Introduction to SCET:
Supplementary Slides

Thomas Becher
Bern University

Lectures on Soft-Collinear Effective Field Theory
Les Houches Summer School, July 2017

UNIVERSITAT

EEEEEEEEEEEEEEEEEEEE
FFFFFFFFFFFFFFFFFFFFF



Momentum Regions in
the Sudakov Problem



Method of regions

For a review: V.A. Smirnov Springer, Tracts Mod. Phys.177:1-262, 2002
Steps towards a proof: B. Jantzen, JHEP 1112 (2011) O/6

In general, the expansion of integral in dim. reg. is
obtained as follows:

* |dentity all regions of the integration which lead to
singularities in the limit under consideration.

* Expand the integrand in each region and integrate
over the full phase space.

 Summing the contribution from the different regions
gives the expansion of the original integral.



Application to the Sudakov problem

Let us now perform the expansion in a situation,
where particles have large energies, but small
iInvariant masses. Simplest example is the integral

k41 k+p
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L= —1*—i0, P? = —p* —i0, QQE—(l—p)Z—iO

We consider the limit L? ~ P? <« Q?
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We consider the scalar integral /, but the same
momentum regions appear in tensor integrals.

To obtain the expansion introduce light-like reference
vectors in the directions of p and [

n, =(1,0,0,1) n, = (1,0,0,—1)
n‘=n*=0 n-n=2
Any vector can be decomposed as

n* nt

p“z(n-p)7+(ﬁ-p)7+p‘iEpi+p‘_‘+pi,



Introduce expansion parameter A\ ~ P?/Q* ~ L*/Q?

The different components of p# scale differently. Since
p?=mn-pa-p+pl ~NQ’
and p" ~ 2@ n", we must have
(n-p,n-p,pL)
p'~ (A, 1, A)Q
o~ (1, 27, 0)Q



Regions in the Sudakov problem

The following momentum regions contribute to the
expansion of the integral

(n-

L)
e Hard (h) ( . 1)Q
e Collinear to p (cl) ~ (M1, A)@
e Collinear to I (c2) ~ (1, A%, )@
® Soft (s) ~ (AT, AT, M) @

All other possible scalings (A2, Ab, A¢) lead to
scaleless integrals upon expanding. = Exercise



Have expanded away small momentum
components
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IR divergences!

The hard region is given by the on-shell form factor
integral.
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Collinear contribution

|
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The other collinear contribution I, 1S obtained from
exchangingl < p .

Have expanded (k +1)% = 2k_ -1, + O(\%)

Scales as (P?)™®



Soft contribution
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I, = in~4/? /ddk
i (k2 +140) (2k_ - Iy + 12 +i0) (2k_. - p_ + p2 + 40)

- I'(1+¢) 22l - p_\*
= ['(e) T'(—e¢) ( L;P2 )

Fl+e (1 1 p?Q° o Q7
In ' u .
02 (62 el o e ) O

N

UV divergences!

Scales as (Aso2) ™~ (P2 L2/0?)°.

Expand (k+p)* =2ky -p_ +p° + O(X)



GGrand total
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Finite (and correct!)



Cancellations

IR divergences of the hard part are in one-to-one
correspondence to UV divergences of the low-energy regions

* True in general: IR divergences of on-shell amplitudes
are equal to UV divergences of soft+collinear
contributions

The cancellation of divergences involves a nontrivial interplay
of soft and collinear log’s
1 Iu2 1 . 2 1 . ,UQQQ 1 ,U2

_ 2] - —
e P2 ¢ L2+ 2P~ ¢ Q2

e [eads to interesting constraints on IR structure of on-
shell amplitudes. TB Neubert, ‘09, Gardi Magnea ‘09



Soft region

Note that the soft region has

L?P?
QQ

Interestingly, loop diagrams involve a lower scale
than what is present on the external lines. Sometimes
scalingp? ~ \*Q? is called ultra-soft.

Implies e.qg. that jet-production processes can involve
non-perturbative physics, even when the masses of
the jets are perturbative.



Low energy regions

In contrast to expansion problems in Euclidean
space, we encounter several low-energy regions.
Each one is represented by a field in SCET.

Q QCD hard H
<

M SCET collinear J
<

M?/Q SET soft S



| eading-power SCET
L agrangian



| eading-power SCET Lagrangian

% . . ]- . ]- ca\?2 . 1 sa\2
ESCET:§§ m.D_HlDCLiﬁ-DCZ el f—z(Fw) +QS2¢SQS—Z(FW)

where
gk, t° = [iD7,iDg| and igFSy t* = [iD",iD"]
WIth i pr — o1 1 g A, (x)"
1D =0t + g A ()
nH

DV = 40" + g Al(x) +gn - As(x_)7

This Lagrangian is exact, i.e. there are no matching
corrections!
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Gauge invariance

When performing gauge transtormations, we
must make sure that they respect the scaling of
the fields. For example, transforming a soft fielc
under a gauge transformation a(x) with collinear
scaling would turn it into collinear field.

We consider two gauge transformations
Vs(z) = exp [iag () t"] Ve(x) = exp |iog () 1

where as(x) has soft scaling, i.e. 0" a,(z) ~ Ao (x)
, and ac(x) collinear scaling.
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Soft gauge transformations

The soft fields transtorm in the usual way

ba(@) = Va(@)te(z) AP (@) — Vi(@) AL @)V] (2) + gvs@:) CAA

while the collinear fields transform as

§(x) = Vi(z-)€(x)  Af(z) — Vi(z-)AL(2)V] (z-)

The x- instead of x dependence ensures that the

transformation does not induce higher power
corrections. Also, the Vs(z) [0", V. is a higher
power correction for A andn - A.. The small
component n - A, only appears in the combination

in-D — Vy(x_)in-DV]I(x_)
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Collinear gauge transformation

Under collinear transformations, the soft fields
remain unchanged. The collinear fields transform as

(o) Ve(o)€(a) . AL(e) = Vo)A@V @)+ Velo) |10+ Ton - Aua). Vi )]

The soft piece In this transformation law ensures that
in-D — V.(z)in- DV]I(x)

Both collinear and soft gauge transformations are
homogenous and leave the Lagrangian invariant
(exercise). A thorough discussion of the gauge
transformations and the construction of higher
power terms Iin the Lagrangian is given in Beneke
and Feldmann hep-ph/0211358.
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