
Les Houches: EFT for thermal systems, problems

1. (Thermodynamics) We computed 〈Tµν〉 in a free (massive) scalar field theory at
finite temperature, to get the energy density and pressure:

ε =

∫
d3p

(2π)3
ωpnB(ωp), p =

1

3

∫
d3p

(2π)3

p2

ωp
nB(ωp). (1)

For an infinite system, argue that p is minus the free energy density, and deduce
that ε = −∂β(βp) (why?) where β = 1/T is the inverse temperature. Check this
explicitly for the above.

2. (3D scalar EFT) Consider the four-dimensional scalar theory with Euclidean La-
grangian density LE = 1

2(∂φ)2 + g2φ4, where g is small.1 At finite temperature, the
scalar acquires a thermal mass ∼ gT . To deal with the hierarchy gT � 2πT , we
argued that one can integrate out the scale 2πT (the nonzero Matsubara modes)
and get a 3D effective theory:

S3d =

∫
d3x

(
(∂φ)2

2
+
m2
thφ

2

2
+ λ3φ

4 + . . .

)
(2)

where λ3 = g2T (1 + O(g2)) (why?) and m2
th = g2T 2(1 + O(g2)). In this problem

you will clarify the dots “. . . ”, which stand for infinitely many terms generated by
loops of nonzero Matsubara modes.

a. Draw the simplest 4D graph which will generate a nonzero φ6 term in 3d. How
will its coefficient depend on g and T? What about the four-scalar interaction[
(∂iφ∂iφ)2

]
?

b. The four-dimensional pressure is the sum of a UV (four-dimensional) contri-
bution, plus T times (minus) the vacuum energy of the 3D theory. Use di-
mensional analysis, and that the only dynamical scale in the 3D theory is gT ,
to estimate the contribution to 4D pressure from the above two terms in the
effective Lagrangian; recall that [φ] = 1

2 in 3D.

c. Combining the powers of g from the Wilson coefficients and expectation values,
argue that any operator not explicitly in eq. (2), with n scalar fields and k

derivatives, contributes at most g
3n
2

+kT 4 to the pressure (with some accidental
cancelations for n = 2, why?) Enumerate all the operators needed to get the
pressure to g10 accuracy (just the general structure, there aren’t that many,
assuming 3D rotation invariance).

d. (optional) Recall that higher-dimensional operators in an effective Lagrangian
are defined modulo total derivatives and modulo the lower equations of motion;
for example, an operator εφ(∂2)2φ can be removed by redefining φ→ φ+ε∂2φ,
and such field redefinitions can’t change the physics. Use this to show that only
two operators really need to be added to the Lagrangian in eq. (2) to accuracy
g10 in the pressure (to what accuracy would one then need m2

th, λ3?)

1The Landau pole of this theory implies a UV cutoff Λ ∼ Tec/g
2(T ) � T , which you should assume is

so large as to have no practical implications for this discussion.
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3. (Real-time formalism) The Schwinger-Keldysh contour has two time-like branches
“1 and 2” which go from the initial density matrix and back, with action (dropping
the part φ0 which represented the initial density matrix in class):

SSK = S[φ1]− S[φ2]. (3)

We argued that it was much more effective to switch to the Keldysh basis of re-
tarded/advanced fields, φr = φ1+φ2

2 , φa = φ1 − φ2, where Daa = 0 (why?) and:

Dra =
−i

−(p0 + iε)2 + ~p2 +m2
, Drr =

(
1

2
+ nB(|p0|)

)
2πδ(p2

0 − ~p2 −m2) (4)

are the retarded propagator and anticommutator (‘two outgoing arrows’).

a. Compute the interactions in terms of φr, φa, for Sint[φ] = gφ3/3! + λφ4/4!,
and draw the Feynman rules. Follow the arrow of time and draw: r=incoming
arrow, a=outgoing. (Only 1 or 3 outgoing arrows should be possible.)

b. Check that the rules produce the claimed one-loop two-point function in φ3:

Gra(p) = Dra(p)−
g2

2

∫
ddq

(2π)d
(Dra(q)Drr(p− q) +Drr(q)Dra(p− q)) +O(g4)

(5)
Feel free to drop a graph with a closed retarded loop (why?).

c. Define the retarded self-energy Πra(p) as the sum of 1PI graphs with one in-
coming& one outgoing arrow. Show that the usual argument applies to the
chain graphs for Gra, which sum up to a geometric series:

Gra(p) =
−i

−(p0 + iε)2 + ~p2 +m2 + Πra(p)
(6)

d. (harder) According to the fluctuation-dissipation theorem, in equilibrium

Grr(p) =

(
1

2
+ nB(p0)

)
(Gra(p)−Gar(p)). (7)

Check this for Drr above. Show that this relation is consistent with the Feyn-
man rules, provided that Πrr, defined as the sum of 1PI graphs with two out-
going arrows, satisfies the same relation.

(Order by order, the series for Grr contains ill-defined terms Drr(p)Dra(p) ∝
δ(p2)/p2. Keldysh showed how to avoid such terms by systematically using the
FDT relation (7).)

e. (Optional.) How to not do things. Show that correlators in the 1/2 basis are:(
G11 G12

G21 G22

)
=

(
GT G<

G> GT̄

)
, (8)

where GT and GT̄ stand for time-ordered and time-anti-ordered correlator, and
G>, G< are Witghtman (unordered) correlators. These can be derived from
the fact the path integral computes contour-ordered correlators, for instance

G12(x, y) ≡ 〈φ1(x)φ2(y)〉 = 〈φ(y)φ(x)〉 ≡ G<(x− y). (9)
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Obtain the free propagator matrix (8) explicitly using the r/a results above
and relations like GT = 1

2(Gra + Gar) + Grr (why?), which give “something
like”:

GT (p) ' −i
−p2

0 + ~p2 +m2 − i0
+ nB(|p0|)2πδ(p2

0 − ~p2 −m2) , etc. (10)

If you feel brave, find the g2 self-energy in φ3 theory as a 2 × 2 matrix, and
try to resum the chain graphs to reproduce the above results, simplifying the
matrix multiplications as much as you can.
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