
EFT methods and inflation: Exercises

Exercise 1:
Slow growth of fluctuations during radiation domination

The equation governing the growth of density fluctuations for non-relativistic matter in
a spatially flat FRW geometry is

δ̈k + 2H δ̇k +

(
c2
sk

2

a2
− 4πGρm0

)
δk = 0 , (1)

where δ = δρm/ρm0 is the fractional fluctuation in the matter density, k is its Fourier label
while a is the scale factor and H = ȧ/a and so H2 = 8πGρ0/3.

For a matter-dominated universe, for which ρ0 ' ρm0 ∝ 1/a3 and a ∝ t2/3 show that as
csk → 0 eq (1) gives power-law solutions of the form δ0 ∝ tn with n = 2

3
or n = −1. (The

growing mode verifies the claim in class that δ0 ∝ a during matter domination.)
Consider now the transition between radiation and matter domination, for which ρ0 =

ρm0 + ρr0 and so

H2(a) =
8πGρ0

3
=
H2

eq

2

[(aeq

a

)3

+
(aeq

a

)4
]
, (2)

where radiation-matter equality occurs when a = aeq, at which point H(a = aeq) = Heq.
The matter part of this expansion comes from

H2
m :=

8πGρm0

3
=
H2

eq

2

(aeq

a

)3

. (3)

Verify that δ0(x) satisfies

2x(1 + x) δ′′0 + (3x+ 2) δ′0 − 3 δ0 = 0 , (4)

where the scale factor, x = a/aeq, is used as a proxy for time and primes denote differenti-
ation with respect to x. Show that this is solved by δ0 ∝

(
x+ 2

3

)
, and thereby show how

the growing mode during matter domination does not grow during radiation domination.
(Bonus: show that the linearly independent solutions to this one only grow logarithmically
with x deep in the radiation-dominated era, for which x� 1.)
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Exercise 2:
Calculation of vacuum energy for a scalar field in a static spacetime

There are a variety of ways commonly used to compute quantum corrections to the
vacuum energy, and this tutorial is meant to show how they are related. For the purposes of
the exercise a free real scalar field is used, with action S =

∫
dt L =

∫
d4x L and Lagrangian

L =
∫

d3x L. The Lagrangian density is

L = −
√
−g

[
1

2
∂µφ ∂

µφ+
1

2
m2 φ2

]
, (5)

and the resulting field equation is the Klein-Gordon equation

(−� +m2)φ = (−gµν∇µ∇ν +m2)φ = 0 . (6)

But the relationship between the calculations described below is more general than just for
this one example.

Canonical calculation

The simplest approach to calculating the vacuum energy is the same calculation that identi-
fies all of the energy eigenstates and eigenvalues. This starts by assuming a static background
spacetime with metric ds2 = −dt2 + gij dxi dxj, for which gij is time-independent and a con-
served energy can be formulated. Using the above action the field’s canonical momentum
is

π(x) =
δS

δφ̇(x)
=
√
−g φ̇(x) , (7)

(where an over-dot as in φ̇ denotes ∂t) and so the Hamiltonian density is

H = π φ̇− L =
π2

2
√
−g

+
1

2

√
−g
[
gij∇iφ∇jφ+m2 φ2

]
. (8)

Background about quantization and mode functions

Because this is quadratic in the fields it is essentially a fancy harmonic oscillator. To diago-
nalize it we expand the fields in terms of creation and annihilation operators

φ(x) =
∑
n

[
an Un(x) + a?n U

∗
n(x)

]
, (9)

where we choose the mode functions, Un(x), to be simultaneous eigenstates of −gij∇i∇j and
i∂t. That is they satisfy the Klein-Gordan equation, (−� +m2)Un = 0, in a basis that also
satisfies

−gij∇i∇jUn(x) = ω2
nUn(x) and iU̇n = εn Un(x) , (10)

for eigenvalues ω2
n and εn. The Klein-Gordon equation imposes a relation between these

eigenvalues since −�Un = Ün − gij∇i∇jUn = (−ε2
n − gij∇i∇j)Un and so(

−gij∇i∇j +m2
)
Un = (ω2

n +m2)Un = ε2
n Un . (11)
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This shows how ε2
n = ω2

n+m2 gets determined by the spectrum of gij∇i∇j for the spacetime
of interest.

So we may write

Un(x, t) =
1√
2εn

un(x) e−iεnt , (12)

where the prefactor is chosen for later convenience. Similarly

π(x) =
√
−g φ̇ = −i

√
−g

∑
n

εn

[
an Un(x)− a?n U∗n(x)

]
. (13)

The covariant normalization condition for the modes is defined using the Wronskian by

WΣ(Un, Um) := −i
∫

Σ

d3x
√
−g
[
U̇∗n(x)Um(x)− U∗n(x) U̇m(x)

]
=

∫
Σ

d3x
√
−g
[
εnU

∗
n Um + εmU

∗
n Um

]
= δmn , (14)

where Σ is a slice of fixed t. Similarly, because (10) tell us iU̇∗n = −εnU∗n, we see that U∗n
and Un are eigenstates for different energy eigenvalues (notice for m 6= 0 there are no zero
eigenvalues), and so are also orthogonal

WΣ(U∗n, Um) := −i
∫

Σ

d3x
√
−g
[
U̇n(x)Um(x)− Un(x) U̇m(x)

]
= (εm − εn)

∫
Σ

d3x
√
−g Un Um = 0 . (15)

It doesn’t matter which t we choose for W when evaluating these orthogonality conditions
provided the falloff of Un is sufficiently good at spatial infinity (if this exists), and this is the
point of why W is defined the way it is. To see why notice (−� + m2)Un = 0 implies the
following chain of equalities

0 = −i
∫ Σ′

Σ

d4x
√
−g
[
[(−� +m2)Un]∗Um − U∗n[(−� +m2)Um]

]
= i

∫ Σ′

Σ

d4x
√
−g ∇µ

[
(∇µUn)∗Um − U∗n(∇µUm)

]
(16)

= i

∮ Σ′

Σ

d3x
√
−g nµ

[
(∇µUn)∗Um − U∗n(∇µUm)

]
= WΣ(Un, Um)−WΣ′(Un, Um) .

Here the integration in the first line is over a slab of spacetime lying between two constant-t
slices, Σ and Σ′. The second line then integrates both terms by parts and the third line
uses Gauss’ theorem to write the result in terms of a surface integral over the boundaries of
the spacetime region of interest, with nµ being the outward-pointing normal. If there are no
spatial boundaries (or if the boundary conditions are chosen at spatial infinity appropriately)
then the only boundaries contributing to the integrals are Σ and Σ′. Then nµdxµ = ±dt
for the two surfaces, and the last line follows by recognizing that the surface integrals are
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precisely the Wronskians for each of the bounding constant-t surfaces. Comparing first and
last lines shows that WΣ(Un, Um) does not depend on Σ.

Given the above conventions and normalization condition, completeness of the modes
implies ∑

n

un(x)u∗n(y) =
δ3(x,y)

[−g(x)]1/4[−g(y)]1/4
, (17)

where the delta function transforms as a bi-density distribution that vanishes when x 6= y
and satisfies the defining condition

f(x, t) =

∫
d3y δ3(x,y) f(y, t) (18)

for all f without any metrics. The completeness condition is related to the normalization
condition because multiplying (17) by

√
−g(y) um(y) and integrating over y must give the

tautology um(x) = um(x), which it does but only because the um’s are orthogonal and (14)
implies each mode satisfies the normalization condition∫

Σ

d3x
√
−g u∗n(x)un(x) = 2εn

∫
Σ

d3x
√
−g U∗n(x)Un(x) = 1 . (19)

Finally, the harmonic oscillator (or creation and annihilation) operator algebra is equiv-
alent to the canonical quantization conditions because

[an, am] = 0 and [an, a
?
m] = δnm , (20)

imply

[φ(x), φ(y)] =
∑
nm

{
Un(x)U∗m(y)[an, a

?
m] + U∗n(x)Um(y)[a?n, am]

}
=

∑
n

1

2εn

{
un(x)u∗n(y)− u∗n(x)un(y)

}
= 0 , (21)

and

[π(x, t), φ(y, t)] = −i
√
−g(x)

∑
nm

εn

{
Un(x)U∗m(y)[an, a

?
m]− U∗n(x)Um(y)[a?n, am]

}
= − i

2

√
−g(x)

∑
n

{
un(x)u∗n(y) + u∗n(x)un(y)

}
(22)

= −i [−g(x)]1/4

[−g(y)]1/4
δ3(x,y) = −i δ3(x,y) . (23)

Calculation of the energy eigenvalues and eigenstates

1. The point of the above is that the energy is diagonal when expressed in terms of the
eigenstates of a?nan, as we see by evaluating the Hamiltonian in terms of an and a?n. To
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this end write

H =

∫
d3x H =

∫
d3x

{
π2

2
√
−g

+
1

2

√
−g
[
gij∇iφ∇jφ+m2 φ2

]}
=

∫
d3x

{
π2

2
√
−g

+
1

2

√
−g φ

[
−gij∇i∇jφ+m2 φ

]}
, (24)

and show that it can be written

H =
1

2

∑
n

εn

(
a?nan + ana

?
n

)
. (25)

2. The previous question shows that H is diagonal in the basis for which the operators
a?nan are diagonal for all n. Show this by using the commutation relation [an, a

?
m] = δnm

to rewrite H as
H = E0 +

∑
n

εn a
?
nan , (26)

with the constant E0 being formally written as

E0 =
1

2

∑
n

εn . (27)

This expression is ‘formal’ because the sum typically diverges. It can be regularized in
many ways (and you might reasonably wonder whether or not physical results depend
on which way is used). One such is zeta-function regularization, which defines

ζ(s) :=
∑
n

ε−s , (28)

for complex s. This often converges where the real part of s is sufficiently large and
positive, and one tries to analytically extend this result down to the desired result
E0 = ζ(−1). Another way to proceed is instead to differentiate E0 sufficiently many
times with respect to m2 that the sum converges, and then integrate the sum again to
get E0,

The energy eigenvalues for H are clearly given by H|{Nk}〉 = E|{Nk}〉 with

E = E0 +
∑
n

Nnεn , (29)

where the next exercise shows the allowed values for the Nn are Nn = 0, 1, 2, · · · . The
state |0〉 denotes the ground state (or vacuum) for which Nn = 0 for all n and has
eigenvalue

H|0〉 = E0|0〉 . (30)

3. The basis diagonalizing a?nan for all n is called the ‘occupation-number’ basis and
denoted |{Nk}〉 = |Nn1 , Nn2 , Nn3 , · · · 〉 where the labels Nn are the eigenvalues for
a?nan, for all possible values taken by n. That is, they satisfy

a?nan|{Nk}〉 = Nn|{Nk}〉 . (31)
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Prove that the Nn = 0, 1, 2, · · · are non-negative integers as follows. First prove
[a?nan, am] = −δnman and [a?nan, a

?
m] = +δnma

?
n. Show that these relations imply that if

|{Nk}〉 is an eigenstate with eigenvector of a?nan with eigenvalue Nn then an|{Nk}〉 is
also an eigenstate of a?nan but with eigenvalue Nn − 1 and a?n|{Nk}〉 is an eigenvector
with eigenvalue Nn + 1.

Next prove Nn ≥ 0 by evaluating 〈{Nk}|a?nan|{Nk}〉 = Nn〈{Nk}|{Nk}〉 = Nn and
recognizing that the left-hand side is non-negative because it is the norm of the vector
an|{Nk}〉. But this is inconsistent with the result that an always lowers the eigenvalue
by one unit unless there exists an eigenstate for which an|Ψ〉 = 0. Repeating this
argument for all labels n shows there must be a state, |0〉, for which an|0〉 = 0 for
all n, and then all other eigenstates of a?nan are obtained by acting repeatedly on |0〉
with a?n. (For example consider the particular state |2n5 , 6n20〉, for which the particle
state labelled by n5 has eigenvalue Nn5 = 2 for a?n5

an5 and the state labelled by n20

has eigenvalue Nn20 = 6 for a?n20
an20 . This is proportional to (a?n5

)2 (a?n20
)6|0〉, and so

on for any other choices for these eigenvalues.)

Path integral method of evaluating the vacuum energy

An alternate way to proceed instead uses the path integral formulation for the effective
action

eiΓ[g] =

∫
Dφ eiS[φ,g] , (32)

where the action S[φ, g] is given as the integral over (5), regarded as a function of the
fields φ and gµν . In this expression Γ[g] is a contribution to the action for the metric,
gµν , obtained after integrating out the field φ. It is to be added to other terms (like the
Einstein-Hilbert term), but our interest is in anything of the form Γ = −

∫
d4x
√
−g ρv,

because this gravitates like a cosmological constant (or vacuum energy). For time-

translational invariant systems the integral over t diverges proportional to
∫ T
−T dt = T

as T →∞ and it is the energy E0 = −Γ/T that should remain finite in this limit.

Because the functional integral is Gaussian it can be evaluated in terms of a functional
determinant of the quadratic operator appearing in the action: ∆ = (−�+m2)δ4(x−y).

eiΓ =
[
det
(
−� +m2 − iε

)]−1/2

, (33)

and so

Γ =
i

2
ln det

(
−� +m2 − iε

)
=
i

2
Tr ln

(
−� +m2 − iε

)
. (34)

Here ε is a positive quantity that is taken to zero at the end, and imposes (as usual for
a Feynman propagator) the right boundary conditions to describe matrix elements in
the vacuum. We suppress the iε in what follows, but recall it when needed by regarding
m2 as having a small negative imaginary part.

To evaluate this again choose eigenfunctions that diagonalize −gij∇i∇j and i∂t. That
is choose a basis of functions, Vn(x), for which

−gij∇i∇jVn = ω2
nVn and i∂tVn = εVn , (35)
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and so
(−� +m2)Vn = (−ε2 + ω2

n +m2)Vn (36)

is diagonalized with eigenvalues λn = −ε2 + ω2
n + m2 = −ε2 + ε2

n. Notice that unlike
the previous section we do not also have (−� +m2)Un = 0 and so we cannot identify
ε2 with ε2

n := ω2
n + m2. Instead ε is the Fourier transform variable for time, arising

generically for time-translationally invariant systems.

In terms of this our operator in this basis is

〈nε|∆|rε′〉 = (−ε2 + ω2
n +m2) 2πδ(ε− ε′)δnr , (37)

and so the trace may be given by taking diagonal elements and summing over their
eigenvalues, with

Γ(m2) =
i

2
Tr ln

(
−� +m2

)
=
i

2

∑
n

∫ ∞
−∞

dε

2π
ln(−ε2 + ω2

n +m2) 2πδ(0) . (38)

The factor of δ(0) arises due to time translation invariance, as may be seen by writing

2πδ(E) = lim
T→∞

∫ T

−T
dt e−iεt and so 2πδ(0) = lim

T→∞
T , (39)

and so the well-behaved quantity is the energy

E0 = − lim
T→∞

Γ

T
= − i

2

∑
n

∫ ∞
−∞

dε

2π
ln(−ε2 + ω2

n +m2) . (40)

Again the remaining sums and integrals diverge. The integration over ε passes through
singularities at ±εn, which we should navigate by Wick rotating. That is, keeping in
mind (as usual) that m2 → m2 − iε is required for the Feynman propagator, we can
rotate our contour of integration counter-clockwise by 90 degrees in the complex ε
plane by writing ε→ i εE with εE also running from −∞ to∞. The integral converges
if we first differentiate with respect to m2, so show that

∂E0

∂m2
=

1

2

∑
n

∫ ∞
−∞

dεE
2π

(
1

ε2
E + ω2

n +m2

)
=

1

4π

∑
n

[
1

εn
arctan

(
ε

εn

)]∞
−∞

=
1

4

∑
n

1

εn
, (41)

where, as above, εn =
√
ω2
n +m2. Integrating again with respect to m2 then gives

E0(m2) =
1

2

∑
n

εn , (42)

up to an arbitrary m2-independent constant. This is the same sum as was obtained in
the canonical calculation earlier.
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Flat space evaluation

As a particularly simple case consider the case of a flat geometry, for which −gij∇i∇j =
−∇2 can be diagonalized in Fourier space, with eigenfunctions exp(ip · x) and eigen-
values p2.

In terms of this the required operator in this basis is

〈p|∆|q〉 = (pµp
µ +m2) (2π)4δ4(p− q) , (43)

and so the trace may be given by taking diagonal elements and summing over their
eigenvalues, with

Γ(m2) =
i

2
Tr ln

(
−� +m2

)
=
i

2

∫ ∞
−∞

d4p

(2π)4
ln(pµp

µ +m2) (2π)4δ4(0) . (44)

The additional factor of δ3(0) arises due to spatial translation invariance, as may be
seen by writing (as we did before for time)

(2π)3δ3(p) = lim
L→∞

∫ L

−L
d3x eip·x and so (2π)3δ3(0) = lim

L→∞
L3 , (45)

and so is proportional to the volume of space (as well as the previous proportionality to
T ). The well-behaved quantity for infinite translationally invariant systems is therefore
the energy density,

ρv = lim
L→∞

E0

L3
= − lim

L,T→∞

Γ

TL3
= − i

2

∫ ∞
−∞

d4p

(2π)4
ln(pµp

µ +m2) . (46)

To avoid the singularities at p0 = ±
√

p2 +m2, we again Wick rotate. In the resulting
euclidean integral the angular integrals can be done once and for all, giving a factor
of the volume of the unit 3-sphere: 2π2. The remaining integral converges if we first
differentiate with respect to m2 thrice, so show that(

∂

∂m2

)3

ρv =
2π2

2

∫ ∞
0

p3
EdpE

(2π)4

2

(p2
E +m2)3

=
1

32π2m2
, (47)

and so integrating three times with respect to m2 then gives

ρv =
m4

64π2
ln

(
m2

µ2

)
+ Am4 +Bm2 + C , (48)

where µ, A, B and C are arbitrary m2-independent constants. Although the values
of A, B and C can depend on how the integrals were regulated, the logarithmic term
cannot.
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Exercise 3:
Quantum fluctuations of a scalar field in a class of inflationary spacetimes

For a change of pace we work in the Schrödinger picture, rather than the Heisenberg
picture, and so compute the vacuum wavefunctional, Ψ[ϕ, t], for a scalar field.

Action and hamiltonian

Our starting point is the lagrangian density for a spectator scalar

L =

∫
d3x a(t)3

[
1

2
φ̇2 − 1

2 a2(t)
(∇φ)2 − m2(t)

2
φ2

]
, (49)

in an FRW spacetime with metric

ds2 = −dt2 + a2(t)d~x2 (50)

and Hubble paramer H(t) = ȧ/a. Here m(t) denotes the (possibly slowly time-dependent)
mass.

Find the canonical momentum, πk, for each Fourier mode, ϕk, of the scalar field. Given
the quantization condition πk = −iδ/δϕk, show that the Hamiltonian density in Schrödinger
representation can be expressed in Fourier space as

H = H0 +
∑
k

Hk , (51)

with Hk for k 6= 0 given by

Hk = − 1

a3

δ2

δϕk δϕ−k
+ a3

[
c2
s k

2

a2
+m2

]
ϕkϕ−k (52)

where ϕ∗k = ϕ−k.

Ground state wave functional

Use this Hamiltonian to evolve the state wave-functional, Ψ =
∏

k Ψk, according to the
Schrödinger equation,

i
∂Ψk

∂t
= Hk Ψk , (53)

and for free fields seek solutions subject to a gaussian ansatz,

Ψ[ϕ] =
∏
k

Ψk[ϕ] =
∏
k

Nk(t) exp
{
−a3(t)

[
αk(t)ϕk ϕ−k

]}
(54)

and show that the variance of ϕk, 〈|ϕk|2〉, is given by [a3(αk+α∗k)]
−1. Determine the evolution

equations for the functions Nk(t), αk(t) by substituting into (53). Show that they imply αk
must satisfy

0 = α̇k + i α2
k + 3H αk − i

(
k2

a2
+m2

)
for k ≥ 0 (55)
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where all quantities (including the Hubble parameter) can be time dependent, and the dot
denotes derivative with respect to time. The additional equation for Nk ensures it evolves
in a way that is consistent with normalization, but is not needed in what follows.

The solution for αk can be made very explicit if we assume power-law expansion, a =
a0(t/t0)p (so that H = p/t and ε = −Ḣ/H2 = 1/p) and a time-independent ratio m/H.
(Show that de Sitter space can be obtained as the special case where p→∞ and so ε→ 0.)

Equations of the form of (55) are integrated by changing variables from αk to uk where

αk = −i
(
u̇k
uk

)
= i aH

[
∂a uk(a)

uk(a)

]
. (56)

Show that (55) is then satisfied if uk solves the Klein-Gordon equation,

ük + 3H u̇k +

(
k2

a2
+m2

)
uk = 0 . (57)

For constant ε and m2/H2 show that this is solved by

uk(a) = C̃k yq σk(y), (58)

where C̃k is a-independent, provided q and y are chosen as

q =
3− ε

2 (1− ε)
, (59)

and

y(a, k) :=
1

(1− ε)

(
k

aH

)
=

1

(1− ε)

(
k

a0H0

)(a0

a

)1−ε
. (60)

The point of these changes of variables is that they turn eq. (57) into the Bessel equation
for σk:

y2 σ′′k + y σ′k +
(
y2 − ν2

)
σk = 0 , (61)

where primes here denote derivatives with respect to y. Show that the order ν is given by

ν2 =
1

(1− ε)2

[
(3− ε)2

4
− m2

H2

]
. (62)

The solutions for σk are (naturally) Bessel functions, and demanding agreement with the
adiabatic vacuum before horizon exit tells us

uk ∝ exp

[
∓i
∫

dt

(
k

a

)]
∝ e±iy for k/a� H , (63)

of which we choose the lower sign since this turns out below to ensure the real part of αk
is positive (as required to ensure Ψk can be normalized). Show that this fixes the mode
functions to be

uk(a) = C̃k yq(a, k)H(2)
ν [y(a, k)] =

Ck√
a3H

H(2)
ν [y(a, k)] (64)
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where Ck ∝ kqC̃k relabels the integration constants and H
(2)
ν is the Hankel function of the

second kind. The second equality in (64) follows from eq. (59), which implies a3Hy2q is
time-independent. Notice this reduces to the solution for a massive field in de Sitter space
in the limit ε→ 0.

Although Ck drops out of (56) and (so does not contribute directly to αk), some later
formulae are simpler if we choose Ck so that the Wronskian,

W(u, v) := a3(u∗v̇ − v∗u̇) , (65)

satisfies W(u, u) = i. Prove that in this case is the expression for the real and imaginary
parts of αk become

αk + α∗k = −i
(
u∗ku̇k − uku̇∗k
|uk|2

)
=

1

a3 |uk|2
(66)

and αk − α∗k = −i aH
[
∂a (|uk|2)

|uk|2

]
. (67)

What does the first of these imply for the variance of ϕk in terms of uk?
BecauseW is independent of time (when evaluated with solutions to (57)) it is convenient

to compute the implications for Ck in the remote past, where k � aH, in which case the
Hankel function has the asymptotic form

H(2)
ν (y)→

√
2

πy
e−iy+ iπ

2 (ν+ 1
2) for y →∞ . (68)

Use this to show
|Ck|2 =

π

4(1− ε)
, (69)

for all k and ν.
Consequently the quantity relevant to fluctuations in the lectures is

|uk|2 =
π

4(1− ε)a3H
|H(2)

ν (y)|2 . (70)

Use the asymptotic expression

H(2)
ν (y)→ iΓ(ν)

π

(y
2

)−ν
for y → 0 , (71)

to derive the small-k limit

|uk|2 →
22ν−2|Γ(ν)|2(1− ε)2ν−1

πa3H

(
aH

k

)2ν

. (72)

Evaluate this for the case ν = 3
2

(which for the de Sitter case ε = 0 is a massless scalar
field) and show that it agrees with the result obtained using the mode function directly,
which in the case ν = 3

2
is very simple:

uk = −(1− ε) H√
2k3

(y − i)e−iy for ν = 3
2

(73)
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EFT methods and inflation: Exercises

up to an irrelevant phase. Prove that this does solve the Klein Gordon equation in the case
ν = 3

2
.

The power spectrum ∆2(k) is proportional to k3|uk|2 evaluated for k � aH. For de Sitter
space H is constant, and in this case what is the predicted k-dependence for k3|uk|2 when
ν = 3

2
? When ε 6= 0 H is time dependent and we are supposed to evaluate H at the moment

where aH = k. If this were the whole story (and it is not quite), and if ∆2(k) ∝ A(k/k0)ns−1,
what is the prediction for ns as a function of ε?
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