A. Pich (Les Houches 2017)

Problem 1

The quadratic mass term of the $\mathcal{O}(p^2)$ χ PT Lagrangian generates a small mixing between the π_3 and η_8 fields, proportional to the quark mass difference $\Delta m \equiv m_d - m_u$.

a) Diagonalize the neutral meson mass matrix and find out the correct mass eigenstates and their masses.

b) When isospin is conserved, Bose symmetry forbids the decay $\eta \to \pi^0 \pi^+ \pi^-$ (why?). Compute the decay amplitude to first-order in Δm .

Problem 2

a) Compute the axial current at $\mathcal{O}(p^2)$ in χ PT and check that $f_{\pi} = f$ at this order.

b) Expand the $\mathcal{O}(p^2)$ axial current to $\mathcal{O}(\Phi^3)$ and compute the 1-loop corrections to f_{π} . Remember to include the pion wave-function renormalization.

c) Find the tree-level contribution of the $\mathcal{O}(p^4) \chi \text{PT}$ Lagrangian to the axial current. Renormalize the UV loop divergences with the $\mathcal{O}(p^4)$ LECs.

Problem 3

Assume the existence of a hypothetical light Higgs which couples to quarks with the Yukawa interaction

$$\mathcal{L}_{h^0\bar{q}q} = -\frac{h^0}{v} \sum_q k_q m_q \bar{q}q.$$

a) Determine at lowest-order in the χ PT expansion the effective Lagrangian describing the Higgs coupling to pseudoscalar mesons induced by the light-quark Yukawas.

b) Determine the effective $h^0 G^{\mu\nu}_a G^a_{\mu\nu}$ coupling induced by heavy quark loops.

c) The $G^{\mu\nu}_{a}G^{a}_{\mu\nu}$ operator can be related to the trace of the energy-momentum tensor, in the 3-flavour QCD theory:

$$\Theta^{\mu}_{\mu} = \frac{\beta_1 \alpha_s}{4\pi} G^{\mu\nu}_a G^a_{\mu\nu} + \bar{q} \mathcal{M} q \,,$$

where $\beta_1 = -\frac{9}{2}$ is the first coefficient of the β function. Using this relation, determine the lowest-order χ PT Lagrangian incorporating the Higgs coupling to pseudoscalar mesons induced by the heavy-quark Yukawas.

d) Compute the decay amplitudes $h^0 \to 2\pi$ and $\eta \to h^0 \pi^0$.