Effective Field Theories in QCD

N. Ripunjay Acharya^{1,2}, with Feng-kun Guo² & Ulf-G. Meißner¹

¹HISKP, University of Bonn

²ITP, CAS Beijing

Les Houches, 04 July, 2017

EFTs in QCD: Acharya

Chiral Perturbation Theory with the topological heta term:

- θ-dependence of the lightest meson resonances in QCD.
- hep-ph/1507.08570

Partially Quenched χ PT to separate and calculate disconnected Wick contractions in $\pi\pi$ Scattering.

- Connected and disconnected contractions in pion-pion scattering
- hep-ph/1704.06754

$$\mathcal{L}_{\theta} = -\frac{\theta}{64\pi^2} \boldsymbol{\epsilon}^{\mu\nu\rho\sigma} G^a_{\mu\nu} G^a_{\rho\sigma}$$

Why study LQCD?

Because LQCD = QCD!

LQCD is currently the only known way to treat the full QCD lagrangian non-perturbatively from first principles.

We can extract, for example: mass, decay constants and form factors for the ground state.

Lattice QCD = theoretical physics + technical knowledge

Previous work: Phenomenological implications of the intrinsic

charm in the Z boson production at the LHC (arXiv:1512.06007)

Sac

SYMMETRIES AND EFT METHODS in high-energy physics and cosmology

M.P. Bogers • UiS • mark.bogers@uis.no

Motivation

The S.M. Higgs mass of 125 GeV, leads to an unstable Higgs potential. This is severe during inflation due to higher quantum tunneling rate.

• The addition of a term ξ : $\frac{1}{2}\xi RH^{\dagger}H$ leads to RGE:

Motivation

The S.M. Higgs mass of 125 GeV, leads to an unstable Higgs potential. This is severe during inflation due to higher quantum tunneling rate.

The addition of a term ξ : $\frac{1}{2}\xi RH^{\dagger}H$ leads to RGE:

$$\frac{\xi_H(t) - \frac{1}{6}}{\xi_{H,0} - \frac{1}{6}} = \left(\frac{2\pi^2}{2\pi^2 - 3\lambda_{H,0}t}\right)^{\frac{1}{2}}, \ \ \mu_H^2 = \mu_{H,0}^2 \left(\frac{2\pi^2}{2\pi^2 - 3\lambda_{H,0}t}\right)^{\frac{1}{3}}$$

1

Motivation

The S.M. Higgs mass of 125 GeV, leads to an unstable Higgs potential. This is severe during inflation due to higher quantum tunneling rate.

► The addition of a term ξ : $\frac{1}{2}\xi RH^{\dagger}H$ leads to RGE: ► $\xi_{H}(t) - \frac{1}{c}$ ($2\pi^{2}$) $\frac{1}{2}$ and $\zeta_{H}(t) - \frac{1}{c}$ ($2\pi^{2}$)

$$\frac{\xi_H(t) - \frac{1}{6}}{\xi_{H,0} - \frac{1}{6}} = \left(\frac{2\pi^2}{2\pi^2 - 3\lambda_{H,0}t}\right)^2, \ \ \mu_H^2 = \mu_{H,0}^2 \left(\frac{2\pi^2}{2\pi^2 - 3\lambda_{H,0}t}\right)^3$$

• Hence, the ξ term proves to be more significant for large ϕ than the $\frac{1}{2}m^2\phi^2$ term:

< ≣⇒

æ

Success!! The ξ term IS more significant as energy increases \rightarrow the instability can be solved at high energy!

Success!! The ξ term IS more significant as energy increases \rightarrow the instability can be solved at high energy!

▶ What happens when gravity is not just a static background? What is the result of allowing *R* to fluctuate ?

Success!! The ξ term IS more significant as energy increases \rightarrow the instability can be solved at high energy!

- ▶ What happens when gravity is not just a static background? What is the result of allowing R to fluctuate ?
- ► Is the result dependent on the choice of frame (Einstein Jordan)?

Success!! The ξ term IS more significant as energy increases \rightarrow the instability can be solved at high energy!

- ▶ What happens when gravity is not just a static background? What is the result of allowing R to fluctuate ?
- ► Is the result dependent on the choice of frame (Einstein Jordan)?

DONGJIN CHWAY (Seoul National University)

arXiv:1512.08221 (PRL, 117, 061801) arXiv:1612.05031 (PRD, 95, 115004) (DC, Radovan Dermisek, Tae Hyun Jung, Hyung Do Kim)

DONGJIN CHWAY (Seoul National University)

Self-consistency equation leads to Schroedinger equation with Coulomb potential

Optimistic LO ballpark estimate on the top mass with ± 1 GeV (100 MeV) precision: 13 TeV LHC 2 ab^{-1} (100 TeV HC 2 ab^{-1}), assuming 1 GeV diphoton resolution.

PDF and α_s uncertainty and NLO including ISR should be taken into account.

Exclusive LHC Pheno and small x PDFs

Chris Flett

In collaboration with Thomas Teubner (Univ. of Liverpool) and Stephen Jones (MPI, Munich)

- Inclusive/DIS type events do not constain small x regime of PDFs
- In 1993, Ryskin showed forward cross section for *exclusive* J/psi production via ultraperipheral pp collisions was a sensitive probing process PP -> P + J/psi + P of the *gluon* PDF.
- Want to generalise previous literature to electroproduction and use xFitter as a means of incorporating existing small x photoproduction data to constrain gluon PDF

Research interests

John Gargalionis – University of Melbourne Supervisor: Raymond Volkas

- Radiative neutrino mass: design a systematic process for opening up $\Delta L = 2$ effective operators to produce renormalisable models of radiative neutrino mass
 - **Connections:** purported violations of LFU in *B*-meson decays, leptogenesis, dark matter, SUSY, unification, ...
- Machine learning on jets: train neural network on real, low-level data from the LHC (CMS open data). Current aim: distinguish quark and gluon jets (work with Matthew Dolan)

Caspar Hasner TU Munich

Dark Matter

- Indirect Detection
- Weakly Interacting Massive Particles
- Mass ~ TeV
- Soft Collinear Effective Theory

Sigtryggur Hauksson, McGill University

- Quark-gluon plasma (QGP) is produced in heavy-ion collisions.
- Want to extract shear viscosity of the QGP from experimental observables.

$$\frac{\eta}{s} \sim \frac{1}{4\pi}$$

 Might hope to get information about the viscosity of QGP through photons and jets.

My research

Both photons and jets are subject to the LPM effect at leading order in g_s .

- Need to do the calculation for QGP that's not in thermal equilibrium (Keldysh-Schwinger formalism).
- Some difficulties:
 - Resumming diagrams without using the KMS condition
 - Controlling exponential growth of soft gluon modes in an anisotropic plasma.

After June: Universität Bern, CH [Before June: University of Cape Town, RSA]

Contact → jackson@itp.unibe.ch

b UNIVERSITÄT BERN

DEPARTMENT OF PHYSICS UNIVERSITY OF CAPE TOWN

[1610.08530] Equation of State

QCD @ finite-T

How strong is strong?

