Introduction to EFT: Problems

1. Show that for a connected graph, $V-I+L=1$. What is the formula if the graph has n connected components?
2. Work out the properties of fermion bilinears $\bar{\psi}(\mathbf{x}, t) \Gamma P_{L} \chi(\mathbf{x}, t)$ under C, P, T, where $\Gamma=$ $1, \gamma^{\mu}, \sigma^{\mu \nu}$. The results for $P_{L} \rightarrow P_{R}$ can be obtained by using $L \leftrightarrow R$.
3. Fierz identities are relations of the form

$$
(\bar{A} \Gamma B)(\bar{C} \Gamma D)=\sum_{i}\left(\bar{C} \Gamma_{i} B\right)\left(\bar{A} \Gamma_{i} D\right)
$$

where A, B, C, D are fermion fields. They are much simpler if written in terms of chiral fields, where $\Gamma_{i}=1, \gamma^{\mu}, \sigma^{\mu \nu}$. Work out the Fierz relations for

$$
\begin{aligned}
& \left(\bar{A} P_{L} B\right)\left(\bar{C} P_{L} D\right),\left(\bar{A} P_{L} B\right)\left(\bar{C} P_{R} D\right),\left(\bar{A} \gamma^{\mu} P_{L} B\right)\left(\bar{C} \gamma_{\mu} P_{L} D\right),\left(\bar{A} \gamma^{\mu} P_{L} B\right)\left(\bar{C} \gamma_{\mu} P_{R} D\right), \\
& \left(\bar{A} \sigma^{\mu \nu} P_{L} B\right)\left(\bar{C} \sigma_{\mu \nu} P_{L} D\right),\left(\bar{A} \sigma^{\mu \nu} P_{L} B\right)\left(\bar{C} \sigma_{\mu \nu} P_{R} D\right)
\end{aligned}
$$

The $P_{R} P_{R}$ identities are given by using $L \leftrightarrow R$ on the $L L$ identities. Do not forget the Fermi minus sign.
4. In $d=4$ spacetime dimensions, work out the field content of Lorentz-invariant operators with dimension n for $n=1, \ldots, 6$. At this point, do not try and work out which operators are independent, just the possible structure of allowed operators. Use the notation ϕ for a scalar, ψ for a fermion, $X_{\mu \nu}$ for a field strength, and D for a derivative. For example, an operator of type $\phi^{2} D$ such as $\phi D_{\mu} \phi$ is not allowed because it is not Lorentz-invariant. An operator of type $\phi^{2} D^{2}$ could be either $D_{\mu} \phi D^{\mu} \phi$ or $\phi D^{2} \phi$, so a $\phi^{2} D^{2}$ operator is allowed, and we will worry later about how many independent operators $\phi^{2} D^{2}$ we can construct.
5. For $d=2,3,4,5,6$ dimensions, work out the field content of operators with dimension $n \leq d$, i.e. the "renormalizable" operators.
6. Show that if $\alpha_{s}(\mu)$ is fixed at some high scale, say $\mu=1 \mathrm{TeV}$, then $m_{p} \propto m_{t}^{2 / 27}$, where m_{p} is the proton mass and m_{t} is the top quark mass.
7. Compute in dimensional regularization in $d=4-2 \epsilon$ dimensions

$$
\begin{aligned}
I_{F} & =-i \mu^{2 \epsilon} \int \frac{\mathrm{~d}^{d} k}{(2 \pi)^{d}} \frac{1}{\left(k^{2}-m^{2}\right)\left(k^{2}-M^{2}\right)} \\
I_{M} & =-i \mu^{2 \epsilon} \int \frac{\mathrm{~d}^{d} k}{(2 \pi)^{d}} \frac{1}{\left(k^{2}-M^{2}\right)}\left[\frac{1}{k^{2}}+\frac{m^{2}}{k^{4}}+\ldots\right] \\
I_{\mathrm{EFT}} & =-i \mu^{2 \epsilon} \int \frac{\mathrm{~d}^{d} k}{(2 \pi)^{d}} \frac{1}{\left(k^{2}-m^{2}\right)}\left[-\frac{1}{M^{2}}-\frac{k^{2}}{M^{4}}+\ldots\right]
\end{aligned}
$$

and determine $I_{F}-I_{M}-I_{\mathrm{EFT}}$.
8. Show that for $S U(N)$,

$$
\left[T^{A}\right]_{\beta}^{\alpha}\left[T^{A}\right]_{\sigma}^{\lambda}=\frac{1}{2} \delta_{\sigma}^{\alpha} \delta_{\beta}^{\lambda}-\frac{1}{2 N} \delta_{\beta}^{\alpha} \delta_{\sigma}^{\lambda}
$$

and the color Fierz identities

$$
\begin{aligned}
\delta_{\beta}^{\alpha} \delta_{\sigma}^{\lambda} & =\frac{1}{N} \delta_{\sigma}^{\alpha} \delta_{\beta}^{\lambda}+2\left[T^{A}\right]_{\sigma}^{\alpha}\left[T^{A}\right]_{\beta}^{\lambda} \\
{\left[T^{A}\right]_{\beta}^{\alpha}\left[T^{A}\right]_{\sigma}^{\lambda} } & =\frac{N^{2}-1}{2 N^{2}} \delta_{\sigma}^{\alpha} \delta_{\beta}^{\lambda}-\frac{1}{N}\left[T^{A}\right]_{\sigma}^{\alpha}\left[T^{A}\right]_{\beta}^{\lambda}
\end{aligned}
$$

9. Compute the one-loop scalar graph with a scalar of mass m and interaction $-\lambda \phi^{4} / 4$!.

10. Compute the anomalous dimension mixing matrix of

$$
\begin{aligned}
& O_{1}=\left(\bar{b}^{\alpha} \gamma^{\mu} P_{L} c_{\alpha}\right)\left(\bar{u}^{\alpha} \gamma^{\mu} P_{L} d_{\alpha}\right) \\
& O_{2}=\left(\bar{b}^{\alpha} \gamma^{\mu} P_{L} c_{\beta}\right)\left(\bar{u}^{\beta} \gamma^{\mu} P_{L} d_{\alpha}\right)
\end{aligned}
$$

Another basis often used is

$$
\begin{aligned}
& Q_{1}=\left(\bar{b} \gamma^{\mu} P_{L} c\right)\left(\bar{u} \gamma^{\mu} P_{L} d\right) \\
& Q_{2}=\left(\bar{b} \gamma^{\mu} P_{L} T^{A} c\right)\left(\bar{u} \gamma^{\mu} P_{L} T^{A} d\right)
\end{aligned}
$$

So let

$$
\mathcal{L}=c_{1} O_{1}+c_{2} O_{2}=d_{1} Q_{1}+d_{2} Q_{2}
$$

and work out the transformation between c_{i} and d_{i}, and the anomalous dimension for d_{i} using the anomalous dimensions for c_{i}.

