Les Houches 2017 Introduction to EFT Aneesh Manohar

1.

References

EFT: hep-ph/9606222

Power Counting: arXiv:1601.07551

Matching in HQET and field redefinitions: hep-ph/9701294

Invariants: arXiv:0907.4763, 1010.3161, 1503.07537, 1512.03433, 1706.08520

SMEFT holomorphy: 1409.0868

Problems: v5

Show that for a connected graph, V. — I + L = 1. What is the formula if the graph has n
connected components?

. Work out the properties of fermion bilinears v (x,t)I' Py x(x,t) under C, P, T, where I' =

1,9*, 0", The results for P, — Pr can be obtained by using L <> R.

Fierz identities are relations of the form

(ATB)(CTD) = > (CT;B)(ATD)

)

where A, B, C, D are fermion fields. They are much simpler if written in terms of chiral fields,
where I'; = 1,v*, 0. Work out the Fierz relations for

(ZPLB)(GPLD), (ZPLB>(UPRD), (EVMPLB)(G’}/HPLD), (Z’Y“PLB)(é’YMPRD),
(Ac" P.B)(Co,,P.D), (Ac"” P.LB)(Co,,PrD)

The Pr Pg identities are given by using L <> R on the L L identities. Do not forget the Fermi
minus sign.

In d = 4 spacetime dimensions, work out the field content of Lorentz-invariant operators with
dimension n for n = 1,...,6. At this point, do not try and work out which operators are
independent, just the possible structure of allowed operators. Use the notation ¢ for a scalar,
¥ for a fermion, X, for a field strength, and D for a derivative. For example, an operator
of type ¢*>D such as ¢D,¢ is not allowed because it is not Lorentz-invariant. An operator
of type ¢?D? could be either D,¢D"¢ or ¢D?*¢, so a ¢*D? operator is allowed, and we will
worry later about how many independent operators ¢?D? we can construct.

For d =2,3,4,5,6 dimensions, work out the field content of operators with dimension n < d,
i.e. the “renormalizable” operators.



6. Show that if () is fixed at some high scale, say p = 1TeV, then m,, m?/w, where m,, is

the proton mass and m; is the top quark mass.

7. (a) Compute in dimensional regularization in d = 4 — 2e dimensions
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EFT =— —1U /(271_)(1 (k‘2—m2) Ve M4—|— +c.t..

Both integrals only have UV divergences, so the 1/e pieces are canceled by the countert-
erms. Determine the counterterm contributions Ir ¢, Igpr et

(b) Compute Iy = (Ip + Ipe) — (Igrr + Iwpr,et) and show that it is analytic in m.
(¢) Compute I}?Xp), i.e. Ir with the IR m scale expanded out

d?k 1 1 m?
plew) _ 26/ 1=,
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Note that the first term in the expansion has a 1/e UV divergence, and the remaining
terms have 1/e IR divergences.

(d) Compute [}(,eXp) + I . Show that the UV divergence cancels, and the remaining 1/¢ IR
divergence is the same as the UV divergent counterterm /gpr  in the EFT.

(e) Compute [é??), i.e. Igpr with the IR m scale expanded out. Show that it is a scaleless
integral which vanishes. Using the known UV divergence from (a), write it in the form

ﬁm_1[o c]

EFT ].671'2 €uv €IR

and that the IR divergence agrees with that in ]l(pr) + Ip e

(f) Compute (I}eXP) +1 F,ct) — (Ig?g) + IEFT,Ct> and show that all the 1/¢ divergences (both
UV and IR) cancel, and the result is equal to I, found in (b).

(g) Make sure you understand why you can compute I, simply by taking ]l(pr) and dropping
all 1/€ terms (both UV and IR).

8. Show that for SU(N),
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and the color Fierz identities
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9.

10.

11.

12.

C_ompute the one-loop scalar graph with a scalar of mass m and interaction —A¢?/4! in the
MS scheme.

« Compute the decay rate I'(b — ce”7,) with the interaction Lagrangian

4Gr . -
L= ==LV, (4" PLb) (T, Pre)

V2

with me — 0, m, — 0, but retaining the dependence on p = m2/m3. It is convenient to write
the three-body phase space in terms of the variables 1 = 2E,/my, and x5 = 2E,, /my,

Compute the anomalous dimension of gg in QCD. Start with massless QCD, and treat L =
—mgqq as an operator insertion.

x Compute the anomalous dimension mixing matrix of

O = ("y"Prea) (@*y" Prd,) Oy = (0" " Preg) (@4 Prdy)

ali)-n 2l
du | c2 Vo1 V22 Co
Two other often used bases are

Q1 = (by" Pre)(uy Prd) Qo = (0" PLT c)(uy" PLTAd)
and

Oy =0,£0,
So let
L =101+ 05 =d1Q1 + doQy =0y +¢c_O_

and work out the transformation between the anomalous dimensions for d; » and c4 _ in terms
of those for ¢ o,



13. The equation of motion for A¢?* theory,

1 A,

_1 2 —.22

The EOM Ward identity for 6 = F(¢)FE is

= (-0~ m)p— 50

(O] {p(x1) ... ¢(xn)0( Ho—ziﬁz—L~Mwa1 o). p(za)F(2)}]0)

In momentum space, integrate both sides with

/dze_iq'zH/dxie_ipi'xi

to give the momentum space version
O {&(p1) .. 6(p)0la) } 0) = zz 82 = 2) O {o(p1) .. ST .. S(wa) Fla + 1) } 10)
(a) Consider the equation of motion operator

= 0B = 6(-0" —m)o — 5"

and verify the Ward identity by explicit calculation at order A (i.e. tree level) for ¢¢
scattering, i.e. a graph with four ¢ fields, n = 4.

(b) Take the on-shell limit p? — m? at fixed q # 0 of

H(—Z)(pf - m2) x Ward Identity

T

and verify that both sides of the Ward identity vanish. Note that both sides do not
vanish if one first takes ¢ = 0 and then takes the on-shell limit.

¢) * Repeat the above calculation to order A2, i.e. one loop.
p ) P

(d) * Repeat (to one loop) for the equation of motion operator
A
= 6" B= (=0 —m%)o - 50"

14. Take the heavy quark Lagrangian

Qo {z’v -D +ilmewL} Q
:QU{w.D—ﬁmL+4—T;m<z’v-D>m+...}@



15.

16.

17.

and use a sequence of field redefinitions to eliminate the 1/m? suppressed v - D term. (iv -
D)@, = 0 is the equation of motion for the heavy quark field, so this example shows how you
eliminate equation of motion operators. Here v* is a velocity vector with v-v =1, and for a
four-vector A,

DY = D" — (v-D)v"

If you prefer, you can work in the rest frame of the heavy quark, where v* = (1,0,0,0),
v-D = D%and D} = (0,D).

Compute the on-shell electron form factors Fi(¢?) and Fy(¢*) expanded to first order in ¢*/m?
using dimensional regularization to regulate the IR and UV divergences. This gives the one-
loop matching to heavy-electron EFT. The non-Abelian version (in hep-ph/9701294) gives the
one-loop matching to the HQET Lagrangian. Note that it is much simpler to first expand and
then do the Feynman parameter integrals. Fo(g?) are given in many field theory textbooks,
but usually not in pure dim reg.

The SCET matching for the vector current 171 can be done by repeating the previous
problem with external masses m — 0 and p? — 0, and doing the integral in pure dim reg
with Q% = —¢*® # 0. Here Q? is the big scale, whereas in the previous problem ¢* was the
small scale. The spacelike calculation Q? > 0 avoids having to deal with the +i0" terms in
the Feynman propagator which lead to imaginary parts. The timelike result Q? < 0 can then
be obtained by analytic continuation.

Show (by explicit calculation) for a general 2 x 2 matrix A that

0= (A — S (A + (4%, 0=

- (A~ 2 (A7)~ (A) A4 A°

N | —

and for general 2 x 2 matrices A, B, C that
0 = (4) (B) (C) — (A) (BC) — (B) (AC) — (C) (AB) + (ABC) + (ACB) .

Identities analogous to this for 3 x 3 matrices are used to remove L, and replaced it by L; 23
in yPT, as discussed by Pich in his lectures.



