 4 and so ρ ∝ a−4. This has a

simple physical interpretation for a gas of noninteracting photons, since for these the

total number of photons is fixed and so nγ ∝ a−3. But each photon energy is inversely

proportional to its wavelength and so also redshifts like 1/a as the universe expands,

leading to ργ ∝ a−4.

Whenever radiation dominates the total energy density then w = 1/3 implies

α = 2/σ = 1/2, and so if κ = 0 then a(t) ∝ t1/2.

The vacuum

If the vacuum is Lorentz invariant, as the success of special relativity seems to indicate,

then its stress energy must satisfy Tµν ∝ gµν . This implies the vacuum pressure must

satisfy the only possible Lorentz-invariant equation of state:

p = −ρ and so w = −1 . (1.23)

Because w = −1 we have σ = 3(1+w) = 0 and so energy conservation implies that ρ

is a constant, independent of a or t. This kind of constant energy density is often called,

for historical reasons, a cosmological constant. Although counter-intuitive, constant

energy density can be consistent with energy conservation in an expanding Universe.

This is because (1.12) implies the total energy satisfies d(ρ a3)/dt = −p d(a3)/dt. This

shows that the equation of state (1.23) ensures the pressure does precisely the amount

of work required to produce the change in total energy required by having constant

energy density.

When the vacuum dominates the energy density then α = 2/σ →∞, which shows

that the power-law solutions, a ∝ tα, are not appropriate. Returning directly to the

Friedmann equation, eq. (1.11), shows (when κ = 0) that H = ȧ/a is constant and so

the solutions are exponentials: a ∝ exp[±H(t− t0)]. Notice that (1.23) implies ρ+ 3p

is negative if ρ is positive. This furnishes an explicit example of an equation of state

for which the universal acceleration, ä/a = −4
3
πG(ρ+ 3p), can be positive.

1.1.4 Universal energy content

At present there is direct observational evidence that the universe contains at least 4

independent types of matter, whose properties are now briefly summarized.
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Radiation

The universe is known to be awash with photons, and is also believed contain similar

numbers of neutrinos (that until very recently6 could also be considered to be radiation).

Cosmic Photons:

The most numerous type of photons found at present in the Universe are the photons

in the cosmic microwave background (CMB). These are distributed thermally in energy

with a temperature that is measured today to be Tγ0 = 2.725 K. The present number

density of these CMB photons is determined by their temperature to be

nγ0 = 4.11× 108 m−3 , (1.24)

which turns out to be much higher than the number density of ordinary atoms. Their

present energy density (also determined by their temperature) is

ργ0 = 0.261 MeV m−3 or Ωγ0 = 5.0× 10−5 , (1.25)

where Ωγ0 := ργ0/ρc0 defines the fraction of the total energy density (also the ‘critical’

density, ρc0 ' 5200 MeV −3 ' 10−29 g cm−3) currently residing in CMB photons.

Relict Neutrinos:

It is believed on theoretical grounds that there are also as many cosmic relict neutrinos

as there are CMB photons running around the universe, although these neutrinos have

never been detected. They are expected to have been relativistic until relatively recently

in cosmic history, and to be thermally distributed. The neutrinos are expected to have

a slightly lower temperature, Tν0 = 1.9 K, and are fermions and so have a slightly

different energy-density/temperature relation than do neutrinos.

Their contribution to the present-day cosmological energy budget is not negligible,

and if they were massless would be predicted to be

ρν0 = 0.18 MeV m−3 or Ων0 = 3.4× 10−5 , (1.26)

leading to a total radiation density, ΩR0 = Ωγ0 + Ων0, of size

ρR0 = 0.44 MeV m−3 or Ωr0 = 8.4× 10−5 . (1.27)

6Although neutrino masses play an important role in some things (like the formation of galaxies

and other structure), I lump them here with radiation because for most of what follows the fact that

they very recently likely became nonrelativistic does not matter.
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Baryons

The main constituents of matter we see around us are atoms, made up of protons,

neutrons and electrons, and these are predominantly non-relativistic at the present

epoch. Furthermore the total abundance of electrons is very likely precisely equal to

that of protons in order to ensure that the universe carries no net charge.

Since protons and neutrons are about 1840 times more massive than electrons, the

energy density in ordinary non-relativistic particles is likely to be well approximated

by the total energy in protons and neutrons: the total energy in baryons. It turns out

it is possible to determine the total number of baryons in the universe (regardless of

whether or not they are presently visible), in several independent ways.

One way to determine the baryon density uses measurements of the properties of

the CMB, whose understanding depends on things like the speed of sound or on reaction

rates – and so also on the density – for the Hydrogen gas from which the CMB photons

last scattered. Another way uses the success of the predictions for the abundances

of light elements as nuclei formed during the very early universe, which depends on

nuclear reaction rates – again proportional to the total nucleon density.

These two kinds of inferences are consistent with each other and indicate the total

energy density in baryons is

ρB0 = 210 MeV m−3 or ΩB0 = 0.04 . (1.28)

For purposes of comparison, this is about ten times larger than the amount of luminous

matter, found using the luminosity density for galaxies, nL = 2 × 108 L� Mpc−3,

together with the best estimates of the average mass-to-luminosity ratio of for galactic

matter: M/L ' 4M�/L�.

It should be emphasized that although there is more energy in baryons than in

CMB photons, the number density of baryons is much smaller, since

nB0 =
210 MeV m−3

940 MeV
= 0.22 m−3 = 5× 10−10 nγ0 . (1.29)

Dark Matter

There several lines of evidence pointing to the large-scale presence of another form

of non-relativistic matter besides baryons, carrying much more energy than do the

baryons. Part of the evidence for this so-called Dark Matter comes from a variety of

independent ways of measuring of the total amount of gravitating mass in galaxies and

in clusters of galaxies. The rotation rates of galaxies indicate that there is considerably
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more gravitating mass present than would be inferred by counting the luminous matter

which can be seen. A similar result holds for the total mass in galaxy clusters, as

estimated from the motions of their constituent galaxies, from the temperature of their

hot inter-galactic gas and from the amounts of gravitational lensing which they produce.

Furthermore, whatever it is this matter should be non-relativistic since it takes part in

the gravitational collapse which gives rise to galaxies and their clusters. (Relativistic

matter tends not to cluster in this way, as we see in later sections.)

All of these estimates appear to be consistent with one another, and with several

independent ways of measuring energy density in cosmology (more about which below).

They indicate a non-relativistic matter density of order

ρDM0 = 1350 MeV m−3 or ΩDM0 = 0.26 . (1.30)

The errors in this inference of the size of ΩDM0 are of order 10%. Provided this has the

same equation of state, p ≈ 0, as have the baryons (as is assumed in the ΛCDM model),

this leads to a total energy density in non-relativistic matter, ΩM0 = ΩB0+ΩDM0, which

is of order

ρM0 = 1600 MeV m−3 or Ωm0 = 0.30 . (1.31)

Dark Energy

Finally, there are also at least two lines of evidence which point to a second form of

unknown matter in the universe, independent of the Dark Matter. One line is based on

the recent observations that the universal expansion is accelerating, and so requires the

universe must now be dominated by a form of matter for which ρ+3p < 0. The second

line of argument is based on the observational evidence about the spatial geometry

of the universe, which favours the universe being spatially flat, κ = 0, coming from

measurements of the angular fluctuations in the temperature of the CMB. These two

lines of evidence are consistent with one another (within sizeable errors) and point to

a Dark Energy density which is of order

ρDE0 = 3600 MeV m−3 or ΩDE0 = 0.70 . (1.32)

The equation of state for the Dark Energy is not known, apart from the remark that

the observations indicate both that at present ρDE0 ∼ 0.7 ρc > 0 and w <∼ −0.7. If w is

constant, it is likely on theoretical grounds that w = −1 and the Dark Energy is simply

the Lorentz-invariant vacuum energy density. Although it is not yet known whether

the vacuum need be Lorentz invariant to the precision required to draw cosmological

conclusions of sufficient accuracy, in the ΛCDM model it is assumed that the Dark

Energy equation of state is w = −1.
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1.1.5 Earlier epochs

Given the present-day cosmic ingredients of the previous section, it is possible to ex-

trapolate their relative abundances into the past in order to estimate what can be

said about earlier cosmic environments. This evolution can be complicated when the

various components of the cosmic fluid significantly interact with one another (such

as for baryons and photons at redshifts larger than about z ' 1100, as we shall see),

but simplifies immensely if the various components of the cosmic fluid do not exchange

stress-energy directly with one another. The ΛCDM model assumes there is no such di-

rect energy exchange between other components and the dark matter and dark energy,

and that no exchange exists between the two dark components.

When the component fluids do not directly exchange energy things simplify because

eq. (1.12) applies separately to each component individually, dictating the dependence

ρi(a) and pi(a) for each of them, as follows:

• Radiation: For photons (and relict neutrinos of sufficiently small mass compared

with temperature) we have w = 1/3 and so ρ(a)/ρ0 = (a0/a)4;

• Non-relativistic Matter: For both ordinary matter (baryons and electrons)

and for the Dark Matter we have w = 0 and so ρ(a)/ρ0 = (a0/a)3;

• Vacuum Energy: Assuming the Dark Energy has the equation of state w = −1

we have ρ(a) = ρ0 for all a.

This implies the total energy density and pressure have the form

ρ(a) = ρDE0 + ρM0

(a0

a

)3

+ ρR0

(a0

a

)4

p(a) = −ρDE0 +
1

3
ρR0

(a0

a

)4

, (1.33)

showing how the relative contribution of each component within the total cosmic fluid

changes as it responds differently to the expansion of the universe (see Fig. 1).

As the universe is run backwards to smaller sizes it is clear that the Dark Energy

becomes less and less important, while relativistic matter becomes more and more

important. Although the Dark Energy is now the dominant contribution to ρ and

non-relativistic matter is the next most abundant, when extrapolated backwards they

switch roles, so ρM(a) > ρDE(a), relatively recently, at a redshift

1 + z =
a0

a
>

(
ΩDE0

ΩM0

)1/3

'
(

0.7

0.3

)1/3

' 1.3 . (1.34)
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Figure 1. The relative abundance (in the energy density) of radiation, nonrelativistic matter

and vacuum energy, vs the size of the universe a/a0 = (1+z)−1. The figure assumes negligible

direct energy transfer between these fluids, and shows how this implies each type of fluid

dominates during particular epochs. The transition from radiation to matter domination (at

redshift zeq ' 3600) plays an important role in the development of structure in the Universe.

In the absence of Dark Matter the energy density in baryons alone would become larger

than the Dark Energy density at a slightly earlier epoch

1 + z >

(
ΩDE0

ΩB0

)1/3

'
(

0.7

0.04

)1/3

' 2.6 . (1.35)

For times earlier than this the dominant component of the energy density is due

to non-relativistic matter, and this remains true back until the epoch when the energy

density in radiation became comparable with that in non-relativistic matter. Since

ρR ∝ a−4 and ρM ∝ a−3 radiation-matter equality occurs when z = zeq with

1 + zeq =
ΩM0

ΩR0

' 0.3

8.4× 10−5
' 3600 . (1.36)
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This crossover would have occurred much later in the absence of Dark Matter, since

the radiation energy density equals the energy density in baryons when

1 + z =
ΩB0

ΩR0

' 0.04

8.4× 10−5
' 480 . (1.37)

Knowing how ρ depends on a immediately gives, with the Friedmann equation, H

as a function of a

H(a) = H0

[
ΩDE0 + Ωκ0

(a0

a

)2

+ ΩM0

(a0

a

)3

+ ΩR0

(a0

a

)4]1/2

, (1.38)

where we define (as before) Ωf = ρf/ρc for f = radiation(R), matter (M), vacuum (DE)

with the critical density defined by ρc := 3H2M2
p and the subscript ‘0’ denoting the

present epoch.

Eq. (1.38) also defines the curvature contribution to H as

Ωκ := − κ

(Ha)2
, (1.39)

which observations of the CMB (that tell us the Universe is consistent with being

spatially flat) tell us is at most of order 10% because the best present-day information

indicates that Ω0 = ΩDE0 + Ωm0 + Ωr0 = 1, which is consistent with κ = 0. Because

Ωκ ∝ (a0/a)2 it falls more slowly with increasing a than does either matter or radiation.

Consequently, given its relatively small size today, Ωκ contributes negligibly in the

remote path and it is a good approximation to take κ = 0 when discussing the very

early Universe.

In principle (1.38) can be inserted into the Friedmann equation and integrated to

obtain a(t). Although in general this dependence must be obtained numerically, many

of its features follow on simple analytic grounds because for most epochs there is only

a single component of the cosmic fluid which is dominating the total energy density.

We expect, then, that for redshifts larger than several thousand a(t) ∝ t1/2 should be a

good approximation, as appropriate for the expansion in a universe which is filled purely

by radiation. Once a/a0 rises to above 1/3600 there should be a brief transition to the

time dependence which describes the universal expansion in a universe dominated by

non-relativistic matter and so a ∝ t2/3. This should apply right up to the very recent

past, when a/a0 is around 0.8, after which there is a transition to vacuum-energy

domination, during which the universal expansion accelerates to become exponential

with t. In all likelihood we are at present still living in the transition period from

matter to vacuum-energy domination.
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1.1.6 Thermal evolution

The Hot Big Bang theory of cosmology starts with the idea that the Universe was once

small and hot enough that it contained just a soup of elementary particles, in order

to see if this leads to a later universe that we recognize in cosmological observations.

This picture turns out to describe well many of the features we see around us, which

are otherwise harder to understand.

This type of hot fluid cools as the Universe expands, leading to several types of

characteristic events whose late-time signatures provide evidence for the validity of

the Hot Big Bang picture. The first type of characteristic event is the departure from

equilibrium that every species of particle always experiences eventually once its particle

density becomes too low for particles to find one another frequently enough to maintain

equilibrium.

The second type of characteristic event is the formation of bound states. At finite

temperature the net abundance of bound states (like atoms or nuclei, say) is fixed

by detailed balance: the competition between reactions (like e−p → Hγ) that form

the bound states (in this case Hydrogen) and the inverse reactions (like Hγ → e−p)

that dissociate them. Once the temperature falls below the binding energy of a bound

state the typical collision energy falls below the threshold required for dissociation and

so the abundance of the bound state grows until the constituents eventually become

sufficiently rare that the formation reactions also effectively turn off the production

processes. Once this happens the bound-state abundance freezes and for the purposes

of later cosmology these bound states can be regarded as being part of the inventory

of ‘elementary’ particles during later epochs.

There is concrete evidence that the formation of bound states took place at least

twice in the early Universe. The earliest case happened during the epoch of primordial

nucleosynthesis, at redshift z ' 1010, when temperatures were in the MeV regime and

protons and neutrons got cooked into light nuclei. The evidence that this occurred

comes from the agreement between the primordial abundances of light nuclear isotopes

with the results of precision calculations of their formation rates. Because the total

formation rate is proportional to the density of protons and neutrons at this time, the

successful agreement between theory and observations also tells us the total density of

baryons throughout the Universe at this time.

The second important epoch for forming bound states occurred at the epoch of

‘recombination’, at redshifts around z ' 1100, when electrons and nuclei combined

to form electrically neutral atoms (like H or He). The evidence for this epoch comes
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from the existence and properties of the CMB: the conversion of charged electrons

and protons into neutral atoms made the cosmic fluid become transparent to light,

as the photons present at that time decoupled from the electron-baryon fluid. These

photons continue to rattle around the Universe after this epoch and have been observed.

Their distribution has a beautiful thermal form as a function of the present-day photon

angular frequency, ω0, as shown in Fig. 2. The temperature of this distribution has

been measured as a function of direction in the sky, Tγ(θ, φ), and it is the angular

average of this measured temperature,

Tγ0 = 〈Tγ〉 =
1

4π

∫
Tγ(θ, φ) sin θ dθ dφ = 2.2725 K , (1.40)

which we use above as the present temperature of the relic photons.

Figure 2. The FIRAS measurement of the thermal distribution of the CMB photons. The

experimental points lie on the theoretical curve, with errors which are smaller than the width

of the curve.

The starting point for making such a thermal description precise is a summary of

the various types of particles that are believed to be ‘elementary’ at the temperatures

of interest. The highest temperature for which there is direct observational evidence

the universe attained in the past is T ∼ 1010 K, which corresponds to thermal energies

of order 1 MeV. The elementary particles which might be expected to be found within

a soup having this temperature are the following.
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• Photons (γ): are bosons and have no electric charge or mass, and can be singly

emitted and absorbed by any electrically-charged particles.

• Electrons and Positrons (e±): are fermions with charge ±e and masses equal

numerically to me = 0.511 MeV. Because the positron, e+, is the antiparticle for

the electron, e−, (and vice versa), these particles can completely annihilate into

photons through the reaction

e+ + e− ↔ 2γ , (1.41)

and do so once the temperature falls below the electron mass.

• Protons (p): are fermions with charge +e and mass mp = 938 MeV. Unlike all

of the other particles described here, the proton and neutron can take part in the

strong interactions, for example experiencing reactions like

p+ n↔ D + γ , (1.42)

in which a proton and neutron combine to produce a deuterium nucleus. The

photon which appears in this expression simply carries off any excess energy

which is released by the reaction.

• Neutrons (n): are electrically neutral fermions with mass mn = 940 MeV.

Like protons, neutrons participate in the strong interactions. Isolated neutrons

are unstable, and left to themselves decay through the weak interactions into a

proton, an electron and an electron-antineutrino:

n→ p+ e− + νe . (1.43)

• Neutrinos and Anti-neutrinos (νe, νe, νµ, νµ, ντ , ντ): are fermions that are

electrically neutral, and have been found to have nonzero masses whose precise

values are not known, but which are known to be smaller than 1 eV.

• Gravitons (G): are electrically neutral bosons that mediate the gravitational

force in the same way that photons do for the electromagnetic force. Gravi-

tons only interact with other particles with gravitational strength, which is much

weaker that the strength of the other interactions. As a result they will turn out

never to be in thermal equilibrium for any of the temperatures to which we have

observational access in cosmology.
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To these must be added whatever makes up the Dark Matter, provided temperatures

and interactions are such that the Dark Matter can be regarded to be in thermal

equilibrium.

How would the temperature of a bath of these particles evolve on thermodynamic

grounds as the universe expands? The first step asks how the temperature is related

to a (and so also t), in order to quantify the rate with which a hot bath cools due to

the universal expansion.

Relativistic Particles

The energy density and pressure for a gas of relativistic particles (like photons) when

in thermal equilibrium at temperature TR are given by

ρR = aB T
4
R and pR =

1

3
aB T

4
R , (1.44)

where aB is g/2 times the Stefan-Boltzmann constant and g counts the number of

internal (spin) states of the particles of interest (and so g = 2 for a gas of photons).

Combining this with energy conservation, which says ρR ∝ (a0/a)4, shows that the

product aT is constant, and so

TR(a) = TR0

(a0

a

)
= TR0(1 + z) . (1.45)

This is equivalent to the statement that the expansion is adiabatic, since the entropy

per unit volume of a relativistic gas is sR ∝ T 3
R, and so the total entropy in this gas is

SR ∝ sR a
3 ∝ (TR a)3 = constant . (1.46)

Although the relation T ∝ a−1 is derived above assuming thermal equilibrium,

it can continue to hold (for relativistic particles) once the particles become insuffi-

ciently dense to scatter frequently enough to maintain equilibrium. This is because the

thermal distribution functions for relativistic particles are functions of the ratio of par-

ticle energy divided by temperature: ε/T . Because relativistic particles have energies

ε(p) = |p| = |k|/a their energies redshift ε ∝ a−1 with the universal expansion. This

ensures that the distributions remain in the thermal form for all t, provided that their

temperature is also regarded as falling with T ∝ a−1 (so that ε/T is time-independent).

For this reason it makes sense to continue to regard the CMB photon temperature to

be falling with TR ∝ a−1 even though photons stopped interacting frequently enough

to remain in equilibrium once protons and electrons combined into electrically neutral

atoms around redshift z ' 1100.
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Nonrelativistic Particles

As mentioned earlier, an ideal gas of non-relativistic particles in thermal equilibrium

has a pressure and energy density given instead by

pM = nTM and ρM = nm+
nTM
γ − 1

, (1.47)

where n is the number density of particles, m is the particle’s rest mass and γ = cp/cv

is its ratio of specific heats, with γ = 5/3 for a gas of monatomic atoms.

In order to repeat the previous arguments using energy conservation to infer how

TM evolves with a we must first determine what n depends on. If the total number of

particles is conserved, so
d

dt

[
n a3

]
= 0 , (1.48)

then consistency of n ∝ a−3 with energy conservation, eq. (1.12), implies TM should

satisfy
ṪM
TM

+ 3(γ − 1)
ȧ

a
= 0 , (1.49)

and so

TM = TM0

(a0

a

)3(γ−1)

= TM0(1 + z)3(γ−1) . (1.50)

For example, for a monatomic gas with γ = 5/3 this implies TM ∝ (1 + z)2 ∝ a−2, as

also would be expected for an adiabatic expansion given that the entropy density for

such a fluid varies with TM like sM ∝ (mTM)3/2.

When a nonrelativistic species of particle falls out of equilibrium its energy (because

it is nonrelativistic) is dominated by its rest-mass: ε(p) ' m. Because of this ε does

not redshift and so the distribution of particles remains frozen at the fixed temperature,

Tf , where equilibrium first broke down.

Multi-component fluids

The previous examples assume negligible energy exchange between these different com-

ponents, which in particular also precludes them being in thermal equilibrium with

one another (allowing their respective temperatures free to evolve independently of

one another). But what happens when several components of the fluid are in thermal

equilibrium with one another? This situation actually happens for z > 1100 when

non-relativistic protons and neutrons (or nuclei) are in equilibrium with relativistic

photons, electrons and neutrinos.

To see how this works, we now repeat the previous arguments for a fluid which con-

sists of both relativistic and non-relativistic components, coexisting in mutual thermal
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equilibrium at a common temperature, T . In this case the energy density and pressure

are given by

p = nT +
1

3
aB T

4 and ρ = nm+
nT

γ − 1
+ aB T

4 . (1.51)

Inserting this into the energy conservation equation, as above, leads to the result

Ṫ

T
+

[
1 + σ

σ + 1
3

(γ − 1)−1

]
ȧ

a
= 0 , (1.52)

where

σ ≡ 4aB T
3

3n
= 74.0

[
(T/deg)3

n/cm−3

]
, (1.53)

is the relativistic entropy per non-relativistic gas particle. For example, if the rel-

ativistic gas consists of photons, then the number of photons per unit volume is

nγ = [30 ζ(3)/π4]aBT
3 = 3.7 aBT

3, and so σ = 0.37(nγ/n).

Eq. (1.52) shows how T varies with a, and reduces to the pure radiation result,

T a = constant, when σ � 1 and to the non-relativistic matter result, T a3(γ−1) =

constant, when σ � 1. In general, however, this equation has more complicated

solutions because σ need not be a constant. Given that particle conservation implies

n ∝ a−3, we see that the time-dependence of σ is given by σ ∝ (T a)3.

We are led to the following limiting behaviour. If, initially, σ = σ0 � 1 then at

early times T ∝ a−1 and so σ remains approximately constant (and large). For such a

gas the common temperature of the relativistic and non-relativistic fluids continues to

fall like T ∝ a−1. In this case the high-entropy relativistic fluid controls the temperature

evolution and drags the non-relativistic temperature along with it. Interestingly, it can

do so even if ρM ≈ nm is larger than ρR = aB T
4, as can easily happen when m� T .

In practice this happens until the two fluid components fall out of equilibrium with one

another, after which their two temperatures continue to evolve separately according to

the expressions given previously.

On the other hand if σ = σ0 � 1 initially, then T ∝ a−3(γ−1) and so σ ∝ a3(4−3γ).

This falls as a increases provided γ > 4/3, and grows otherwise. For instance, the

particularly interesting case γ = 5/3 implies T ∝ a−2 and so σ ∝ a−3. We see that if γ >

4/3, then an initially small σ gets even smaller still as the universe expands, implying

the temperature of both radiation and matter continues to fall like T ∝ a−3(γ−1). If,

however, 1 < γ < 4/3, an initially small σ can grow even as the temperature falls, until

the fluid eventually crosses over into the relativistic regime for which T ∝ a−1 and σ

stops evolving.
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1.2 An early accelerated epoch

This section now switches from a general description of the ΛCDM model to a discussion

about the peculiar initial conditions on which its success seems to rely. This is followed

by a summary of the elements of some simple single-field inflationary models, and

why their proposal is motivated as explanations of the initial conditions for the later

universe.

1.2.1 Peculiar initial conditions

The ΛCDM model describes well what we see around us, provided that the Universe is

started off with a very specific set of initial conditions. There are several properties of

these initial conditions that seem peculiar, as is now summarized.

Flatness problem

The first problem concerns the observed spatial flatness of the present-day universe,

which is suggested by observations of the temperature fluctuations in the CMB, which

indicate that the quantity κ/a2 of the Friedmann equation, eq. (1.11), is at present

consistent with zero. What is odd about this condition is that this curvature term

tends to grow in relative importance as the Universe expands, and finding it to be

small now means that it must have been extremely small in the remote past.

More quantitatively, it is useful to divide the Friedmann equation by H2(t) to give

1 +
κ

(aH)2
=

8πGρ

3H2
=: Ω(a) , (1.54)

where (as before) the final equality defines Ω(a). The problem arises because the

product aH decreases with time during both matter and radiation domination. For

instance, observations indicate that at present Ω = Ω0 is unity to within about 10%,

and since during the matter-dominated era the product (aH)2 ∝ a−1 it follows that at

the epoch zeq ' 3600 of radiation-matter equality we must have had

Ω(zeq)− 1 =
(

Ω0 − 1
)( a

a0

)
=

Ω0 − 1

1 + zeq

' 0.1

3600
' 2.8× 10−5 . (1.55)

So Ω−1 had to be smaller than a few tens of a millionth at the time of radiation-matter

equality in order to be of order 10% now.

And it only gets worse the further back one goes, provided the extrapolation back

occurs within a radiation- or matter-dominated era (as seems to be true at least as

far back as the epoch of nucleosynthesis). Since during radiation-domination we have
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(aH)2 ∝ a−2 and the redshift of nucleosynthesis is zBBN ∼ 1010 it follows that at this

epoch one must require

Ω(zBBN)− 1 =
[
Ω(zeq)− 1

]( 1 + zeq

1 + zBBN

)2

=
0.1

3600

(
3600

1010

)2

≈ 3.6× 10−18 , (1.56)

requiring Ω to be unity with an accuracy of roughly a part in 1018. The discomfort

of having the success of a theory hinge so sensitively on the precise value of an initial

condition in this way is known as the Big Bang’s Flatness Problem.

Horizon problem

Perhaps a more serious question asks why the initial universe can be so very homoge-

neous. In particular, the temperature fluctuations of the CMB only arise at the level

of 1 part in 105, and the question is how this temperature can be so incredibly uniform

across the sky.

Why is this regarded as a problem? It is not uncommon for materials on earth to

have a uniform temperature, and this is usually understood as a consequence of thermal

equilibrium because an initially inhomogeneous temperature distribution equilibrates

by having heat flow between the hot and cold areas, until everything is eventually all

at the same temperature.

Figure 3. A conformal diagram illustrating how there is inadequate time in a radiation-

dominated universe for there to be a causal explanation for the correlation of temperature at

different points of the sky in the CMB. (Figure taken from [6].)

The same argument is harder to make in cosmology because in the Hot Big Bang

model the Universe generically expands so quickly that there has not been enough

– 22 –



time for light to travel across the entire sky to bring everyone the news as to what

the common temperature is supposed to be. This is easiest to see using conformal

coordinates, as in (1.8), since in these coordinates it is simple to identify which regions

can be connected by light signals. In particular, radially directed light rays travel along

lines d` = ±dτ , which can be drawn as straight lines of slope ±1 in the τ − ` plane, as

in Figure 3. The problem is that a(τ) reaches zero in a finite conformal time (which

we can conventionally choose to happen at τ = 0), since a(τ) ∝ τ during radiation

domination and a(τ) ∝ τ 2 during matter domination. Redshift zrec ' 1100 (the epoch

of recombination, at which the CMB photons last sampled the temperature of the

Hydrogen gas with which they interact) is simply too early for different directions in

the sky to have been causally connected in the entire history of the Universe up to that

point.

To pin this down quantitatively, let us assume that the Universe is radiation-

dominated for all points earlier than the epoch of radiation-matter equality, teq, so the

complete evolution of a(t) until recombination is

a(t) '

{
aeq(t/teq)1/2 for 0 < t < teq

aeq(t/teq)2/3 for teq < t < trec .
(1.57)

(The real evolution does not have a discontinuous derivative at t = teq, but this inaccu-

racy is not important for the argument that follows.) The maximum proper distance,

measured at the time of recombination, that a light signal could have travelled by the

time of recombination, trec, then is

Drec = arec

[∫ teq

0

dt̂

a(t̂)
+

∫ trec

teq

dt̂

a(t̂)

]
=
arecteq

aeq

[
3

(
trec

teq

)1/3

− 1

]

=
2

H+
eq

(
arec

aeq

)3/2
[

1− 1

3

(
aeq

arec

)1/2
]
' 1.6

Hrec

, (1.58)

where H+
eq = 2/(3teq) denotes the limit of the Hubble scale as t → teq on the matter-

dominated side. The approximate equality in this expression uses H ∝ a−3/2 during

matter domination as well as using the redshifts zrec ' 1100 and zeq ' 3600 (as would

be true in the ΛCDM model) to obtain aeq/arec ' 1100/3600 ' 0.31.

To evaluate this numerically we use the present-day value for the Hubble constant,

H0 ' 70 km/sec/Mpc — or (keeping in mind our units for which c = 1), H−1
0 ' 13

Gyr ' 4 Gpc. This then gives H−1
rec ' H−1

0 (arec/a0)3/2 ' 3× 10−5H−1
0 ' 0.1 Mpc, if we

use a0/arec = 1 + zrec ' 1100, and so Drec ' 0.2 Mpc.
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Now CMB photons arriving to us from the surface of last scattering left this surface

at a distance from us that is now of order

R0 = a0

∫ t0

trec

dt̂

a(t̂)
= 3t0 − 3t

2/3
0 t1/3rec =

2

H0

[
1−

(
arec

a0

)1/2
]
, (1.59)

again using a ∝ t2/3 and H ∝ a−3/2, and so R0 ' 2/H0 ' 8 Gpc. So the angle

subtended by Drec placed at this distance away (in a spatially-flat geometry) is really

θ ' Drec/Rrec where Rrec = (arec/a0)R0 ' 7 Mpc is its distance at the time of last

scattering, leading to θ ' 0.2/7 ' 1o. Any two directions in the sky separated by more

than this angle (about twice the angular size of the Moon, seen from Earth) are so far

apart that light had not yet had time to reach one from the other since the universe’s

beginning.

How can all the directions we see have known they were all to equilibrate to the

same temperature? It is very much as if we were to find a very uniform temperature

distribution, immediately after the explosion of a very powerful bomb.

Defect problem

Historically, a third problem — called the ‘Defect’ (or ‘Monopole’) Problem is also used

to motivate changing the extrapolation of radiation domination into the remote past.

A defect problem arises if the physics of the much higher energy scales relevant to the

extrapolation involves the production of topological defects, like domain walls, cosmic

strings or magnetic monopoles. Such defects are often found in Grand Unified theories;

models proposed to unify the strong and electroweak interactions as energies of order

1015 GeV.

These kinds of topological defects can be fatal to the success of late-time cosmology,

depending on how many of them survive down to the present epoch. For instance if

the defects are monopoles, then they typically are extremely massive and so behave

like non-relativistic matter. This can cause problems if they are too abundant because

they can preclude the existence of a radiation dominated epoch, because their energy

density falls more slowly than does radiation as the universe expands.

Defects are typically produced with an abundance of one per Hubble volume,

nd(af ) ∼ H3
f , where Hf = H(af ) is the Hubble scale at their epoch of formation,

at which time a = af . Once produced, their number is conserved, so their density at

later times falls like nd(a) = H3
f (af/a)3. Consequently, at present the number surviving

within a Hubble volume is nd(a0)H−3
0 = (Hf af/H0 a0)3.

Because the product aH is a falling function of time, the present-day abundance of

defects can easily be so numerous that they come to dominate the universe well before
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the nucleosynthesis epoch.7 This could cause the universe to expand (and so cool) too

quickly as nuclei were forming, and so give the wrong abundances of light nuclei. Even

if not sufficiently abundant during nucleosynthesis, the energy density in relict defects

can be inconsistent with measures of the current energy density.

This is clearly more of a hypothetical problem than are the other two, since whether

there is a problem depends on whether the particular theory for the high-energy physics

of the very early universe produces these types of defects or not. It can be fairly pressing

in Grand Unified models since in these models the production of magnetic monopoles

can be fairly generic.

1.2.2 Acceleration to the rescue

The key observation when trying to understand the above initial conditions is that they

only seem unreasonable because they are based on extrapolating into the past assuming

the Universe to be radiation (or matter) dominated (as would naturally be true if the

ΛCDM model were the whole story). This section argues that these initial conditions

can seem more reasonable if a different type of extrapolation is used; in particular if

there were an earlier epoch during which the Universal expansion were to accelerate:

ä > 0.

Why should acceleration help? The key point is that what made the above initial

conditions a problem was the fact that the product aH is a falling function as a in-

creases, for both matter and radiation domination. But if ä > 0 then ȧ = aH increases

as a increases, and this can help alleviate the problems.

Why does it matter whether aH increases or decreases? This is perhaps easiest to

see for the flatness problem, since this problem relies on the evolution: Ω−1 ∝ (aH)−2.

This is a growing function only if aH decreases with time, and so Ω − 1 need not be

unusually small in the past if there is a sufficiently long epoch before nucleosynthesis

during which aH were to grow.

How long is long enough? To pin this down suppose there were an earlier epoch

during which the Universe were to expand in the same way as during Dark Energy

domination, a(t) ∝ eHt, for constant H. Then aH = a0H eHt grows exponentially with

time and so even if Ht were of order 100 or less it would be possible to explain why

Ω− 1 could be as small as 10−18 or smaller.

7Whether they do also depends on their dimension, with magnetic monopoles tending to be more

dangerous in this regard than are cosmic strings, say.
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Having aH grow also allows a resolution to the horizon problem. One way to see

this is to notice that a(t) ∝ eHt implies τ ∝ e−Ht and so

a(τ) = − 1

Hτ
, (1.60)

with 0 < a < ∞ corresponding to the range −∞ < τ < 0. Exponentially accelerated

expansion allows τ to be extrapolated into negative values, and so allows sufficient time

for the two causally disconnected regions of the conformal diagram of Figure 3 to have

at one point been in causal contact.

Figure 4. A sketch of the relative growth of physical scales, L(t), (in black) and the Hubble

length, H−1, (in blue) during and after inflation. Horizon exit happens during inflation where

the blue and black curves first cross, and this is eventually followed by horizon re-entry where

the curves cross again during the later Hot Big Bang era.

Another way to visualize this is to plot physical distance λ(t) ∝ a(t) and the

Hubble radius, H−1, against t, as in Figure 4. During radiation or matter domination

we have H−1 ∝ t while a(t) ∝ tp with 0 < p < 1, and so H−1 grows more quickly with

t than do physical length scales λ(t). The causality problem arises because physical

quantities tend to freeze when their corresponding length scales satisfy λ(t) > H−1,

thereby precluding physical processes to act over these scales to explain things like the

uniform temperature of the CMB. During radiation or matter domination systems of
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any given size eventually get caught by the growth of H−1 and so ‘come inside the

Hubble scale’ as the Universe expands. Systems iinvolving larger λ(t) do so later than

those with smaller λ and the largest sizes visible have only recently done so and so

cannot have been evolving at all over the history of a radiation (or matter) dominated

universe.

The freezing of super-Hubble scales can be seen, for example, in the evolution of a

massless scalar field in an expanding universe, since the field equation �φ = 0 becomes

in FRW coordinates

φ̈k + 3H φ̇k +

(
k

a

)2

φk = 0 , (1.61)

where we Fourier expand the field φ(x) =
∫

d3k φk exp [ik · x] using co-moving coor-

dinates, x. For modes satisfying 2π/λ = p = k/a � H the field equation implies

φ̇k ∝ a−3 and so φk = C0 + C1

∫
dt/a3 is the sum of a constant plus a decaying mode.

Things are very different during exponential expansion, however, since λ(t) ∝
a(t) ∝ eHt grows exponentially with t while H−1 remains constant. This means that

modes that are initially smaller than the Hubble length get stretched to become larger

than the Hubble length, with the transition for a specific mode of length λ(t) occurring

at the epoch of ‘Hubble exit’, t = the, defined by 2π/λ(the) = phe = k/a(the) = H.

It is because the criterion for Hubble exit and entry is k = aH that the growth or

shrinkage of aH is relevant to the horizon problem.

How much expansion is required to solve the horizon problem? Choosing a mode

φk that is only now crossing the Hubble scale tells us that k = a0H0. This same

mode would have crossed the horizon during an exponentially expanding epoch when

k = aheHI, where HI is the constant Hubble scale during exponential expansion. So

clearly a0H0 = aheHI where the is the time of exit for this particular mode. To determine

how much exponential expansion is required we solve the following equation for Ne :=

ln(aend/ahe), where aend is the scale factor at the end of the exponentially expanding

epoch.

1 =
aheHI

a0H0

=

(
aheHI

aendHI

)(
aendHI

aeqHeq

)(
aeqHeq

a0H0

)
= e−Ne

(
aeq

aend

)(
a0

aeq

)1/2

, (1.62)

which assumes (for the purposes of argument) that the Universe is radiation dominated

right from tend until radiation-matter equality, and uses aH ∝ a−1 during radiation

domination and aH ∝ a−1/2 during matter domination. Ne = HI(tend − the) is called

the number of e-foldings of exponential expansion and is proportional to how long

exponential expansion lasts
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Using, as above, (aeqHeq)/(a0H0) = (a0/aeq)1/2 ' 60, and (aeqHeq)/(aendHend) =

aend/aeq = Teq/TM with Teq ∼ 3 eV, and assuming the energy density of the ex-

ponentially expanding phase is transferred perfectly efficiently to produce a photon

temperature TM then leads to the estimate

Ne ∼ ln
[
(3× 1023)× 60

]
+ ln

(
TM

1015 GeV

)
≈ 58 + ln

(
TM

1015 GeV

)
. (1.63)

Roughly 60 e-foldings of exponential expansion can provide a framework for ex-

plaining how causal physics might provide the observed correlations that are observed

in the CMB over the largest scales, even if the energy densities involved are as high as

1015 GeV. We shall see below that life is even better than this, because in addition to

providing a framework in which a causal understanding of correlations could be solved,

inflation itself can provide the mechanism for explaining these correlations (given an

inflationary scale of the right size).

1.2.3 Inflation or a bounce?

An early epoch of near-exponential accelerated expansion has come to be known as an

‘inflationary’ early Universe. Acceleration within this framework speeds up an initially

expanding Universe to a higher expansion rate. However, an attentive reader may notice

that although acceleration is key to helping with ΛCDM’s initial condition issues, there

is no a priori reason why the acceleration must occur in an initially expanding universe,

as opposed (say) to one that is initially contracting. Models in which one tries to solve

the problems of ΛCDM by having an initially contracting universe accelerate to become

an expanding one are called ‘bouncing’ cosmologies.

Since it is really the acceleration that is important, bouncing models should in

principle be on a similar footing to inflationary ones. In what follows only inflationary

models are considered, for the following reasons:

Validity of the semiclassical methods

Predictions in essentially all cosmological models are extracted using semiclassical

methods: one typically writes down the action for some system and then explores

its consequences by solving its classical equations of motion. So a key question for

all such models is the identification of the small parameter (or parameters) that sup-

presses quantum effects and so controls the underlying semiclassical approximation. In

the absence of such a control parameter classical predictions need not capture what the

system really does. Such a breakdown of the semiclassical approximation really means
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that the ‘theory error’ in the model’s predictions could be arbitrarily large, making

comparisons to observations essentially meaningless.

A reason sometimes given for not pinning down the size of quantum corrections

when doing cosmology is that gravity plays a central role, and we do not yet know the

ultimate theory of quantum gravity. Implicit in this argument is the belief that the size

of quantum corrections is incalculable without such an ultimate theory, such as due to

the well-known divergences in quantum predictions due to the non-renormalizability

of General Relativity. But experience with non-renormalizable interactions elsewhere

in physics tells us that quantum predictions can sometimes be made, provided one

recognizes they involve an implicit low-energy/long-distance expansion relative to the

underlying physical scale set by the dimensionful non-renormalizable couplings. Be-

cause of this the semiclassical expansion parameter in such theories is usually the ratio

between this underlying short-distance scale and the distances of interest in cosmology

(which, happily enough, aims at understanding the largest distances on offer). Effective

field theories provide the general tools for quantifying these low-energy expansions, and

this is why EFT methods are so important for any cosmological studies.

As is argued in more detail in §3, the semiclassical expansion in cosmology is con-

trolled by small quantities like (λMp)
−2 where λ is the smallest length scale associated

with the geometry of interest. In practice it is often λ ∼ H−1 that provides the relevant

scale in cosmology, particularly when all geometrical dimensions are similar in size. So

a rule of thumb generically asks the ratio H2/M2
p to be chosen to be small:

H2

M2
p

∝ ρ

M4
p

� 1 , (1.64)

as a necessary condition8 for quantum cosmological effects to be suppressed.

For inflationary models H is usually at its largest during the inflationary epoch,

with geometrical length scales only increasing thereafter, putting one deeper and deeper

into the semiclassical domain. It is a big plus for these models that they can account

for observations while wholly remaining within the regime set by (1.64), and this is one

of the main reasons why they receive so much attention.

8The semiclassical criterion can be stronger than this, though this can often only be quantified

within the context of a specific proposal for what quantum gravity is at the shortest scales. For

instance, if it is string theory that takes over at the shortest scales then treatment of cosmology using

a field theory – rather than fully within string theory – requires (1.64) be replaced by the stronger

condition H2/M2
s � 1, where Ms � Mp is the string scale, set for example by the masses of the

lightest string excited states.
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For bouncing cosmologies the situation can be more complicated. The smallest

geometrical scale λ usually occurs during the epoch near the bounce, even though H−1

itself usually tends to infinity there. In models where λ becomes comparable to Mp (or

whatever other scale – such as the string scale, Ms �Mp – that governs short-distance

gravity), quantum effects during the bounce need not be negligible and the burden on

proponents is to justify why semiclassical predictions actually capture what happens

during the bounce.

Difficulty of achieving a semiclassically large bounce

Another issue arises even if the scale λ during a bounce does remain much larger than

the more microscopic scales of gravity. In this regime the bounce can be understood

purely within the low-energy effective theory describing the cosmology, for which Gen-

eral Relativity should be the leading approximation. But (when κ = 0) the Friedmann

equation for FRW geometries in General Relativity states that H2 = ρ/3M2
p , and so

ρ must pass through zero at the instant where the contracting geometry transitions

to expansion (since H = ȧ/a vanishes at this point). Furthermore, using (1.11) and

(1.13), it must also be true that

Ḣ =
ä

a
−H2 = − 1

2M2
p

(ρ+ p) > 0 , (1.65)

at this point in order for H to change sign there, which means the dominant contribu-

tions to the cosmic fluid must satisfy ρ+ p < 0 during the bounce.9

Although there are no definitive no-go theorems, it has proven remarkably difficult

to find a convincing physical system that both satisfies the condition ρ + p < 0 and

does not also have other pathologies, such as uncontrolled runaway instabilities. For

instance within the class of multiple scalar field models for which the lagrangian density

is L =
√
−g
[

1
2
Gij(φ) ∂µφ

i ∂µφj + V (φ)
]

we have ρ+ p = Gij(φ) φ̇i φ̇j and so ρ+ p < 0

requires the matrix of functions Gij(φ) to have a negative eigenvalue. But if this is true

then there is always a combination of fields for which the kinetic energy is negative

(what is called a ‘ghost’), and so is unstable towards the development of arbitrarily

rapid motion.

Phenomenological issues

In addition to the above conceptual issues involving the control of predictions, there are

also potential phenomenological issues that bouncing cosmologies must face. Whereas

9This is usually phrased as a violation of the ‘null-energy’ condition, which states that Tµνn
µnν ≥ 0

for all null vectors nµ.
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expanding geometries tend to damp out spatially varying fluctuations – such as when

gradient energies involve factors like (k/a)2 that tend to zero as a(t) grows – the opposite

typically occurs during a contracting epoch for which a(t) shrinks. This implies that

inhomogeneities tend to grow during the pre-bounce contraction, and so a mechanism

must be provided for the emergence into the homogeneous and isotropic later universe

we see around us in observational cosmology.

It is of course important that bouncing cosmologies be investigated, not least in

order to see most fully what might be required to understand the flatness and hori-

zon problems and whether there are alternative observational implications to those of

inflation that might be used to marshal evidence about what actually occurred in the

very early universe. But within the present state of the art inflationary models have

one crucial advantage over bouncing cosmologies: they provide concrete semiclassical

control over the key epoch of acceleration on which the success of the model ultimately

relies. Because of this inflationary models are likely to remain the main paradigm for

studying pre-ΛCDM extrapolations, at least until bouncing cosmologies are developed

to allow similar control over how primordial conditions get propagated to the later

universe through the bounce.

1.2.4 Simple inflationary models

So far so good, but what kind of physics can provide both an early period of accelerated

expansion and a mechanism for ending this expansion to allow for the later emergence

of the successful Hot Big Bang cosmology?

Obtaining the benefits of an exponential expansion requires two things: (i) some

sort of physics that hangs the universe up for a relatively long period with an acceler-

ating equation of state, p < −1
3
ρ < 0; and (ii) some mechanism for ending this epoch

to allow the later appearance of the radiation-dominated epoch within which the usual

Big Bang cosmology starts. Although a number of models exist that can do this, none

yet seems completely compelling. This section describes some of the very simplest such

models.

The central requirement is to have some field temporarily dominate the universe

with potential energy, and for the vast majority of models this new physics comes from

the dynamics of a scalar field, ϕ(x), called the ‘inflaton’. This field can be thought

of as an order parameter characterizing the dynamics of the vacuum at the very high

energies likely to be relevant to inflationary cosmology. Although the field ϕ can in

principle depend on both position and time, inflation turns out rapidly to smooth out

spatial variations, and so it suffices to study ϕ = ϕ(t).
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No way is known to obtain a viable inflationary model simply using the known

particles and interactions, but a minimal model [7] does use the usual scalar Higgs field

already present in the Standard Model as the inflaton, provided it is assumed to have

a nonminimal coupling to gravity of the form δL = −ξ
√
−g (H†H)R, where H is the

usual Higgs doublet and R is the Ricci scalar. Here ξ is a new dimensionless coupling,

whose value turns out must be of order 104 in order to provide a good description of

cosmological observations. Inflation in this case turns out to occur when the Higgs

field takes values out at trans-Planckian values, H†H > M2
p , assuming V remains

approximately proportional to (H†H)2 at such large values.

As argued in [8], although the large values required for both ξ and H†H needn’t

invalidate the validity of the EFT description, they do push the envelope for the bound-

aries of its domain of validity. In particular, semiclassical expansion during inflation

turns out to require the neglect of powers of
√
ξH/Mp, which during inflation turns out

is to be evaluated with H ∼Mp/ξ.

The simplest models instead propose a single new relativistic scalar field, ϕ, and

designs its dynamics through choices made for its potential energy, V (ϕ). Taking

L =
√
−g
[

1

2
∂µϕ∂

µϕ+ V (ϕ)

]
, (1.66)

the inflaton field equation becomes �ϕ = V ′(ϕ), which for homogeneous configurations

ϕ(t) reduces to

ϕ̈+ 3Hϕ̇+ V ′ = 0 , (1.67)

where V ′ = dV/dϕ.

The Einstein field equations are as before, but with new ϕ-dependent contributions

to the energy density and pressure: ρ = ρrad + ρm + ρϕ and p = 1
3
ρrad + pϕ, where

ρϕ =
1

2
ϕ̇2 + V (ϕ) and pϕ =

1

2
ϕ̇2 − V (ϕ) . (1.68)

The Dark Energy of the present-day epoch is imagined to arise by choosing V so that

its minimum satisfies ρDE = V (ϕmin). Inflation is imagined to occur when ϕ evolves

slowly through a region where V (ϕ) � V (ϕmin) is very large, and ends once ϕ rolls

down towards its minimum.

With these choices energy conservation for the ϕ field — ρ̇ϕ + 3(ȧ/a)(ρϕ + pϕ) = 0

follows from the field equation, eq. (1.67). Some couplings must also exist between the

ϕ field and ordinary Standard Model particles in order to provide a channel to transfer

energy from the inflaton to ordinary particles, and so reheat the universe as required for
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the later Hot Big Bang cosmology. But ϕ is not imagined to be in thermal equilibrium

with itself or with the other kinds of matter during inflation or at very late times, and

this can be self-consistent if the coupling to other matter is sufficiently weak and if the

ϕ particles are too heavy to be present once the cosmic fluid cools to the MeV energies

and below (for which we have direct observations).

Slow-Roll Inflation

To achieve an epoch of near-exponential expansion, we seek a solution to the above

classical field equations for ϕ(t) in which the Hubble parameter, H, is approximately

constant. This is ensured if the total energy density is dominated by ρϕ, with ρϕ also

approximately constant. As we have seen, energy conservation implies the pressure

must then satisfy pϕ ≈ −ρϕ. Inspection of eqs. (1.68) shows that both of these con-

ditions are satisfied if the ϕ kinetic energy is negligible compared with its potential

energy:
1

2
ϕ̇2 � V (ϕ) , (1.69)

since then pϕ ' −V (ϕ) ' −ρϕ. So long as V (ϕ) is also much larger than any other

energy densities, it would dominate and H2 ' V/(3M2
p ) would then be approximately

constant.

What properties must V (ϕ) satisfy in order to allow (1.69) to hold for a sufficiently

long time? This requires a long period of time where ϕ moves slowly enough to allow

both the neglect of 1
2
ϕ̇2 relative to V (ϕ) in the Friedmann equation, (1.11), and the

neglect of ϕ̈ in the scalar field equation, (1.67).

The second of these conditions allows eq. (1.67) to be written in the approximate

slow-roll form,

ϕ̇ ≈ −
(
V ′

3H

)
. (1.70)

Using this in (1.69) then shows V must satisfy (V ′)2/(9H2V ) � 1, leading to the

condition that slow-roll inflation requires ϕ must lie in a region for which

ε :=
1

2

(
MpV

′

V

)2

� 1 . (1.71)

Physically, this condition requires H to be approximately constant over any given

Hubble time, inasmuch as 3M2
pH

2 ' V implies 6M2
pHḢ ' V ′ϕ̇ ' −(V ′)2/3H and so

− Ḣ

H2
' (V ′)2

18H4M2
p

'
M2

p (V ′)2

2V 2
= ε� 1 . (1.72)

– 33 –



Self-consistency also demands that if eq. (1.70) is differentiated to compute ϕ̈ it

should be much smaller than 3Hϕ̇. Performing this differentiation and demanding that

ϕ̈ remain small (in absolute value) compared with 3Hϕ̇, then implies |η| � 1 where

η :=
M2

p V
′′

V
, (1.73)

defines the second slow-roll parameter. The slow-roll parameters ε and η are important

because (as we see below) the key predictions of single-field slow-roll inflation for density

fluctuations can be expressed in terms of the three parameters ε, η and the value, HI,

of the Hubble parameter during inflation.

Given an explicit shape for V (ϕ) one can directly predict the amount of inflation

that occurs between the end of inflation and the epoch of horizon exit where the scales

of interest become larger than the Hubble length. This is done by relating the amount

of expansion directly to the distance ϕ traverses in field space between these two epochs.

To this end, rewriting eq. (1.70) in terms of ϕ′ ≡ dϕ/da, leads to

dϕ

da
=
ϕ̇

ȧ
= − V ′

3aH2
= −

M2
p V

′

aV
, (1.74)

which when integrated between horizon exit, ϕhe, and final value, ϕend, gives the amount

of expansion during inflation as aend/ahe = eNe , with

Ne =

∫ aend

ahe

da

a
=

∫ ϕhe

ϕend

dϕ

(
V

M2
p V

′

)
=

1

Mp

∫ ϕhe

ϕend

dϕ√
2ε
. (1.75)

In these expressions ϕend can be defined by the point where the slow-roll parameters are

no longer small, such as where ε ' 1
2
. Then this last equation can be read as defining

ϕend(Ne), as a function of the desired number of e-foldings between the the epoch of

horizon exit and the end of inflation, since this is this quantity constrained to be large

by the horizon and flatness problems.

Notice also that if ε were approximately constant during inflation, then eq. (1.75)

implies that Ne ≈ (ϕhe − ϕend)/(
√

2εMp). In such a case ϕ must traverse a range of

order NeMp

√
2ε between ϕhe and ϕend. This is larger than order Mp provided only that

1� ε >∼ 1/N2
e , indicating why it is often large fields that are of interest for inflation.

It is worth working through what these formulae mean in a few concrete choices

for the shape of the scalar potential.

Example I: Quadratic model

The simplest example of an inflating potential chooses ϕ to be a free massive field, for

which

V =
1

2
m2 ϕ2 , (1.76)
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and so V ′ = m2 ϕ and V ′′ = m2, leading to slow-roll parameters of the form

ε =
1

2

(
2Mp

ϕ

)2

and η =
2M2

p

ϕ2
, (1.77)

and so ε = η in this particular case, and slow roll requires ϕ � Mp. The scale for

inflation in this field range is V = 1
2
m2 ϕ2 and so H2

I ' m2 ϕ2/(6M2
p ). We can ensure

H2
I /M

2
p � 1 even if ϕ � Mp by choosing m/Mp sufficiently small. Observations will

turn out to require ε ∼ η ∼ 0.01 and so the regime of interest is ϕhe ∼ 10Mp, and so

small HI/Mp requires m/Mp � 0.1.

In this regime ϕ (and so also V and H) remains approximately constant despite

there being no stationary point for V at large ϕ because Hubble friction keeps ϕ from

sliding down the potential very quickly. Since ϕ evolves towards smaller values, even-

tually slow roll ends once η and ε become O(1). Choosing ϕend by the condition

ε(ϕend) = η(ϕend) = 1
2

implies ϕend = 2Mp. The number of e-foldings between horizon

exit and ϕend = 2Mp is then given by eq. (1.75), which in this instance becomes

Ne =

∫ ϕhe

2Mp

dϕ

(
ϕ

2M2
p

)
=

(
ϕhe

2Mp

)2

− 1 , (1.78)

and so obtaining Ne ∼ 63 e-foldings (say) requires choosing ϕhe ∼ 16Mp. In particular

εhe := ε(ϕhe) and ηhe := η(ϕhe) can be expressed directly in terms of Ne, leading to

εhe = ηhe =
1

2(Ne + 1)
, (1.79)

which are both of order 10−2 for Ne ' 60.

Example II: pseudo-Goldstone axion

From the point of view of particle physics it is more natural to suppose the inflaton is

a pseudo-Goldstone boson because then its mass is protected by an approximate shift

symmetry. The need for this kind of protection arises because the condition |η| � 1

implies the inflaton mass must be very small compared with the other scales during

inflation, because m2 ∼ |V ′′| ∼ |η V/M2
p | � H2.

If the approximate shift symmetry arises as a phase rotation for some field, and

if the symmetry under continuous shifts is broken down to discrete shifts, then it is

natural to suppose the scalar potential should be trigonometric:

V = V0 + Λ4

[
1− cos

(
ϕ

f

)]
= V0 + 2Λ4 sin2

(
ϕ

2f

)
, (1.80)
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for some scales V0, Λ and f . Here V0 is chosen to agree with ρDE, while the scales Λ and

f are dictated by the requirements of inflation. Because ρDE is so small the parameter

V0 is dropped in what follows.

With this choice V ′ = (Λ4/f) sin(ϕ/f) and V ′′ = (Λ4/f 2) cos(ϕ/f), leading to

slow-roll parameters of the form

ε =
M2

p

8f 2
cot2

(
ϕ

2f

)
and η =

M2
p

2f 2

[
cot2

(
ϕ

2f

)
− 1

]
, (1.81)

and so η = 4ε− (M2
p/2f

2). Notice that in the limit ϕ � f these go over to the m2ϕ2

case examined above, with m ' Λ2/f .

Slow roll in this model typically requires f � Mp. This can be seen directly from

(1.84) for generic ϕ ' f , but also follows when ϕ� f because in this case the potential

is close to quadratic and slow roll requires Mp � ϕ � f . The scale for inflation is

V ' Λ4 and so HI ∼ Λ2/Mp, and so H2
I /M

2
p � 1 provided we take Λ�Mp. Obtaining

ε ∼ η ∼ 0.01 can be arranged by choosing f ∼ 10Mp.

The number of e-foldings between horizon exit and ϕend is again given by eq. (1.75),

so

Ne =
2f

M2
p

∫ ϕhe

ϕend

dϕ tan

(
ϕ

2f

)
=

(
2f

Mp

)2

ln

∣∣∣∣ sin(ϕhe/2f)

sin(ϕend/2f)

∣∣∣∣ , (1.82)

which is only logarithmically sensitive to ϕhe, but which can easily be large due to the

condition f �Mp.

Example III: pseudo-Goldstone dilaton

Another case where the inflaton mass is protected by an approximate shift symmetry

arises when it is a pseudo-Goldstone boson for various combinations of scaling symme-

tries. Because it is a scaling symmetry the same arguments that lead to trigonometric

potentials for the compact phase rotations of an axionic symmetry instead in this case

generically lead to exponential potentials.

In this case the form expected for the scalar potential during the inflationary regime

would be

V = V0 − V1e
−ϕ/f + · · · , (1.83)

for some scales V0, V1 and f . Our interest is in the regime ϕ� f and in this regime V0

dominates, and so is chosen as needed for inflationary cosmology, with H2
I ' V0/(3M

2
p ).

With this choice we have V ′ ' (V1/f) e−ϕ/f and V ′′ ' −(V1/f
2) e−ϕ/f , leading to slow-

roll parameters of the form

ε ' 1

2

(
MpV1

fV0

)2

e−2ϕ/f and η ' −
(
M2

pV1

f 2V0

)
e−ϕ/f , (1.84)
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and so ε = 1
2
(f/Mp)

2η2. Notice that these are generically small, even if V1 ∼ V0,

whenever ϕ � f so there is no need to require f be larger than Mp to ensure a slow

roll.

The number of e-foldings between horizon exit and ϕend is again given by eq. (1.75),

so

Ne =

(
fV0

M2
pV1

)∫ ϕhe

ϕend

dϕ eϕ/f =

(
f 2V0

M2
pV1

)[
eϕhe/f − eϕend/f

]
, (1.85)

which can easily be large so long as ϕhe � f and ϕend/f is order unity. It turns

out that this class of models does a particularly good job of describing primordial

fluctuations, and (as we shall see) the expectation that ε ∼ η2 has potentially interesting

observational consequences.

2 Cosmology: Fluctuations

This section repeats the previous discussion of ΛCDM cosmology and its peculiar ini-

tial conditions, but extends it to the properties of fluctuations about the background

cosmology.

2.1 Structure formation in ΛCDM

Previous sections show that the universe was very homogeneous at the time of photon

last scattering, since the temperature fluctuations observed in the distribution of CMB

photons have an amplitude δT/T ∼ 10−5. On the other hand the universe around us is

full of stars and galaxies and so is far from homogeneous. How did the one arise from

the other?

The basic mechanism for this is based on gravitational instability: the gravitational

force towards an initially over-dense region acts to attract even more material towards

this region, thereby making it even more dense. This process can feed back on itself

until an initially small density perturbation becomes dramatically amplified, such as

into a star. This section describes the physics of this instability, in the very early

universe when the density contrasts are small enough to be analyzed perturbatively in

the fluctuation amplitude. The discussion follows that of ref. [9].

2.1.1 Nonrelativistic Density Perturbations

We start with the discussion of gravitational instability in the non-relativistic grav-

itating limit, both for simplicity and since this limit provides a good description of

the behaviour of density fluctuations in a matter-dominated universe (which is the
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one relevant for almost all of cosmology after radiation-matter decoupling occurs at

zdec = 1100).

The following equations of motion describe the dynamics of a simple non-relativistic

fluid with energy density, ρ, pressure, p, entropy density, s, and local fluid velocity v.

The equations express local conservation laws, and are

∂ρ

∂t
+∇ · (ρv) = 0 (energy conservation)

ρ

[
∂v

∂t
+ (v · ∇)v

]
+∇p+ ρ∇φ = 0 (momentum conservation) (2.1)

∂s

∂t
+∇ · (sv) = 0 (entropy conservation)

∇2φ− 4πGρ = 0 (universal gravitation) ,

as well as the equation of state, p = p(ρ, s). Here φ denotes the local gravitational

potential.

For cosmological applications we expand about a homogeneously and radially ex-

panding background fluid configuration. For these purposes consider a fluid back-

ground for which v0 = H(t) r, where H(t) is assumed a given function of t. In this

case ∇ · v0 = 3H(t). This flow is motivated by the observation that it corresponds to

the proper velocity if particles within the fluid were moving apart from one another

according to the law x(t) = a(t) y, with y being a time-independent co-moving coor-

dinate. In this case v0 ≡ dx/dt = ȧy = H(t) x(t), where H = ȧ/a. In this sense

H(t) describes the non-relativistic analog of the Hubble parameter for the background

fluid’s expansion.

Background Quantities

We now ask what the rest of the background quantities, ρ0(t), p0(t) and φ0(t) must

satisfy in order to be consistent with this flow. The equation of energy conservation

implies ρ0 must satisfy

0 = ρ̇0 +∇ · (ρ0v0) = ρ̇0 + 3H ρ0 , (2.2)

and so, given H = ȧ/a, it follows that ρ0 ∝ a−3. That is, the non-relativistic expanding

fluid necessarily requires the background density to fall with expansion as would the

density in a matter-dominated universe.

Using this density in the law for universal gravitation requires the gravitational

potential, φ0, take the form

φ0 =
2πGρ0

3
r2 , (2.3)

– 38 –



and so ∇φ0 = 4
3
πGρ0 r. This describes the radially-directed gravitational potential

which acts to decelerate the overall universal expansion.

Given this gravitational force, the momentum conservation equation, using v̇0 +

(v0 · ∇)v0 = [H + Ḣ/H] v0 and v0 = H r, becomes[
Ḣ +H2 +

4πGρ0

3

]
r = 0 . (2.4)

This is equivalent to the Friedmann equation, as is now shown. Notice that if we take

a ∝ tα then H = α/t and Ḣ = −α/t2 = −H2/α. This, together with ρ0 ∝ a−3 ∝ t−3α,

is consistent with eq. (2.4) only if α = 2/3, as expected for a matter-dominated universe.

Furthermore, with this choice for α we also have Ḣ +H2 = −1
2
H2, and so eq. (2.4) is

equivalent to

H2 =
8πG

3
ρ0 , (2.5)

which is the Friedmann equation, as claimed.

When studying perturbations we solve the entropy equation by taking s0 = 0.

Perturbations during matter domination

To study perturbations about this background take v = v0+δv, ρ = ρ0+δρ, p = p0+δp,

s = δs and φ = φ0 + δφ, and expand the equations of motion to first order in the

perturbations. Defining Dt = ∂/∂t + v0 · ∇, the linearized equations in this case

become

Dt δρ+ 3H δρ+ ρ0∇ · δv = 0

ρ0(Dt δv +H δv) +∇δp+ ρ0∇δφ = 0 (2.6)

Dt δs = 0

∇2δφ− 4πGδρ = 0 .

To obtain this form for the momentum conservation equation requires using the equa-

tions of motion for the background quantities.

Our interest is in the evolution of δρ, and this can be isolated by taking Dt of the

first of eqs. (2.6) and the divergence of the second if these equations, and using the

results to eliminate δv. The remaining equations involve the two basic fluid perturba-

tions, δρ and δs, and imply both Dt δs = 0 and

D2
t

(
δρ

ρ0

)
+ 2H Dt

(
δρ

ρ0

)
− c2

s∇2

(
δρ

ρ0

)
− 4πGρ0

(
δρ

ρ0

)
=

ξ

ρ0

δs , (2.7)
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where

c2
s :=

(
∂p

∂ρ

)
s0

and ξ :=

(
∂p

∂s

)
ρ0

. (2.8)

In order to analyze the solutions to this equation, it is convenient to change

variables to a co-moving coordinate, y, defined by r = a(t) y. In this case, for

any function f = f(r, t) we have (∂f/∂t)y = (∂f/∂t)r + Hr · ∇f = Dt f , and

∇f = (1/a)∇yf . Fourier transforming the perturbations in co-moving coordinates,

δρ/ρ0 = δk(t) exp[ik · y], leads to the following master equation governing density

perturbations

δ̈k + 2H δ̇k +

(
c2
s k

2

a2
− 4πGρ0

)
δk =

(
ξ

ρ0

)
δs , (2.9)

where the over-dot denotes d/dt.

These equations have solutions whose character depends on the relative size of k/a

and the Jeans wave-number,

k2
J(t) =

4πGρ0(t)

c2
s(t)

=
3H2(t)

2 c2
s(t)

, (2.10)

with instability occurring once k/a � kJ . Notice that so long as cs ∼ O(1) the Jeans

length is comparable in size to the Hubble length, `J ∼ H−1. For adiabatic fluctuations

(δsk = 0) the above equation implies that the short-wavelength fluctuations (k/a� kJ)

undergo damped oscillations of the form

δk(t) ∝ a−1/2 exp

[
±ikcs

∫ t dt′

a(t′)

]
. (2.11)

The overall prefactor of a−1/2 shows how these oscillations are damped due to the

universal expansion, or Hubble friction.

Long-wavelength adiabatic oscillations (k/a � kJ) exhibit an instability, though

the background expansion dilutes the instability into a power law in t rather than the

exponential growth usually encountered for perturbations about a static background.

This dilution occurs because the overall expansion reduces the density, and this effect

fights the density increase due to gravitational collapse. The approximate solutions in

this case are

δk(t) ∝ t2/3 ∝ a(t) and δk(t) ∝ t−1 ∝ a−3/2(t) , (2.12)

with the δk(t) ∼ t2/3 solution describing the instability to gravitational collapse.

Because both the red-shifted wave-number, k/a, and the Jeans wave-number, kJ ,

depend on time, the overall expansion of the background can convert modes from stable
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to unstable (or vice versa). Whether this conversion is towards stability or instability

depends on the the time dependence of akJ , which is governed by the time-dependence

of the combination aH/cs. If a ∝ tα then aH ∝ tα−1 ∝ a1−1/α, and so aH increases

with t if α > 1 and decreases with t if α < 1. Since α = 2/3 for the matter-dominated

universe of interest here, it follows that aH ∝ t−1/3 ∝ a−1/2, and so decreases with

t. Provided that cs does not change much, this ensures that in the absence of other

influences modes having fixed k pass from being unstable to stable as a increases due

to the overall expansion.

Perturbations during radiation and vacuum domination

A completely relativistic treatment of density perturbations requires following fluctua-

tions in the matter stress energy as well as in the metric itself (since these are related

by Einstein’s equations relating geometry and stress-energy). The details of such cal-

culations go beyond the scope of these notes, although some of the main features are

described below. But the above considerations suffice to address a result that is an im-

portant part of the structure-formation story: the stalling of Dark Matter perturbation

growth during radiation- or vacuum-dominated epochs.

To contrast how fluctuations grow during radiation and matter domination it is

instructive to examine the transition from radiation to matter domination. To this

end we again use the above equation governing the growth of density fluctuations for

non-relativistic matter,

δ̈k + 2H δ̇k +

(
c2
sk

2

a2
− 4πGρm0

)
δk = 0 , (2.13)

where H2 = 8πGρ0/3 and ρ0 = ρm0 + ρr0 is no longer the same as ρm0. During the

transition between radiation and matter domination, we use

H2(a) =
8πGρ0

3
=
H2

eq

2

[(aeq

a

)3

+
(aeq

a

)4
]
, (2.14)

where radiation-matter equality occurs when a = aeq, at which point H(a = aeq) = Heq.

As described around eq. (2.4), any departure from the choice a(t) ∝ t2/3 — such as

occurs when radiation dominates in ρ(a) — precludes solving background momentum-

conservation equation, but this does not present a problem because (2.4) can instead

be replaced by the full radiation-dominated Friedmann equation without changing the

description of the response of the nonrelativistic fluctuations.

For all modes for which the pressure term, c2
s k2/a2, is negligible, δ(x) satisfies

2x(1 + x) δ′′ + (3x+ 2) δ′ − 3 δ = 0 , (2.15)
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where the scale factor, x = a/aeq, is used as a proxy for time and primes denote

differentiation with respect to x. As is easily checked, this is solved by δ(1) ∝
(
x+ 2

3

)
,

and so the growing mode during matter domination does not also grow during radiation

domination. Use of the Frobenius method shows that a linearly independent solution

behaves for x � 1 (i.e. deep in the radiation-dominated regime) as δ(2) ∝ δ(1) lnx +

(analytic) where ‘analytic’ denotes a simple power series proportional to 1 + c1x+ · · · .
These solutions show how density perturbations for non-relativistic matter grow at

most logarithmically during the radiation-dominated epoch.

A similar analysis covers the case where Dark Energy (modelled as a cosmological

constant) dominates in an Ω = 1 universe. In this case 4πGρm0 ∼ ΩmH
2 � H2 and so

the instability term becomes negligible relative to the first two terms of (2.13). This

leads to

δ̈ + 2H δ̇ ' 0 , (2.16)

which has as solution δ̇ ∝ a−2. Integrating again gives a frozen mode, δ ∝ a0, and a

damped mode that falls as δ ∝ a−2 when H is constant (as it is when Dark Energy

dominates and a ∝ eHt). This shows that non-relativistic density perturbations stop

growing again once matter domination ends.

We are now in a position to summarize how inhomogeneities grow in the late

universe, assuming the presence of an initial spectrum of very small primordial density

fluctuations. The key observation is that several conditions all have to hold in order

for there to be appreciable growth of density inhomogeneities. These conditions are:

1. No fluctuations grow appreciably at all unless the Universe is matter dominated.

2. Fluctuations of any type do not grow for super-Hubble modes, for which k/a�
H, regardless of what type of matter dominates the background evolution.

3. Nonrelativistic matter in a matter-dominated universe are unstable, but only

for those modes in the momentum range H � (k/a) � H/cs, and these grow

proportional to the scale factor: δk ∝ a.

Before pursuing the implications of these conditions for instability, we pause to

describe what properties of fluctuations are actually measured.

2.1.2 The Power Spectrum

The presence of unstable density fluctuations implies the universe does not remain

precisely homogeneous and isotropic once matter domination begins, and so the view
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seen by observers like us depends on their locations in the universe relative to the

fluctuations. For this reason, when comparing with observations it is less useful to try

to track the detailed form of a specific fluctuation and instead better to characterize

fluctuations by their statistical properties, since these can be more directly applied

to observers without knowing their specific place in the universe. In particular we

imagine there being an ensemble of density fluctuations, whose phases we assume to

be uncorrelated and whose amplitudes are taken to be random variables.

On the observation side statistical inferences can be made about the probability

distribution governing the distribution of fluctuation amplitudes by measuring statis-

tical properties of the matter distribution observed around us. For instance, a useful

statistic measures the mass-mass auto-correlation function

ξ(r− r′) ≡ 〈δρ(r) δρ(r′)〉
〈ρ〉2

, (2.17)

which might be measured by performing surveys of the positions of large samples of

galaxies.10 When using (2.17) with observations the average 〈· · · 〉 is interpreted as

integration of one of the positions (say, r′) over all directions in the sky.11

When making predictions 〈· · · 〉 instead is regarded as an average over whatever

ensemble is thought to govern the statistics of the fluctuations δk. Fourier transforming

δρ(r)/〈ρ〉 =
∫

d3k δk exp[ik · r] in comoving coordinates, as before, allows ξ(r) to be

related to the following ensemble average over the Fourier mode amplitudes, δk.

ξ(r) =

∫
d3k

(2π)3
〈|δk|2〉 exp[ik · r] =

1

2π2

∫ ∞
0

dk

k
k3 Pρ (k)

(
sin kr

kr

)
, (2.18)

which defines the density power spectrum: Pρ (k) := 〈|δk|2〉.
For homogeneous and isotropic backgrounds Pρ (k) depends only on the magnitude

k = |k| and not on direction, and this is used above to perform the angular integra-

tions. The average in these expressions is over the ensemble, and it is this average

which collapses the right-hand side down to a single Fourier integral. The last equality

motivates the definition

∆2
ρ(k) :=

k3

2π2
Pρ (k) , (2.19)

10A practical complication arises because although galaxies are relatively easy to count, most of the

mass density is actually Dark Matter. Consequently assumptions are required to relate these to one

another; the usual choice being that the galaxy and mass density functions are related to one another

through a phenomenologically defined ‘bias’ factor.
11The density correlation function can also be measured using the temperature fluctuations of the

CMB, because these fluctuations can be interpreted as redshifts acquired by CMB photons as they

climb out of the gravitational potential wells formed by density fluctuations in nonrelativistic matter.
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Figure 5. The power spectrum as obtained from WMAP measurements of the CMB spec-

trum, together with the 2dF Galaxy Redshift Survey and Lyman α measurements.

since this quantity would be expected to be independent of k if the distribution of

described by Pρ (k) were scale invariant.

A variety of observations over the years give the form of Pρ (k) as inferred from the

distribution of structure around us, with results summarized in Figure 5. As illustrated

in Figure 6 the scale k appearing in Pρ(k) is correlated with how far back one looks

into the universe, with measurements of distant objects in the remote past determining

the shape of Pρ(k) for small k, and measurements of more nearby objects in the more

recent past constraining Pρ(k) for larger k. As indicated in Figure 5 inferences about the

shape of Pρ(k) for small k come from measurements of the temperature fluctuations in

the CMB; those at intermediate k come from galaxy distributions as obtained through

galaxy surveys and those at the largest k come from measurements of the how quasar

light is absorbed by intervening Hydrogen gas clouds, the so-called Lyman-α ‘forest’.

These observations are well approximated by the phenomenological formula,

P (k) =
Akns

(1 + α k + β k2)2
, (2.20)

where

α = 16

(
0.5

Ωh2

)
Mpc and β = 19

(
0.5

Ωh2

)2

Mpc2 and ns = 0.96 . (2.21)
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Figure 6. A sketch of several spatial slices intersecting the past light cone of an astronomer

on Earth. The orange ovals indicate how the light cone has larger intersections with the

spatial slices the further back one looks. The pale blue ovals indicate regions the size of

the Hubble distance on each spatial slice. Correlations outside of these ovals (such as the

uniformity of the CMB temperature) represent a puzzle for ΛCDM cosmology. The figure

shows how later times (higher slices) have larger Hubble distances, as well as how observations

only sample the largest distance scales on the most remote spatial slices. This illustrates why

CMB measurements tend to constrain the power spectrum for small k while observations

of more nearby objects (like galaxy distributions or the distribution of foreground Lyman-α

Hydrogen gas clouds) constrain larger k.

Here h = H0/(100 km/sec/Mpc) ≈ 0.7, and Ω ≈ 1 denotes the present value of ρ/ρc.

Given that ns ≈ 1 the observations suggest the power spectrum is close to linear,

P (k) ∝ k for k � k? ∼ 0.07 Mpc−1, and P (k) ∝ k−3 for k � k?. The value k? here is

simply defined to be the place where Pρ(k) turns over and makes the transition from

Pρ ∝ k to Pρ ∝ k−3.

As described below, there are good reasons to believe that the shape of Pρ (k)

for k � k? represents the pattern of primordial fluctuations inherited from the very

early universe, while the shape for k > k? reflects how fluctuations evolve in the later

universe. Consequently observations are consistent with primordial fluctuations being
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close to12 a scale-invariant Zel’dovich spectrum, Pρ(k) = Ak, corresponding to ns = 1.

As we also see below, the result ns is predicted to be close to, but not equal to, unity

by inflationary models.

For later purposes it proves more convenient to work with the power spectrum for

the Newtonian gravitational potential, δφ, that is related to δρ by Poisson’s equation

— the last of eqs. (2.6) — and so δφk ∝ δk/k
2. Because of this relation their power

spectra are related by Pφ(k) = Pρ(k)/k4 as well as

∆2
φ(k) :=

k3

2π2
Pφ(k) =

Pρ(k)

2π2k
∝

{
kns−1 if k � k?

kns−5 if k � k?
. (2.22)

This last expression also clarifies why the choice ns = 1 is called scale invariant. When

ns = 1 the primordial (k � k?) spectrum for ∆2
φ(k) becomes k-independent, as would

be expected for a scale-invariant process.

2.1.3 Late-time structure growth

Before trying to explain the properties of the primordial part of the power spectrum

— ∆2
φ(k) ∝ Akns−1 — we first digress to explain the explanation for why the measured

distribution has the peculiar hump-shaped form, bending at k ' k?. This shape arises

due to the processing of density fluctuations by the evolution of Dark Matter in the

subsequent universe, as we now describe.

The key observations go back to the three criteria, given at the end of §2.1.1, for

when fluctuating modes can grow. These state that the fluctuations that are most

important are those involving nonrelativistic matter, although these remain frozen un-

less the universe is matter dominated and the mode number lies within the interval

H � k/a� H/cs. These conditions for growth superimpose a k-dependence on Pρ(k),

for the following reasons.

The important wave-number k? corresponds to the wave-number, keq, for which

modes satisfy k/a ∼ H at the epoch of radiation-matter equality (which occurs at

zeq = 3600). Numerically, keq corresponds to a co-moving wave-number of order keq ∼
0.07 Mpc−1. What is important about this scale is that it divides modes (with k > keq)

that re-enter the Hubble scale during radiation domination and those (with k < keq)

that re-enter during matter domination.

Because they re-enter during matter domination, all Dark Matter fluctuation modes

with k < keq are free to begin growing immediately on re-entry and have done so ever

12Close to but not equal to. Fits to ΛCDM cosmology establish ns is significantly different from 1.
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since, at least until the very recent advent of Dark Energy domination.13 So the present-

day power spectrum for these modes reflects the primordial one which was frozen into

these modes long ago when they left the Hubble scale in the pre-ΛCDM era. It is these

modes that reveal the primordial distribution

P (k) ∝ kns (for k � keq) . (2.23)

By contrast, those modes with k � keq re-enter the Hubble scale during the

radiation-dominated epoch that precedes matter-radiation equality. The amplitude

of these modes therefore remain frozen at their values at the time of re-entry, because

they are unable to grow while the Universe is radiation dominated. Consequently they

remain stunted in amplitude relative to their longer-wavelength counterparts while

waiting for the matter to become matter-dominated, leading to a suppression of Pρ (k)

for k � keq.

The relative stunting of large-k modes relative to small-k modes can be computed

from the information that the unstable modes grow with amplitude δk(a) ∝ a during

matter-domination. For k < keq this growth applies as soon as they cross the Hubble

scale, while for k > keq the modes cannot grow in this way until the transition from

radiation to matter domination. As a result the relative size of two modes, one with

k0 � keq and one with k � keq, is

δk(a)

δk0(a)
∝ δk(ak)(a/aeq)

δk0(ak0)(a/ak0)
∝ δk(ak)(a/ak)

δk0(ak0)(a/ak0)

(
keq

k

)2

, (2.24)

where ak denotes the scale factor at the (k-dependent) epoch of re-entry, defined by

k = akHk. The first relation in (2.24) uses that modes in the numerator all start growing

at the same time (radiation-matter equality), while those in the denominator grow for a

k0-dependent amount a/ak0 . The second relation then makes the k-dependence of the

suppression ak/aeq in the numerator explicit, using the matter-domination evolution

aH ∝ a−1/2 in the re-entry condition to conclude k = akHk ∝ a
−1/2
k and so ak ∝ k−2.

This leads to the expectation that the power spectrum has the form P (k) =

Pprim(k) T (k), where Pprim(k) = 〈|δk(a)|2〉 = 〈|δk(ak)|2〉(a/ak)2 is the primordial power

spectrum and T (k) is the transfer function that expresses the relative stunting of modes

13For most modes δk ' O(1) occurs before Dark Energy domination, at which point nonlinear

gravitational physics is expected to produce the large-scale structure actually seen in galaxy surveys.

It is noteworthy that there would not have been sufficient time for modes small enough to describe the

CMB to become nonlinear if baryons were the only non-relativistic matter present, and this is part of

the evidence for Dark Matter’s existence.
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for k � keq. Keeping in mind that P (k) ∝ |δk|2 the above discussion shows we expect

T (k) ' 1 for k � keq and T (k) ' (keq/k)4 for k � keq. Given a primordial distribution

Pprim(k) ' Akns this leads to

Pρ (k) ∝

{
kns if k � k?

kns−4 if k � k?
, (2.25)

much as is observed.

2.2 Primordial fluctuations from inflation

The previous discussion shows that fluctuations in the ΛCDM model also provide a

successful description of structure in the universe, but only given the initial condition of

a primordial spectrum of fluctuations having a specific power-law form: Pρ (k) ' Ask
ns

(or ∆2
φ(k) ' Ask

ns−1). It again falls to the earlier universe to explain why primordial

fluctuations should have this specific form, and why it should be robust against the

many poorly understood details governing the physics of this earlier epoch.

It is remarkable that there is evidence that an earlier period of inflationary expan-

sion can also explain this initial distribution of fluctuations. This section provides a

sketch of this evidence. Since the modes of interest start off during ΛCDM outside the

Hubble length, k � aH, and are known to be small, their evolution can be tracked into

earlier epochs using linear perturbation theory. Because the modes are super-Hubble in

size the treatment must be relativistic, and so involves linearizing the coupled Einstein-

matter field equations. The first part of this section sketches how this super-Hubble

evolution works, and shows how to relate the primordial fluctuations that re-enter the

Hubble scale to those that exit the Hubble scale during the inflationary epoch (see

Figure 4).

At first sight this just pushes to problem back to an earlier time, requiring an

explanation why a particular pattern of fluctuations should exist during inflation. Even

worse, within the classical approximation there is good reason to believe there should

be no fluctuations at all leaving at horizon exit during inflation. This is because the

exponential growth of the scale factor, a ∝ eHt, during inflation is absolutely ruthless

in ironing out any spacetime wrinkles since momentum-dependent terms like (k/a)2 in

the field equations go to zero so quickly.

But the key words in the above are “within the classical approximation”. Quantum

fluctuations are not ironed away during inflation, and persist at a level proportional to

the Hubble scale. Because this Hubble scale is approximately constant the resulting

fluctuations are largely scale-independent, providing a natural explanation for why
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primordial fluctuations seem to be close to the Zel’dovich spectrum. But H during

inflation also cannot be exactly constant since inflation must end eventually. In the

explicit models examined earlier the time-dependence of H arises at a level suppressed

by the slow-roll parameters ε and η and so deviations from scale invariance should arise

at the few percent level. Because of this we shall find below that the prediction for ns

in inflationary models is a bit smaller than unity, naturally agreeing with the observed

value ns ' 0.96.

2.2.1 Linear evolution of metric-inflaton fluctuations

The first task is to evolve fluctuations forward from the epoch of inflationary horizon

exit until they re-enter during the later Hot Big Bang era. In particular our focus

is on the perturbations of the metric, δgµν , since these include perturbations of the

Newtonian potential and so also the density fluctuations whose power spectrum is

ultimately measured. The discussion here follows that of [9].

The symmetry of the FRW background allows the fluctuations of the metric to be

classified by their rotational properties, with fluctuations of different spin not mixing

at linear order in the field equations. Fluctuations of the metric come in three such

kinds: scalar, vector and tensor fluctuations. Specializing to a spatially flat FRW

background and transforming to conformal time, τ =
∫

dt/a, the scalar perturbations

may be written

δSgµν = a2

(
2φ ∂jB
∂iB 2ψ δij + ∂i∂jE

)
, (2.26)

while the vector and tensor ones are

δV gµν = a2

(
0 Vj
Vi ∂iWj + ∂jWi

)
and δTgµν = a2

(
0 0

0 hij

)
. (2.27)

Here all vectors and tensors are divergence-free, as is the tensor (which is also traceless).

To this is to be added the fluctuations in the inflaton field, ϕ(t) + δϕ.

There is great freedom to modify these functions by performing infinitesimal co-

ordinate transformations, so it is useful to define the following combinations that are

invariant at linearized order:

Φ = φ− 1

a

[
a(B − E ′)

]′
, Ψ = ψ +

a′

a
(B − E ′) (2.28)

δχ = δϕ− ϕ′(B − E ′) , Vi = Vi −Wi and hij ,

in terms of which all physical inferences can be drawn. Here primes denote differentia-

tion with respect to conformal time, τ . Notice that Φ, Ψ and Vi reduce to φ, ψ and Vi
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in the gauge choice where B = E = Wi = 0, and so Φ is the relativistic generalization

of the Newtonian potential.

These functions are evolved forward in time by linearizing the relevant field equa-

tions:

�ϕ− V ′(ϕ) = 0 and Rµν −
1

2
Rgµν =

Tµν
M2

p

, (2.29)

and provided we use the invariant stress-energy perturbations,

δT 0
0 = δT 0

0 −
[
t00

]′
(B − E ′) ,

δT 0
i = δT 0

i −
[
t00 −

1

3
tkk

]
∂i(B − E ′) , (2.30)

δT ij = δT ij −
[
tij
]′

(B − E ′) ,

(where tµν denotes the background stress-energy), the results can be expressed purely

in terms of the gauge-invariant quantities, eqs. (2.28).

The equations which result show that in the absence of vector stress-energy pertur-

bations (i.e. if δT 0
i is a pure gradient - as would be the case for perturbed inflaton),

then vector perturbations, Vi, are not sourced, and decay very rapidly in an expand-

ing universe, allowing them to be henceforth ignored. Similarly, in the absence of

off-diagonal stress-energy perturbations (i.e. if δT ij = δp δij) it is also generic that

Ψ = Φ.

Switching back to FRW time, the equations which govern the evolution of tensor

modes then become (after Fourier transforming)

ḧij + 3H ḣij +
k2

a2
hij = 0 , (2.31)

showing that these evolve independent of all other fluctuations. Such primordial ten-

sor fluctuations can be observable if they survive into the later universe, since the

differential stretching of spacetime that they predict can contribute observably to the

polarization of the CMB photons. The search for evidence for this type of primordial

tensor fluctuations is active and ongoing, and we shall see is expected in inflation to be

characterized by a near scale-invariant tensor power spectrum,

Ph(k) ∝ AT k
nT . (2.32)

The equations evolving the scalar fluctuations are more complicated and similarly
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reduce to

δχ̈+ 3Hδχ̇+
k2

a2
δχ+ V ′′(ϕ)δχ− 4ϕ̇ Φ̇ + 2V ′(ϕ) Φ = 0

and Φ̇ +H Φ =
ϕ̇

2M2
p

δχ . (2.33)

The homogeneous background fields themselves satisfy the equations

ϕ̈+ 3Hϕ̇+ V ′(ϕ) = 0 and 3M2
pH

2 =
1

2
ϕ̇2 + V (ϕ) . (2.34)

These expressions show that although Φ and δχ would decouple from one another if

expanded about a static background (for which ϕ̇ = V ′ = 0), they do not when the

background is time-dependent.

2.2.2 Slow-roll evolution of scalar perturbations

The character of the solutions of these equations depends strongly on the size of k/a

relative to H, since this dictates the extent to which the frictional terms can compete

with the spatial derivatives. As usual the two independent solutions for δχ that apply

when k/a� H describe damped oscillations

δχk ∝
1

a
√
k

exp

[
±ik

∫ t dt′

a(t′)

]
. (2.35)

Our interest during inflation is in the limit k/a � H in a slow-roll regime for which

δχ̈, ϕ̈ and Φ̇ can be neglected. In this limit the scalar evolution equations simplify to

3Hδχ̇+ V ′′(ϕ)δχ+ 2V ′(ϕ)Φ ' 0 and 2M2
pH Φ ' ϕ̇ δχ , (2.36)

and have approximate solutions (after Fourier transformation) of the form

δχk ' Ck
V ′(ϕ)

V (ϕ)
and Φk ' −

Ck
2

(
V ′(ϕ)

V (ϕ)

)2

. (2.37)

where Ck is a (potentially k-dependent) constant of integration. Since the background

fields satisfy MpV
′/V =

√
2ε these equations show how the amplitude of δχk and

Φk during inflation track the evolution of the slow-roll parameter, ε, for super-Hubble

modes, and therefore tend to grow in amplitude as inflation eventually draws to a close.

We have two remaining problems: (i) What is the origin of the initial fluctuations

at horizon exit? (ii) How do we evolve fluctuations from the end of inflation through

to the later epoch of horizon re-entry? The latter of these seems particularly vicious

since it a priori might be expected to depend on the many details involved in getting

the Universe from its inflationary epoch to the later Hot Big Bang.
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2.2.3 Post-Inflationary evolution

For the case of single-field inflation discussed here, post-inflationary evolution of the

fluctuation Φ actually turns out to be quite simple. This is because it can be shown

that when k � aH the quantity

ζ = Φ +
2

3

(
Φ + Φ̇/H

1 + w

)
=

1

3(1 + w)

[
(5 + 3w) Φ +

2Φ̇

H

]
, (2.38)

is conserved, ζ̇ ' 0. This result has been proven under a wide variety of assumptions

[10], but the form we use here assumes that the background cosmology satisfies an

equation of state p = wρ, but w is not assumed to be constant. The same result is

known not to be true if there were more than a single scalar field evolving.

Conservation of ζ is a very powerful result because it can be used to evolve fluctua-

tions using ζ(ti) = ζ(tf ), assuming only that they involve a single scalar field, and that

the modes in question are well outside the horizon: k/a� H. Furthermore, although

Φ̇ in general becomes nonzero at places where w varies strongly with time, this time

dependence quickly damps due to Hubble friction for modes outside the Hubble scale.

We may therefore for most of the universe’s history also neglect the dependence of

ζ on Φ̇ provided we restrict ti and tf to epochs during which w is roughly constant.

This allows the expression ζ(ti) = ζ(tf ) to be simplified to

Φf =
1 + wf
1 + wi

(
5 + 3wi
5 + 3wf

)
Φi , (2.39)

where wi = w(ti) and wf = w(tf ), implying in particular Φf = Φi whenever wi = wf .

Similarly, the values of Φ deep within radiation and matter dominated phases are

related by Φmat ' 9
10

Φrad.

To infer the value of Φ in the later Hot Big Bang era we choose ti just after horizon

exit (where a simple calculation shows wi ' −1+ 2
3
εhe, with εhe the slow-roll parameter

at horizon exit). tf is then chosen in the radiation dominated universe (where wf = 1
3
),

either just before horizon re-entry for the mode of interest, or just before the transition

to matter domination, whichever comes first. Eqs. (2.37) and (2.39) then imply

Φf '
(

6 Φ

ε

)
he

. (2.40)

It remains to grapple with what should be expected for the initial condition for Φ at

horizon exit.
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2.2.4 Quantum origin of fluctuations

The primordial fluctuation amplitude derived in this way depends on the integration

constants Ck, which are themselves set by the initial conditions for the fluctuation

at horizon exit, during inflation. But why should this amplitude be nonzero given

that all previous evolution is strongly damped, as in eq. (2.35)? The result remains

nonzero (and largely independent of the details of earlier evolution) because quantum

fluctuations in δχ continually replenish the perturbations long after any initial classical

configurations have damped away.

The starting point for the calculation of the amplitude of scalar perturbations is

the observation that the inflaton and metric fields whose dynamics we are following

are quantum fields, not classical ones. For instance, for spatially-flat spacetimes the

linearized inflaton field, δχ, is described by the operator

δχ(x) =

∫
d3k

(2π)3

[
ck uk(t) e

ik·r/a + c∗k u
∗
k(t) e

−ik·r/a
]
, (2.41)

where we expand in a basis of eigenmodes of the scalar field equation in the background

metric, uk(t) e
ik·x, labelled by the co-moving momentum k. For constant H the time-

dependent mode functions are

uk(t) ∝
H

k3/2

(
i+

k

aH

)
exp

(
ik

aH

)
, (2.42)

which reduces to the standard flat-space form (up to a slowly-varying phase), uk(t) ∝
a−1k−1/2 e−ikt/a, when k/a� H. (This is perhaps easiest to see using conformal time,

for which exp(ik/aH) = exp(−ikτ).) The quantities ck and their adjoints c∗k are anni-

hilation and creation operators, which define the adiabatic vacuum state, |Ω〉, through

the condition ck|Ω〉 = 0 (for all k).

The δχ auto-correlation function in this vacuum, 〈δχ(x)δχ(x′)〉, describes the quan-

tum fluctuations of the field amplitude in the quantum ground state, and the key as-

sumption is that the quantum statistics of the mode leaving the horizon during inflation

agrees with the classical fluctuations of the field δχ after evolving outside of the Hubble

scale. This assumes the quantum fluctuations to be decohered (for preliminary discus-

sions see ref. [11, 12]) into classical distribution for δχ sometime between horizon exit

and horizon re-entry.

It turns out that during inflation interactions with the bath of short-wavelength,

sub-Hubble modes is extremely efficient at decohering the quantum fluctuations of long-

wavelength, super-Hubble modes [13]. As is usual when a system is decohered through
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interactions with an environment, the resulting classical distribution is normally defined

for the ‘pointer basis’, that diagonalizes the interactions with the environment. It turns

out that the freezing of super-Hubble modes has the effect of making them very classical

(WKB-like), and so ensure the fields canonical momenta become functions of the fields

themselves. This ensures that it is always the field basis that diagonalizes any local

interactions, and so guarantees that quantum fluctuations become classical fluctuations

for the fields (like δχ) rather than (say) their canonical momenta.

The upshot is that after several e-foldings even very weak interactions (like grav-

itational strength ones) eventually convert quantum fluctuations into classical statis-

tical fluctuations for the classical field, ϕ, about its spatial mean. For practical pur-

poses, this means in the above calculations we can simply use the initial condition

|δχk| ∼ [〈δχkδχ−k〉]1/2 ∝ |uk(t)|. For observational purposes what matters is that the

classical variance of these statistical fluctuations is well-described by the corresponding

quantum auto-correlations – a property that relies on the kinds of ‘squeezed’ quantum

states that arise during inflation [9, 14].

Evaluating δχk ∼ uk at the (where k = aH) and equating the result to the fluctu-

ation of eq. (2.37) allows the integration constant in this equation to be determined to

be

Ck = uk(the)

(
V

V ′

)
ϕhe

, (2.43)

where both the and ϕhe = ϕ(the) implicitly depend on k. Using this to compute Φk in

eq. (2.37) then gives

Φk(t) = −1

2
uk(the)

(
V

V ′

)
ϕhe

(
V ′

V

)2

ϕ(t)

= −ε(t)
(

uk√
2εMp

)
the

. (2.44)

In particular, evaluating at t = the then gives

Φk(the) = −
(
uk
Mp

√
ε

2

)
the

. (2.45)

2.2.5 Predictions for the scalar power spectrum

We are now in a situation to pull everything together and compute in more detail the

inflationary prediction for the properties of the primordial fluctuation spectrum. Using

(2.45) in (2.40) gives

Φk(tf ) '
(

6 Φ

ε

)
he

= −
(

6uk√
2εMp

)
the

. (2.46)
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Using this in the definition of the dimensionless power spectrum for Φ, ∆2
Φ = k3PΦ/(2π

2),

then leads to

∆2
Φ(k) ∼ k3|Φk(tf )|2 ∼

|k3/2uk(the)|2

ε(ϕhe)M2
p

∼
(
H2

εM2
p

)
ϕhe

∼
(

V

εM4
p

)
ϕhe

. (2.47)

Once the order-unity factors are included one finds

∆2
Φ(k) =

k3PΦ(k)

2π2
=

(
H2

8π2M2
p ε

)
he

=

(
V

24π2M4
p ε

)
he

, (2.48)

It is the quantity V/ε that controls the amplitude of density fluctuations, and so is

to be compared with the observed power spectrum of scalar density fluctuations,

∆2
Φ(k̂) = 2.28× 10−9 , (2.49)

when evaluated at the reference ‘pivot’ point k = k̂ ∼ 7.5a0H0. In terms of V this

implies (
V

ε

)1/4

= 6.6× 1016 GeV , (2.50)

and the smaller ε becomes, the smaller a potential energy during inflation is required.

For ε ∼ 0.01 we have V ∼ 2×1015 GeV. This is titillatingly close to the scale where the

couplings of the three known interactions would unify in Grand Unified models, which

may indicate a connection between the physics of Grand Unification and inflation.14

Notice also that the size of ∆2(k) is set purely by H and ε at horizon exit, and

these only weakly depend on k (through their weak dependence on time) during near-

exponential inflation. This is what ensures the approximate scale-invariance of the

primordial power spectrum which inflation predicts for the later universe. To pin down

the value of ns more precisely we take the power-law form ∆2
Φ = Akns−1, for which

deviations from scale invariance may be computed by evaluating

ns − 1 ≡ d ln ∆2
Φ

d ln k

∣∣∣∣
he

. (2.51)

To evaluate this during slow-roll inflation use the condition k = aH (and the

approximate constancy of H during inflation) to write d ln k = Hdt. Since the right-

hand side of eq. (2.48) depends on k and t only through its dependence on ϕ, it is

14Of course, V can be much smaller if ε is smaller as well, or if primordial fluctuations actually come

from another source.
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convenient to use the slow-roll equations, eq. (1.70) to further change variables from t

to ϕ: dt = dϕ/ϕ̇ ' −(3H/V ′) dϕ, and so

d

d ln k
= −M2

p

(
V ′

V

)
d

dϕ
=
√

2εMp
d

dϕ
. (2.52)

Performing the ϕ derivative using (2.48) finally gives the following relation between

ns and the slow-roll parameters, ε and η

ns − 1 = −6ε+ 2η , (2.53)

where the right-hand side is evaluated at ϕ = ϕhe. For single-field models the right-

hand side is negative and typically of order 0.01, agreeing well with the measured value

ns ' 0.96.

2.2.6 Tensor fluctuations

A similar story goes through for the tensor fluctuations, though without the compli-

cations involving mixing between δχ and Φ. Tensor modes are also directly generated

by quantum fluctuations, in this case where the vacuum is the quantum state of the

graviton part of the Hilbert space. Although tensor fluctuations have not yet been

observed, they are potentially observable through the polarization effects they produce

as CMB photons propagate through them to us from the surface of last scattering.

Just like for scalar fluctuations, for each propagating mode the amplitude of fluctu-

ations in the field hij is set by H/(2π), but because there is no longer a requirement to

mix with any other field (like Φ), the power spectrum for tensor perturbations depends

only on H2 rather than H2/ε. Repeating the above arguments leads to the following

dimensionless tensor power spectrum

∆2
h(k) =

8

M2
p

(
H

2π

)2

=
2V

3π2M4
p

. (2.54)

Should both scalar and tensor modes be measured, a comparison of their amplitudes

provides a direct measure of the slow-roll parameter ε. This is conventionally quantified

in terms of a parameter r, defined as a ratio of the scalar and tensor power spectra

r :=
∆2
h

∆2
Φ

= 16 ε . (2.55)

The absence of evidence for these perturbations to date places a relatively weak upper

limit: r <∼ 0.10, and so ε < 0.007.
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The detection of tensor modes in principle also allows a measurement of the k

dependence of their power spectrum. This is usually quantified in terms of a tensor

spectral index, nT , defined by

nT ≡
d ln ∆2

h

d ln k
= −2ε = −r

8
, (2.56)

where the second-last equality evaluates the derivative within inflation as before by

changing variables from k to ϕ. This result is understood to be evaluated at the epoch

when observable modes leave the horizon during inflation, ϕ = ϕhe.

Ultimately single-field models have three parameters: ε, η and the Hubble scale

during inflation, HI . But the scalar and tensor fluctuation spectra provide four ob-

servables: As, AT , ns and nT . The ability to describe these four observables in terms

of three parameters implies that the relation nT = −r/8 given in (2.56) is a robust

prediction shared by all single-field slow-roll inflationary models.

3 EFT issues

It may not yet be clear how EFT methods enter into the beautiful story presented above,

but this section argues EFT methods are actually used throughout (as is also typically

true essentially everywhere else in physics). Since these lectures are being delivered in a

school entirely devoted to EFTs the logic of this section is not to explain what an EFT

is (such as they arise in areas like chiral perturbation theory), but rather to sketch some

of the issues that come up when they are applied to gravity- and cosmology-specific

problems.

In my opinion the lesson of these applications is twofold. First, there is no evidence

(yet) for ‘gravitational exceptionalism:’ the idea that gravity is fundamentally different

from all other interactions, and so there is nothing to learn from experience in other

settings. The second lesson is that EFT applications to gravity can sometimes more

resemble effective descriptions of particles moving through a medium than they do the

traditional uses of EFTs in particle physics. As such they can be mind-broadening to

those of us who approach the subject with a particle-physics training.

Each of the subsections addresses different kinds of examples of this, in turn.

3.1 General relativity as an EFT

The most important use of EFT methods in gravity-related problems is the one de-

scribed in this subsection: the justification of the semiclassical approximation that
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underpins almost all theoretical approaches. Although we usually think of gravita-

tional interactions as being classical, a question less often asked is why it should be

(and, if so, what is the small parameter that suppresses quantum effects).

The claim made here is that the issues for gravitational systems in may ways

resemble those arising in nonlinear sigma-models,

L = −f
2

2
Gij(φ) ∂µφ

i ∂µφj , (3.1)

such as describe Goldstone (and pseudo-Goldstone) bosons (including those studied in

chiral perturbation theory). This similarity arises because both are non-renormalizable,

in that their interactions involve inverse powers of a mass scale (f for the sigma-model

and Mp for gravity) and both are dominated at low energies by interactions involving

only two derivatives but many powers of the interacting fields.

Both of these properties lose their power to paralyze once it is recognized that

the action should really also include all possible kinds of higher-derivative interactions,

and it is recognized that predictive power is only possible for low-energy observables

relative to f (or Mp). For gravity this leads one to regard General Relativity as the

leading part of what might be called (in analogy to the Standard Model Effective Field

Theory – or SMEFT) the General Relativity Effective Field Theory – or GREFT.

3.1.1 GREFT

To see how this works in detail for gravity we apply to General Relativity the same

steps seen in your other classes for sigma models.

The low-energy degrees of freedom in this case are gravitons, whose field is the

metric, gµν , of spacetime itself. The low-energy symmetries that constrain the form

of the action are general covariance and local Lorentz invariance. Invariance under

these symmetries dictate the metric can appear in the action only through curvature

invariants built from the Riemann tensor and its contractions and covariant derivatives.

The Riemann curvature tensor is defined by

Rµ
νρλ = ∂λΓ

µ
νρ + ΓµλαΓανρ − (λ↔ ρ)

with Γµνλ =
1

2
gµβ
(
∂νgβλ + ∂λgβν − ∂βgνλ

)
. (3.2)

(3.3)

and its only independent contractions are the Ricci curvature tensor Rµν = Rα
µαν and

its trace R = gµνRµν , where the inverse metric, gµν , satisfies gµνgνλ = δµλ . What is
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important in what follows about these definitions is that, although complicated, the

curvature tensors involve precisely two derivatives of the metric.

GREFT is defined (as usual) by writing down a local action involving all possible

powers of derivatives of the metric, which general covariance then requires must be

built from powers of the curvature tensors and their derivatives. This leads to the

following effective lagrangian:

− LGREFT√
−g

= λ+
M2

p

2
R

+c41Rµν R
µν + c42R

2 + c43RµνλρR
µνλρ + c44 �R (3.4)

+
c61

m2
R3 +

c62

m2
∂µR∂

µR + · · · ,

where
√
−g =

√
− det gµν , as usual. The first line here includes all possible terms in-

volving two or fewer derivatives, and is the Einstein-Hilbert action of General Relativ-

ity, with cosmological constant λ. The second line includes all possible terms involving

precisely four derivatives, and (for brevity) the third line includes only the first two

representative examples of the many possible terms involving six or more derivatives.

The first, cosmological constant, term in eq. (3.4) is the only one with no deriva-

tives. Its appearance complicates power-counting arguments (in much the same was as

does the appearance of a scalar potential when power-counting with a sigma-model).

They cause problems if their coefficients are similar in size as for the two-derivative

terms, and the puzzle of why this should be true in Nature is a well-known problem

[15]. For simplicity of presentation the cosmological constant term is simply dropped

in the power-counting argument that follows. Once this is done the leading term in the

derivative expansion is the Einstein-Hilbert term of General Relativity. Its coefficient

defines Newton’s constant (and so also the Planck mass, M−2
p = 8πG).

The constants cdn are dimensionless couplings, with the convention that d counts

the number of derivatives of the corresponding effective operator and n = 1, · · · , Nd

runs over the number of such couplings. These couplings are dimensionless because

the explicit mass scales, m and Mp, are extracted to ensure this is so. Often one sees

this action written with only the Planck scale appearing, i.e. with m = Mp. However,

as is usual in an EFT, the scale m is usually of order the lightest particle integrated

out to produce this effective theory, leaving only the metric as the variable. Since

it is the smallest such a mass that dominates, m is generically expected to be much

smaller than Mp. (For applications to the solar system m might be the electron mass;

for applications to pose-nucleosynthesis Big-Bang cosmology m might be of order the

QCD scale, and so on.) Of course, contributions likem2R orR3/M2
p could also exist, but
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these are completely negligible compared to the terms displayed in eq. (3.4). The central

point of EFT methods is that the consequences of (3.4) should be explored as low-

energy expansion in powers of q/m and q/Mp, where q is a typical energy/momentum

characterizing the observables of interest.

Redundant interactions

Just as is true in SMEFT, to save needless effort one should eliminate those redundant

interactions that can be removed by integrating by parts or performing a field redefi-

nition. As discussed in your other lectures (see also [2]), the freedom to perform field

redefinitions allows the dropping of any terms that vanish when evaluated at solutions

to the lowest-order equations of motion. The freedom to drop total derivatives allows

us to set the coupling c44 to zero, as well (in 4 dimensions) as c43. (For c44 this can be

done because
√
−g�R is a total derivative, and for c43 the relevant observation is that

the quantity √
−g X =

√
−g
(
RµνλρR

µνλρ − 4RµνR
µν +R2

)
, (3.5)

integrates to give a topological invariant in 4 dimensions, and so is locally also a total

derivative. It is therefore always possible to replace, for example, RµνλρR
µνλρ in the

4-derivative effective lagrangian with the linear combination 4RµνR
µν − R2, with no

consequences for any observables, provided these observables are insensitive to the over-

all topology of spacetime (such as are the classical equations, or perturbative particle

interactions).

The freedom to perform field redefinitions also allows the removal of the other

two 4-derivative terms. This is because (in the absence of other, matter, fields) the

lowest order equations of motion are Rµν = 0, and the remaining terms vanish when

this is imposed. For pure gravity (without a cosmological constant) the first nontrivial

effective interaction involves more than 4 derivatives, such as the term proportional to

the cube of the Riemann tensor. This irrelevance of all of the 4-derivative terms must

be re-examined once matter fields are included, however, since once these are included

Rµν need no longer vanish.

3.1.2 Power Counting

In any EFT the central question asks which interactions are relevant when computing

observables at a specific order in the low-energy expansion that controls the low-energy

expansion in powers of q/m and q/Mp. Because of the similarity in the structure of

derivatives appearing in sigma models and General Relativity, power-counting for the

– 60 –



two types of theories is very similar. This section briefly recaps the result without

repeating the details (see however [2]), highlighting those features that differ.

To this end start by considering the interactions of gravitons propagating in flat

space (returning to curved space below). In this case we expand gµν = ηµν + hµν

and identify propagators and interactions for perturbative calculations in the usual

way. For the purposes of this power counting all we need to know about the curva-

tures is that they each involve all possible powers of hµν , but with only precisely two

derivatives. Consider an arbitrary graph that contributes at L loops to the E-point

graviton-scattering amplitude, AE(q), performed with energy q. Suppose also the graph

contains Vid vertices involving d derivatives and the emission or absorption of i gravi-

tons. Using arguments identical to those used for sigma models in your other lectures

leads to the following dependence15 of AE(q) on the scales q, m and Mp:

AE(q) ∼ q2M2
p

(
1

Mp

)E (
q

4πMp

)2L∏
i

∏
d>2

[
q2

M2
p

( q
m

)(d−4)
]Vid

. (3.6)

Notice that since d is even for all of the interactions, the condition d > 2 in the product

implies there are no negative powers of q in this expression.

Eq. (3.6) shows that the weakness of a graviton’s coupling (much like the weak

couplings of a Goldstone boson) comes purely from the low-energy approximations,

q � Mp and q � m. It is also clear that even though the ratio q/m could be much

larger than q/Mp, it only arises in AE once contributions from at least curvature-cubed

interactions are included (for which d = 6).

Furthermore (3.6) shows that the dominant contributions to low-energy graviton

scattering amplitudes correspond to graphs with L = 0 and Vid = 0 for all d > 2. That

is to say, graphs built using ony tree graphs constructed purely from the Einstein-

Hilbert (d = 2) action: it is classical General Relativity that governs the low-energy

dynamics of gravitational waves.

But EFTs excel when computing next-to-leading contributions. In this case these

come in one of the following two ways. Either:

• L = 1 and Vid = 0 for any d 6= 2 but Vi2 is arbitrary, or

• L = 0,
∑

i Vi4 = 1, Vi2 is arbitrary, and all other Vid vanish.

15Technical point: as is usually the case this power counting result is computed in dimensional

regularization, since not including a spurious cutoff scale makes arguments based on dimensional

analysis particularly simple.
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That is, the next to leading contribution is found using one-loop graphs using only the

interactions of General Relativity, or by working to tree level and including precisely one

insertion of a curvature-squared interaction in addition to any number of interactions

from GR. Both of these are suppressed compared to the leading term by a factor of

(q/Mp)
2. The next-to-leading tree graphs provide precisely the counter-terms required

to absorb the UV divergences in the one-loop graphs. And so on.

What this shows is that the small parameter that controls the loop expansion

(i.e. the semi-classical expansion) for graviton scattering is the ratio q2/(4πMp)
2; the

semiclassical approximation is the low-energy approximation.

But the above argument was made specifically for gravitons propagating in flat

space. How reliable should these power-counting arguments be for drawing conclusions

for more general curved environments? Related to this, how important is it to be able

to work in momentum space, as is usually done in sigma-model type arguments (and

those adapted from them to gravity)?

The issue of momentum space can be put aside, because the arguments for sigma

models can equally well be made in position space. The key estimate made to arrive

at (3.6) is based on dimensional analysis: all of the factors of m and Mp are tracked

by counting how they appear as factors in propagators and vertices, and the remaining

dimensions are all filled in as the common low-energy scale q. The analogous argument

works also in position space, provided there is also only one scale q that characterizes

the observables of interest in the low-energy theory.16

Physically, the equivalence of the short-distance position-space and high-energy

momentum-space estimates happens because the high-energy contributions arise due to

the propagation of modes having very small wavelength, λ. Provided this wavelength is

very small compared with the local radius of curvature, rc, particle propagation behaves

just as if it had taken place in flat space. One expects the most singular behaviour to

be just as for flat space, with curvature effects appearing in subdominant corrections

as powers of λ/rc.

It is often true that the low-energy gravitational system is characterized by a single

scale. For cosmological models this scale is often the Hubble scale q ∼ H. (For black

holes it is instead q ∼ r−1
s where rs = 2GM = M/(4πM2

p ) is the Schwarzschild radius.)

In this case the above power-counting arguments imply the semiclassical expansion

16General EFT arguments still apply when there is more than one scale, but are more complicated.

Indeed much of the complications encountered in other lectures when non-relativistic particles are

present can be traced to their having more than a single scale, and the same is true for non-relativistic

particles interacting with gravity.
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arises as powers of H2/(4πMp)
2 (or (4πMprs)

−2 ∼ (Mp/M)2 in the case of black holes).

We require H/Mp � 1 (or M � Mp for black holes) in order to believe inferences

about their properties using semiclassical methods.

3.2 Cosmology-specific issues

Besides issues specific to gravity, use of EFTs in cosmology can also involve other

complications that are often not seen in particle physics.

3.2.1 EFTs with time-dependent backgrounds

An issue specific to cosmology arises due to the appearance there of time-dependent

backgrounds. The issue asks: if EFTs are defined by dividing systems into low- and

high-energy states how can they be defined in time-dependent problems where energy

is not conserved? The short version of this section is that time-dependence (in gravity

as well as elsewhere) time-dependence always imposes additional restrictions on the

domain of validity of EFTs, most important of which is usually the requirement that

the background time-dependence should be adiabatic. (That is, φ̇/φ should be smaller

than the UV scales of interest, for every time-dependent field φ in the problem.)

Adiabatic motion is important because in this case the existence of an approxi-

mately conserved H(t) for any given time defines both an approximate ground state

and an energy in terms of which the low-energy/high-energy split can be defined. Once

the system is partitioned in this way into low-energy and high-energy state, one can

ask whether a purely low-energy description of time evolution is possible using only a

low-energy, local effective lagrangian. The main danger is that the time evolution of

the system need not keep low-energy states at low energies, or high-energy states at

high energies. For instance, this could happen if the background’s time-dependence is

rapid enough to allow particle-production of what were regarded as high-energy states.

Or it could happen that the gap between high and low energies decreases with time,

such as if there is high- and low-energy states were to cross one another as time evolves.

A related issue can arise if there is a transfer of states from high-energy to low-

energy as the dividing line between them, Λ(t), evolves. For example, this could happen

for a charged particle in a decreasing magnetic field if the effective theory is set up so

that the dividing energy, Λ(t), between low- and high-energies is not similarly time

dependent. In this case then Landau levels continuously enter the low-energy theory as

the magnetic field strength wanes. Such a migration of states can also happen in cos-

mology, such as during an inflationary phase (the so-called trans-Planckian ‘problem’).

This usually is only a problem for the effective-theory formulation if the states which
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enter in this way are not in their adiabatic ground state when they do so. If they are

in their adiabatic ground state they do not affect low-energy observables, but if they

are not they can since then new physical excitations appear at low energies.

What emerges from this is that EFTs can make sense despite the presence of

time-dependent backgrounds, provided one can focus on the evolution of low-energy

states, (q < Λ(t)), without worrying about losing probability into high-energy states

(q > Λ(t)). This can often be ensured if the background time evolution is sufficiently

adiabatic.

3.2.2 Predicting background evolution with EFTs

There is another issue at stake when using EFTs in cosmology (or other time-dependent

settings). Up to now the evolution of the background field is regarded as being given,

and the EFT issues of the previous section are to do with understanding how to split

the system into low and high energy states relative to an adiabatic energy defined in

the presence of this time-dependent background.

But it is often also of interest to know how the background itself responds to

events within time-dependent systems. For instance the background might back-react

in response to changes in the state of fluctuations with which it interacts. This can also

be amenable to EFT analysis, often by solving self-consistently for the background using

the field equations of the low-energy theory. Central to this approach is the assumption

that solutions to field equations within an EFT actually capture the behaviour of

solutions to field equations within the full theory.

Need this always be true? This section argues in general the answer is ‘no’, although

it usually is for adiabatic motion.

To see why EFTs and UV completions can agree on their solutions to the equations

of motion one must hark back to the definitions of the EFT itself. (The EFT formulation

used here follows the review [16].) Consider therefore a theory with high-energy and

low-energy fields h and `, with action S(h, `). We wish to integrate out h to obtain the

effective action, Seff(`), to examine its equations of motion. For simplicity we do so at

the classical level, in which case integrating out h is equivalent to solving its classical

field equations as a function of the light field, hc(`) and plugging the result back into

the original action:

Seff [`] = S[hc(`), `] , where

(
δS

δh

)
h=hc(`)

= 0 . (3.7)

(Exercise: verify this statement explicitly by showing that it is equivalent to integrating

out h using only tree graphs.)
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An immediate consequence of the above derivation seems to be that any solution

to the low-energy EFT (
δSEFT

δ`

)
`=`c

= 0 , (3.8)

must also be extrema of the full theory, by virtue of the choice h = hc(`). How can

this argument ever fail?

The key step in deriving any EFT, glossed over in the previous paragraphs, is the

necessity of expanding to some finite order in powers of the heavy mass scale, 1/M . It is

only after this expansion that an effective action like (3.7) is given by a local lagrangian

density. Because of this we should only trust the equations of motion of any local EFT

up to the same order in powers of 1/M . Solutions of the full theory can differ from

those of the effective theory if they are not captured by such a 1/M expansion.

3.2.3 Exorcising the ghosts

It is actually a good thing that the solutions to an EFT are not completely equivalent

to solutions to the full theory from which the EFT is derived. One upside is that EFTs

often involve higher time derivatives, and so naively should generically have unstable

runaway solutions, even if the underlying theory has no such instabilities.

To see why instabilities might arise within the EFT consider the following toy

effective lagrangian:
L

v2
=

1

2
θ̇2 +

1

2M2
θ̈2 , (3.9)

whose variation δL = 0 gives the linear equation of motion

− θ̈ +
1

M2

....
θ = 0 . (3.10)

The general solution to this equation is

θ = A+Bt+ CeMt +De−Mt , (3.11)

where A, B, C and D are integration constants.

Now comes the main point. Only the solutions with C = D = 0 go over to the

solutions to the lowest-order field equation, obtained from the M → ∞ lagrangian,

L0 = 1
2
θ̇2. The others make no sense at any finite order of 1/M because for them

the θ̇2 and θ̈2 terms are always comparably large. Since a local EFT is only meant to

capture the full theory order-by-order in 1/M these exponential solutions should not

be expected to be reproducing the low-energy approximation of the full theory.
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3.2.4 Open systems

EFTs applied to gravitational systems can surprise in other ways as well. In particular,

during inflation we have seen that the main observational consequences are tied up

with super-Hubble modes, for which k/a� H. Since these are the longest-wavelength

modes in the system the effective action that describes them has long been sought as

the most efficient way to capture inflationary predictions in as model-independent way

as possible. But no such an effective action was ever found.

This doesn’t mean an effective description does not exist, it just turns out not to

be described by an effective action [17]. This unusual situation arises because during

inflation the long-wavelength modes are an open system, in that modes are continually

moving from sub-Hubble to super-Hubble throughout the inflationary epoch. This

should be contrasted with the usual situation with a Wilsonian effective theory, for

which high- and low-energy states are forbidden from transitioning into one another by

energy conservation.

Because of this mode migration the long- and short-distance sectors can interact

in more complicated ways than are normally entertained, such as by entangling and/or

decohering with one another. The appropriate language for describing long-wavelength

modes in this kind of situation is to use the reduced density matrix, %L = TrS ρ, in

which the full system’s density matrix is traced over the unwatched (in this case, short-

wavelength) sector. It turns out that %L evolves in time according to what is called a

Lindblad equation, which need not be writable as a Liouville equation for some choice

of effective Hamiltonian.

Using these kinds of arguments it is possible to show that the leading effective

description of fluctuations amongst super-Hubble modes during inflation is given by

a Fokker-Planck equation, the description of which is called ‘stochastic inflation’. Al-

though their description goes beyond the scope of these lectures, the evidence now is

that stochastic inflation does a best job capturing the late-time evolution of super-

Hubble modes.

3.3 EFT of inflationary fluctuations

There is yet another kind of effective description that arises within the inflationary

literature, one that has come to be known as ‘the’ Effective Theory of Inflation. These

notes close with a very brief summary of this specific theory, in order to put it into its

context in the broad EFT pantheon.

The EFT of Inflation is aimed at single-field inflationary models including, but not

restricted to, the simple models considered above. The starting point of this theory is
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the observation that when the single field rolls homogeneously, ϕ(t), its rolling (and the

geometry the energy in this rolling creates) provides the clock that breaks the time-

translation invariance the flat spacetime otherwise would have had in the absence of ϕ.

In many ways ϕ acts as the Goldstone boson for this breaking, though it is ultimately

eaten by the metric, which is the gauge field for local translations.

TO BE CONTINUED....
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