Aneesh Manohar

Introduction to EFT: Problems

- 1. Show that for a *connected* graph, V I + L = 1. What is the formula if the graph has n connected components?
- 2. Work out the properties of fermion bilinears $\overline{\psi}(\mathbf{x},t)\Gamma P_L\chi(\mathbf{x},t)$ under C, P, T, where $\Gamma = 1, \gamma^{\mu}, \sigma^{\mu\nu}$. The results for $P_L \to P_R$ can be obtained by using $L \leftrightarrow R$.
- 3. Fierz identities are relations of the form

$$(\overline{A}\Gamma B)(\overline{C}\Gamma D) = \sum_{i} (\overline{C}\Gamma_{i}B)(\overline{A}\Gamma_{i}D)$$

where A, B, C, D are fermion fields. They are much simpler if written in terms of chiral fields, where $\Gamma_i = 1, \gamma^{\mu}, \sigma^{\mu\nu}$. Work out the Fierz relations for

$$(\overline{A}P_LB)(\overline{C}P_LD), \ (\overline{A}P_LB)(\overline{C}P_RD), \ (\overline{A}\gamma^{\mu}P_LB)(\overline{C}\gamma_{\mu}P_LD), \ (\overline{A}\gamma^{\mu}P_LB)(\overline{C}\gamma_{\mu}P_RD), \ (\overline{A}\sigma^{\mu\nu}P_LB)(\overline{C}\sigma_{\mu\nu}P_LD), \ (\overline{A}\sigma^{\mu\nu}P_LB)(\overline{C}\sigma_{\mu\nu}P_RD)$$

The $P_R P_R$ identities are given by using $L \leftrightarrow R$ on the L L identities. Do not forget the Fermi minus sign.

- 4. In d = 4 spacetime dimensions, work out the field content of Lorentz-invariant operators with dimension n for n = 1, ..., 6. At this point, do not try and work out which operators are independent, just the possible structure of allowed operators. Use the notation ϕ for a scalar, ψ for a fermion, $X_{\mu\nu}$ for a field strength, and D for a derivative. For example, an operator of type $\phi^2 D$ such as $\phi D_{\mu} \phi$ is not allowed because it is not Lorentz-invariant. An operator of type $\phi^2 D^2$ could be either $D_{\mu} \phi D^{\mu} \phi$ or $\phi D^2 \phi$, so a $\phi^2 D^2$ operator is allowed, and we will worry later about how many independent operators $\phi^2 D^2$ we can construct.
- 5. For d = 2, 3, 4, 5, 6 dimensions, work out the field content of operators with dimension $n \le d$, i.e. the "renormalizable" operators.
- 6. Show that if $\alpha_s(\mu)$ is fixed at some high scale, say $\mu = 1$ TeV, then $m_p \propto m_t^{2/27}$, where m_p is the proton mass and m_t is the top quark mass.
- 7. Compute in dimensional regularization in $d = 4 2\epsilon$ dimensions

$$I_F = -i\mu^{2\epsilon} \int \frac{\mathrm{d}^d k}{(2\pi)^d} \frac{1}{(k^2 - m^2)(k^2 - M^2)}$$
$$I_M = -i\mu^{2\epsilon} \int \frac{\mathrm{d}^d k}{(2\pi)^d} \frac{1}{(k^2 - M^2)} \left[\frac{1}{k^2} + \frac{m^2}{k^4} + \dots \right]$$
$$I_{\rm EFT} = -i\mu^{2\epsilon} \int \frac{\mathrm{d}^d k}{(2\pi)^d} \frac{1}{(k^2 - m^2)} \left[-\frac{1}{M^2} - \frac{k^2}{M^4} + \dots \right]$$

and determine $I_F - I_M - I_{EFT}$.

8. Show that for SU(N),

$$[T^A]^{\alpha}_{\ \beta}[T^A]^{\lambda}_{\ \sigma} = \frac{1}{2}\delta^{\alpha}_{\sigma}\delta^{\lambda}_{\beta} - \frac{1}{2N}\delta^{\alpha}_{\beta}\delta^{\lambda}_{\sigma}$$

and the color Fierz identities

$$\delta^{\alpha}_{\ \beta}\delta^{\lambda}_{\ \sigma} = \frac{1}{N}\delta^{\alpha}_{\sigma}\delta^{\lambda}_{\beta} + 2[T^{A}]^{\alpha}_{\ \sigma}[T^{A}]^{\lambda}_{\ \beta}$$
$$[T^{A}]^{\alpha}_{\ \beta}[T^{A}]^{\lambda}_{\ \sigma} = \frac{N^{2} - 1}{2N^{2}}\delta^{\alpha}_{\sigma}\delta^{\lambda}_{\beta} - \frac{1}{N}[T^{A}]^{\alpha}_{\ \sigma}[T^{A}]^{\lambda}_{\ \beta}$$

9. Compute the one-loop scalar graph with a scalar of mass m and interaction $-\lambda \phi^4/4!$.

10. Compute the anomalous dimension mixing matrix of

$$O_1 = (\overline{b}^{\alpha} \gamma^{\mu} P_L c_{\alpha}) (\overline{u}^{\alpha} \gamma^{\mu} P_L d_{\alpha})$$
$$O_2 = (\overline{b}^{\alpha} \gamma^{\mu} P_L c_{\beta}) (\overline{u}^{\beta} \gamma^{\mu} P_L d_{\alpha})$$

Another basis often used is

$$Q_1 = (b\gamma^{\mu}P_L c)(\overline{u}\gamma^{\mu}P_L d)$$
$$Q_2 = (\overline{b}\gamma^{\mu}P_L T^A c)(\overline{u}\gamma^{\mu}P_L T^A d)$$

So let

$$\mathcal{L} = c_1 O_1 + c_2 O_2 = d_1 Q_1 + d_2 Q_2$$

and work out the transformation between c_i and d_i , and the anomalous dimension for d_i using the anomalous dimensions for c_i .