Les Houches: EFT for thermal systems, problems

1. (Thermodynamics) We computed $\left\langle T^{\mu \nu}\right\rangle$ in a free (massive) scalar field theory at finite temperature, to get the energy density and pressure:

$$
\begin{equation*}
\varepsilon=\int \frac{d^{3} p}{(2 \pi)^{3}} \omega_{p} n_{B}\left(\omega_{p}\right), \quad p=\frac{1}{3} \int \frac{d^{3} p}{(2 \pi)^{3}} \frac{p^{2}}{\omega_{p}} n_{B}\left(\omega_{p}\right) . \tag{1}
\end{equation*}
$$

For an infinite system, argue that p is minus the free energy density, and deduce that $\varepsilon=-\partial_{\beta}(\beta p)$ (why?) where $\beta=1 / T$ is the inverse temperature. Check this explicitly for the above.
2. (3D scalar EFT) Consider the four-dimensional scalar theory with Euclidean Lagrangian density $\mathcal{L}_{E}=\frac{1}{2}(\partial \phi)^{2}+g^{2} \phi^{4}$, where g is small ${ }^{1}$ At finite temperature, the scalar acquires a thermal mass $\sim g T$. To deal with the hierarchy $g T \ll 2 \pi T$, we argued that one can integrate out the scale $2 \pi T$ (the nonzero Matsubara modes) and get a 3D effective theory:

$$
\begin{equation*}
S_{3 d}=\int d^{3} x\left(\frac{(\partial \phi)^{2}}{2}+\frac{m_{t h}^{2} \phi^{2}}{2}+\lambda_{3} \phi^{4}+\ldots\right) \tag{2}
\end{equation*}
$$

where $\lambda_{3}=g^{2} T\left(1+O\left(g^{2}\right)\right.$) (why?) and $m_{t h}^{2}=g^{2} T^{2}\left(1+O\left(g^{2}\right)\right.$). In this problem you will clarify the dots "...", which stand for infinitely many terms generated by loops of nonzero Matsubara modes.
a. Draw the simplest 4D graph which will generate a nonzero ϕ^{6} term in 3d. How will its coefficient depend on g and T ? What about the four-scalar interaction $\left[\left(\partial_{i} \phi \partial_{i} \phi\right)^{2}\right] ?$
b. The four-dimensional pressure is the sum of a UV (four-dimensional) contribution, plus T times (minus) the vacuum energy of the 3D theory. Use dimensional analysis, and that the only dynamical scale in the 3D theory is $g T$, to estimate the contribution to 4D pressure from the above two terms in the effective Lagrangian; recall that $[\phi]=\frac{1}{2}$ in 3D.
c. Combining the powers of g from the Wilson coefficients and expectation values, argue that any operator not explicitly in eq. (2), with n scalar fields and k derivatives, contributes at most $g^{\frac{3 n}{2}+k} T^{4}$ to the pressure (with some accidental cancelations for $n=2$, why?) Enumerate all the operators needed to get the pressure to g^{10} accuracy (just the general structure, there aren't that many, assuming 3D rotation invariance).
d. (optional) Recall that higher-dimensional operators in an effective Lagrangian are defined modulo total derivatives and modulo the lower equations of motion; for example, an operator $\varepsilon \phi\left(\partial^{2}\right)^{2} \phi$ can be removed by redefining $\phi \rightarrow \phi+\varepsilon \partial^{2} \phi$, and such field redefinitions can't change the physics. Use this to show that only two operators really need to be added to the Lagrangian in eq. (2) to accuracy g^{10} in the pressure (to what accuracy would one then need $m_{t h}^{2}, \lambda_{3}$?)

[^0]3. (Real-time formalism) The Schwinger-Keldysh contour has two time-like branches " 1 and 2 " which go from the initial density matrix and back, with action (dropping the part ϕ_{0} which represented the initial density matrix in class):
\[

$$
\begin{equation*}
S_{S K}=S\left[\phi_{1}\right]-S\left[\phi_{2}\right] . \tag{3}
\end{equation*}
$$

\]

We argued that it was much more effective to switch to the Keldysh basis of retarded/advanced fields, $\phi_{r}=\frac{\phi_{1}+\phi_{2}}{2}, \phi_{a}=\phi_{1}-\phi_{2}$, where $D_{a a}=0$ (why?) and:

$$
\begin{equation*}
D_{r a}=\frac{-i}{-\left(p_{0}+i \varepsilon\right)^{2}+\vec{p}^{2}+m^{2}}, \quad D_{r r}=\left(\frac{1}{2}+n_{B}\left(\left|p^{0}\right|\right)\right) 2 \pi \delta\left(p_{0}^{2}-\vec{p}^{2}-m^{2}\right) \tag{4}
\end{equation*}
$$

are the retarded propagator and anticommutator ('two outgoing arrows').
a. Compute the interactions in terms of ϕ_{r}, ϕ_{a}, for $S_{\text {int }}[\phi]=g \phi^{3} / 3!+\lambda \phi^{4} / 4$!, and draw the Feynman rules. Follow the arrow of time and draw: $r=$ incoming arrow, $a=$ outgoing. (Only 1 or 3 outgoing arrows should be possible.)
b. Check that the rules produce the claimed one-loop two-point function in ϕ^{3} :

$$
\begin{equation*}
G_{r a}(p)=D_{r a}(p)-\frac{g^{2}}{2} \int \frac{d^{d} q}{(2 \pi)^{d}}\left(D_{r a}(q) D_{r r}(p-q)+D_{r r}(q) D_{r a}(p-q)\right)+O\left(g^{4}\right) \tag{5}
\end{equation*}
$$

Feel free to drop a graph with a closed retarded loop (why?).
c. Define the retarded self-energy $\Pi_{r a}(p)$ as the sum of 1PI graphs with one incoming\& one outgoing arrow. Show that the usual argument applies to the chain graphs for $G_{r a}$, which sum up to a geometric series:

$$
\begin{equation*}
G_{r a}(p)=\frac{-i}{-\left(p_{0}+i \varepsilon\right)^{2}+\vec{p}^{2}+m^{2}+\Pi_{r a}(p)} \tag{6}
\end{equation*}
$$

d. (harder) According to the fluctuation-dissipation theorem, in equilibrium

$$
\begin{equation*}
G_{r r}(p)=\left(\frac{1}{2}+n_{B}\left(p^{0}\right)\right)\left(G_{r a}(p)-G_{a r}(p)\right) . \tag{7}
\end{equation*}
$$

Check this for $D_{r r}$ above. Show that this relation is consistent with the Feynman rules, provided that $\Pi_{r r}$, defined as the sum of 1PI graphs with two outgoing arrows, satisfies the same relation.
(Order by order, the series for $G_{r r}$ contains ill-defined terms $D_{r r}(p) D_{r a}(p) \propto$ $\delta\left(p^{2}\right) / p^{2}$. Keldysh showed how to avoid such terms by systematically using the FDT relation (7).)
e. (Optional.) How to not do things. Show that correlators in the $1 / 2$ basis are:

$$
\left(\begin{array}{ll}
G_{11} & G_{12} \tag{8}\\
G_{21} & G_{22}
\end{array}\right)=\left(\begin{array}{ll}
G_{T} & G^{<} \\
G^{>} & G_{\bar{T}}
\end{array}\right)
$$

where G_{T} and $G_{\bar{T}}$ stand for time-ordered and time-anti-ordered correlator, and $G^{>}, G^{<}$are Witghtman (unordered) correlators. These can be derived from the fact the path integral computes contour-ordered correlators, for instance

$$
\begin{equation*}
G_{12}(x, y) \equiv\left\langle\phi_{1}(x) \phi_{2}(y)\right\rangle=\langle\phi(y) \phi(x)\rangle \equiv G^{<}(x-y) \tag{9}
\end{equation*}
$$

Obtain the free propagator matrix (8) explicitly using the r / a results above and relations like $G_{T}=\frac{1}{2}\left(G_{r a}+G_{a r}\right)+G_{r r}$ (why?), which give "something like":

$$
\begin{equation*}
G_{T}(p) \simeq \frac{-i}{-p_{0}^{2}+\vec{p}^{2}+m^{2}-i 0}+n_{B}\left(\left|p_{0}\right|\right) 2 \pi \delta\left(p_{0}^{2}-\vec{p}^{2}-m^{2}\right), \quad \text { etc. } \tag{10}
\end{equation*}
$$

If you feel brave, find the g^{2} self-energy in ϕ^{3} theory as a 2×2 matrix, and try to resum the chain graphs to reproduce the above results, simplifying the matrix multiplications as much as you can.

[^0]: ${ }^{1}$ The Landau pole of this theory implies a UV cutoff $\Lambda \sim T e^{c / g^{2}(T)} \gg T$, which you should assume is so large as to have no practical implications for this discussion.

