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Introduction

This is an introductory set of lectures on the basic ideas and methods of effective
field theories (EFTs). Other lectures at the school will go into more details about the
most commonly used effective theories in high energy physics and cosmology. Pro-
fessor Neubert’s lectures [71], delivered concurrently with mine, provide an excellent
introduction to renormalization in quantum field theory (QFT), the renormalization
group equation, operator mixing, and composite operators, and this knowledge will be
assumed in my lectures. I also have some 20 year old lecture notes from the Schlad-
ming school [65] which should be read in conjunction with these lectures. Additional
references are [35,56,76,78]. The Les Houches school and these lecture notes focus on
aspects of EFTs as used in high energy physics and cosmology which are relevant for
making contact with experimental observations.

The intuitive idea behind effective theories is that you can calculate without know-
ing the exact theory. Engineers are able to design and build bridges without any
knowledge of strong interactions or quantum gravity. The main inputs in the design
are Newton’s laws of mechanics and gravitation, the theory of elasticity, and fluid flow.
The engineering design depends on parameters measured on macroscopic scales of or-
der meters, such as the elastic modulus of steel. Short distance properties of Nature,
such as the existence of weak interactions, or the mass of the Higgs boson are not
needed.

In some sense, the ideas of EFT are “obvious.” However, implementing them in a
mathematically consistent way in an interacting quantum field theory is not so obvious.
These lectures provide pedagogical examples of how one actually implements EFT
ideas in particle physics calculations of experimentally relevant quantities. Additional
details on specific EFT applications are given in other lectures in this volume.

An EFT is a quantum theory in its own right, and like any other QFT, it comes
with a regularization and renormalization scheme necessary to obtain finite matrix
elements. One can compute S-matrix elements in an EFT from the EFT Lagrangian,
with no additional external input, in the same way that one can compute in QED
starting from the QED Lagrangian. In many cases, an EFT is the low-energy limit
of a more fundamental theory (which might itself be an EFT), often called the “full
theory.”

Effective field theories allow you to compute an experimentally measurable quantity
with some finite error. Formally, an EFT has a small expansion parameter δ, known as
the power counting parameter. Calculations are done in an expansion to some order n
in δ, so that the error is of order δn+1. Determining the order in δ of a given diagram
is done using what is referred to as a power counting formula.
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A key aspect of EFTs is that one has a systematic expansion, with a well-defined
procedure to compute higher order corrections in δ. Thus one can compute to arbi-
trarily high order in δ, and make the theoretical error as small as desired, by choosing
n sufficiently large. Such calculations might be extremely difficult in practice because
higher order diagrams are hard to compute, but they are possible in principle. This
is very different from modeling, e.g. the non-relativistic quark model provides a good
description of hadron properties at the 25% level. However, it is not the first term in
a systematic expansion, and it is not possible to systematically improve the results.

In many examples, there are multiple expansion parameters δ1, δ2, etc. For example,
in heavy quark effective theory (HQET) [46,47,69,77], b decay rates have an expansion
in δ1 = ΛQCD/mb and δ2 = mb/MW . In such cases, one has to determine which terms
δn1
1 δn2

2 must be retained to reach the desired accuracy goal. Usually, but not always, the
expansion parameter is the ratio of a low-energy scale such as the external momentum
p, or particle mass m, and a short-distance scale usually denoted by Λ, δ = p/Λ. In
many examples, one also has a perturbative expansion in a small coupling constant
such as αs(mb) for HQET.

EFT calculations to order δn depend on a finite number of Lagrangian parame-
ters Nn. The number of parameters Nn generally increases as n increases. One gets
parameter-free predictions in an EFT by calculating more experimentally measured
quantities than Nn. For example, HQET computations to order Λ2

QCD/m
2
b depend on

two parameters λ1 and λ2 of order Λ2
QCD. There are many experimental quantities

that can be computed to this order, such as the meson masses, form factors, and
decay spectra [69]. Two pieces of data are used to fix λ1 and λ2, and then one has
parameter-free predictions for all other quantities.

EFTs can be used even when the dynamics is non-perturbative. The most famous
example of this type is chiral perturbation theory (χPT), which has an expansion in
p/Λχ, where Λχ ∼ 1 GeV is the chiral symmetry breaking scale. Systematic computa-
tions in powers of p/Λχ are in excellent agreement with experiment [33,74,73,81].

The key ingredient used in formulating EFTs is locality, which leads to a separa-
tion of scales, i.e. factorization of the field theory amplitudes into short-distance La-
grangian coefficients and long-distance matrix elements. The short-distance coefficients
are universal, and independent of the long-distance matrix elements computed [82].
The experimentally measured quantities Oi are then given as the product of these
short-distance coefficients C and long-distance matrix elements. Often, there are mul-
tiple coefficients and matrix elements, so that Oi =

∑
i CijMj . Sometimes, as in

deep-inelastic scattering, C and M depend on a variable x instead of an index i, and
the sum becomes a convolution

O =

∫ 1

0

dx

x
C(x)M(x) . (1.1)

The short distance coefficient C(x) in this case is called the hard-scattering cross
section, and can be computed in QCD perturbation theory. The long-distance matrix
elements are the parton distribution functions, which are determined from experiment.
The hard-scattering cross-section is universal, but the parton distribution functions
depend on the hadronic target.
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EFTs allow one to organize calculations in an efficient way, and to estimate quan-
tities using the power counting formula in combination with locality and gauge in-
variance. The tree-level application of EFTs is straightforward; it is simply a series
expansion of the scattering amplitude in a small parameter. The true power lies in
being able to compute radiative corrections. It is worth repeating that EFTs are
full-fledged quantum theories, and one can compute measurable quantities such as
S-matrix elements without any reference or input from a underlying UV theory. The
1933 Fermi theory of weak interactions [30] was used long before the Standard Model
was invented, or anyone knew about electroweak gauge bosons. Pion-nucleon scatter-
ing lengths [79, 80] and π − π scattering lengths [80] were computed in 1966, without
any knowledge of QCD, quarks or gluons.

Here are some warm-up exercises which will be useful later.

Exercise 1.1 Show that for a connected graph, V − I + L = 1, where V is the number of
vertices, I is the number of internal lines, and L is the number of loops. What is the formula
if the graph has n connected components?

Exercise 1.2 Work out the transformation of fermion bilinears ψ(x, t) Γχ(x, t) under C, P ,
T , where Γ = PL, PR, γ

µPL, γ
µPR, σ

µνPL, σ
µνPR. Use your results to find the transformations

under CP , CT , PT and CPT .

Exercise 1.3 Show that for SU(N),

[TA]αβ [TA]λσ =
1

2
δασ δ

λ
β −

1

2N
δαβ δ

λ
σ , (1.2)

where the SU(N) generators are normalized to TrTATB = δAB/2. From this, show that

δαβ δ
λ
σ =

1

N
δασ δ

λ
β + 2[TA]ασ [TA]λβ ,

[TA]αβ [TA]λσ =
N2 − 1

2N2
δασ δ

λ
β −

1

N
[TA]ασ [TA]λβ . (1.3)

Exercise 1.4 Spinor Fierz identities are relations of the form

(AΓ1B)(C Γ2D) =
∑
ij

cij(C ΓiB)(AΓj D)

where A,B,C,D are fermion fields, and cij are numbers. They are much simpler if written in
terms of chiral fields using Γi = PL, PR, γ

µPL, γ
µPR, σ

µνPL, σ
µνPR, rather than Dirac fields.

Work out the Fierz relations for

(APLB)(CPLD), (AγµPLB)(CγµPLD), (AσµνPLB)(CσµνPLD),

(APLB)(CPRD), (AγµPLB)(CγµPRD), (AσµνPLB)(CσµνPRD).

Do not forget the Fermi minus sign. The PR ⊗ PR identities are obtained from the PL ⊗ PL
identities by using L↔ R.
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Examples

In this section, we discuss some qualitative examples of EFTs illustrating the use of
power counting, symmetries such as gauge invariance, and dimensional analysis. Some
of the examples are covered in detail in other lectures at this school.

2.1 Hydrogen Atom

A simple example that should be familiar to everyone is the computation of the hy-
drogen atom energy levels, as done in a quantum mechanics class. The Hamiltonian
for an electron of mass me interacting via a Coulomb potential with a proton treated
as an infinitely heavy point particle is

H =
p2

2me
− α

r
. (2.1)

The binding energies, electromagnetic transition rates, etc. are computed from eqn (2.1).
The fact that the proton is made up of quarks, weak interactions, neutrino masses,
etc. are irrelevant, and we do not need any detailed input from QED or QCD. The
only property of the proton we need is that its charge is +1; this can be measured at
long distances from the Coulomb field.

Corrections to eqn (2.1) can be included in a systematic way. Proton recoil is
included by replacing me by the reduced mass µ = memp/(me + mp), which gives
corrections of order me/mp. At this point, we have included one strong-interaction
parameter, the mass mp of the proton, which can be determined from experiments
done at low energies, i.e. at energies much below ΛQCD.

The hydrogen fine structure is calculated by including higher order (relativistic)
corrections to the Hamiltonian, and gives corrections of relative order α2. The hydro-
gen hyperfine structure (the famous 21 cm line) requires including the spin-spin inter-
action between the proton and electron, which depends on their magnetic moments.
The proton magnetic moment µp = 2.793 e~/(2mpc) is the second strong interaction
parameter which now enters the calculation, and can be measured in low-energy NMR
experiments. The electron magnetic moment is given by its Dirac value −e~/(2mec).

Even more accurate calculations require additional non-perturbative parameters,
as well as QED corrections. For example, the proton charge radius rp, g − 2 for the
electron, and QED radiative corrections for the Lamb shift all enter to obtain the
accuracy required to compare with precision experiments.

For calculations with an accuracy of 10−13 eV ∼ 50 Hz, it is necessary to include the
weak interactions. The weak interactions give a very small shift in the energy levels, and
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Fig. 2.1 The electric field and potential lines for two point charges of the same sign. The

right figure is given by zooming out the left figure.

are a tiny correction to the energies. But they are the leading contribution to atomic
parity violation effects. The reason is that the strong and electromagnetic interactions
conserve parity. Thus the relative size of various higher-order contributions depends
on the quantity being computed—there is no universal rule that can be unthinkingly
followed in all examples. Even in the simple hydrogen atom example, we have multiple
expansion parameters me/mp, α, and mp/MW .

2.2 Multipole Expansion in Electrostatics

A second familiar example is the multipole expansion from electrostatics,

V (r) =
1

r

∑

l,m

blm
1

rl
Ylm(Ω) , (2.2)

which will illustrate a number of useful points. A sample charge configuration with its
electric field and equipotential lines is shown in Fig. 2.1.

While the discussion below is in the context of the electrostatics example, it holds
equally well for other EFT examples. If the typical spacing between charges in Fig. 2.1
is of order a, eqn (2.2) can be written as

V (r) =
1

r

∑

l,m

clm

(a
r

)l
Ylm(Ω) , blm ≡ clmal , (2.3)

using dimensionless coefficients clm.

• As written, eqn (2.3) has two scales r and a, with r � a. r is the long-distance, or
infrared (IR) scale, and a is the short-distance or ultraviolet (UV) scale. The small
expansion parameter is the ratio of the IR and UV scales δ = a/r. The expansion
is useful if the two scales are widely separated, so that δ � 1. We often work in
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momentum space, so that the IR scale is p ∼ 1/r, the UV scale is Λ ∼ 1/a, and
δ = p/Λ.

• A far away (low-energy) observer measures the potential V (r) as a function of
r and Ω = (θ, φ). By Fourier analysis, the observer can determine the short
distance coefficients blm = clma

l ∼ clm/Λ
l. These coefficients are dimensionful,

and suppressed by inverse powers of Λ as l increases.

• More accurate values of the potential are given by including more multipoles. The
terms in eqn (2.2,2.3) get smaller as l increases. A finite experimental resolution
implies that clm can only be experimentally determined up to a finite maximum
value lmax that depends on the resolution. More accurate experiments probe larger
lmax.

• One can factor out powers of a, as shown in eqn (2.3), and use clm instead of
blm. Then clm are order unity. This is dimensional analysis. There is no precise
definition of a, and any other choice for a of the same order of magnitude works
equally well. a is given from observations by measuring blm for large values of r,
and inferring a by letting blm = clma

l, and seeing if some choice of a makes all
the clm of order unity.

• Some clm can vanish, or be anomalously small due to an (approximate) symme-
try of the underlying charge distribution. For example, cubic symmetry implies
clm = 0 unless l ≡ 0 (mod 2) and m ≡ 0 (mod 4). Measurements of blm provide
information about the short-distance structure of the charge distribution, and
possible underlying symmetries.

• More accurate measurements require higher order terms in the l expansion. There
are only a finite number, (lmax + 1)2, parameters including all terms up to order
lmax.

• We can use the l expansion without knowing the underlying short-distance scale a,
as can be seen from the first form eqn (2.2). The parameters blm are determined
from the variation of V (r) w.r.t. the IR scale r. Using blm = clma

l gives us
an estimate of the size of the charge distribution. We can determine the short-
distance scale a by accurate measurements at the long-distance scale r � a, or
by less sophisticated measurements at shorter distances r comparable to a.

The above analysis also applies to searches for BSM (beyond Standard Model)
physics. Experiments are searching for new interactions at short distances a ∼ 1/Λ,
where Λ is larger than the electroweak scale v ∼ 246 GeV. Two ways of determining
the new physics scale are by making more precise measurements at low-energies, as
is being done in B physics experiments, or by making measurements at even higher
energies, as at the LHC.

Subtleties can arise even in the simple electrostatic problem. Consider the charge
configuration shown in Fig. 2.2, which is an example of a multiscale problem. The
system has two intrinsic scales, a shorter scale d characterizing the individual charge
clumps, and a longer scale a characterizing the separation between clumps. Measure-
ments at large values of r determine the scale a. Very accurate measurements of clm
can determine the shorter distance scale d. Discovering d requires noticing patterns
in the values of clm. It is much easier to determine d if one knows ahead of time that
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d

a

Fig. 2.2 A charge distribution with two intrinsic scales: d, the size of each clump, and a,

the distance between clumps.

there is a short distance scale d that must be extracted from the data. d can be easily
determined by making measurements at shorter distances (higher energies) d� r � a,
i.e. if one is allowed to measure the electrostatic potential between the two clumps of
charges.

Multiscale problems are common in EFT applications. The Standard Model EFT
(SMEFT) is an EFT used to characterize BSM physics. The theory has a scale Λ,
of order a few TeV, which is the expected scale of BSM physics in the electroweak
sector, as well as higher scales Λ/L and Λ/B at which lepton and baryon number are
broken. χPT has the scales mπ ∼ 140 MeV, mK ∼ 500 MeV and the chiral symmetry
breaking scale Λχ ∼ 1 GeV. HQET has the scales mb, mc and ΛQCD. EFT methods
allow us to separate scales in a multi-scale problem, and organize the calculation in a
systematic way.

2.3 Fermi Theory of Weak Interactions

The Fermi theory of weak interactions [30] is an EFT for weak interactions at energies
below the W and Z masses. It is a low-energy EFT constructed from the SM. The
EFT power counting parameter is δ = p/MW , where p is of order the momenta of
particles in the weak decay. For example, in µ decay, p is of order the muon mass. In
hadronic weak decays, p can be of order the hadron (or quark) masses, or of order
ΛQCD. The theory also has the usual perturbative expansions in αs/(4π) and α/(4π).
Historically, Fermi’s theory was used for weak decay calculations even when the scales
MW and MZ were not known. We will construct the Fermi interaction in Sec. 4.8.
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2.4 HQET/NRQCD

Heavy quark effective theory (HQET) and non-relativistic QCD (NRQCD [18]) de-
scribe the low-energy dynamics of hadrons containing a heavy quark. The theories
are applied to hadrons containing b and c quarks. In HQET, the expansion parameter
is ΛQCD/mQ, where mQ = mb,mc is the mass of the heavy quark. The theory also
has an expansion in powers of αs(mQ)/(4π). The matching from QCD to HQET
can be done in perturbation theory, since αs(mQ)/(4π) is small, αs(mb) ∼ 0.22,
αs(mb)/(4π) ∼ 0.02. Calculations in HQET contain non-perturbative corrections,
which can be included in a systematic way in an expansion in ΛQCD/mQ.

NRQCD is similar to HQET, but treats QQ bound states such as the Υ meson. The
heavy quarks move non-relativistically, and the expansion parameter is the velocity v
of the heavy quarks, which is of order v ∼ αs(mQ).

HQET and NRQCD are covered in Professor T. Mannel’s lectures at this school [63].

2.5 Chiral Perturbation Theory

Chiral perturbation theory describes the interactions of pions and nucleons at low
momentum transfer. The theory was developed in the 1960’s, and the method clos-
est to the modern way of calculating was developed by Weinberg. χPT describes the
low-energy dynamics of QCD. In this example, the full theory is known, but it is not
possible to analytically compute the matching onto the EFT, since the matching is
non-perturbative. Recent progress has been made in computing the matching numeri-
cally [6]. The two theories, QCD and χPT, are not written in terms of the same fields.
The QCD Lagrangian has quark and gluon fields, whereas χPT has meson and baryon
fields. The parameters of the chiral Lagrangian are usually fit to experiment.

Note that computations in χPT, such as Weinberg’s calculation of ππ scattering,
were done using χPT before QCD was even invented. This example shows rather
clearly that one can compute in an EFT without knowing the UV origin of the EFT.

The expansion parameter of χPT is p/Λχ, where Λχ ∼ 1 GeV is referred to as the
scale of chiral symmetry breaking. χPT can be applied to baryons even though baryon
masses are comparable to Λχ. The reason is that baryon number is conserved, and so
baryons can be treated as heavy particles analogous to heavy quarks in HQET as long
as the momentum transfer is smaller than Λχ. There is an interesting relation between
the large-Nc expansion of QCD and baryon chiral perturbation theory [48,67].

χPT is covered in Professor A. Pich’s lectures at this school [73].

2.6 SCET

Soft-collinear effective theory (SCET [8, 9, 11, 10]) describes energetic QCD processes
where the final states have small invariant mass compared to the center-of-mass energy
of the collision, such as in jet production in high-energy pp collisions. The underlying
theory is once again QCD. The expansion parameters of SCET are ΛQCD/Q, MJ/Q
and αs(Q)/(4π), where Q is the center-of-mass energy of the hard-scattering process,
and MJ is the invariant mass of the jet. SCET was originally developed for the decay
of B mesons to light particles, such as B → Xsγ and B → ππ.

SCET is covered in T. Becher’s lectures at this school [12].



SMEFT 9

2.7 SMEFT

SMEFT is the EFT constructed out of SM fields, and is used to analyze deviations
from the SM, and search for BSM physics. The higher dimension operators in SMEFT
are generated at a new physics scale Λ, which is not known. Nevertheless, one can still
perform systematic computations in SMEFT, as should be clear from the multipole
expansion example in Sec. 2.2. SMEFT is discussed in Sec. 10.

2.8 Reasons for using an EFT

There are many reasons for using an EFT, which are summarized here. The points
are treated in more detail later in these lectures, and also in the other lectures at this
school.

• Every theory is an effective field theory. For example, QED, the first rela-
tivistic quantum field theory developed, is an approximation to the SM. It is an
EFT obtained from the SM by integrating out all particles other than the photon
and electron.

• EFTs simplify the computation by dealing with only one scale at a
time: For example the B meson decay rate depends on MW , mb and ΛQCD, and
one can get horribly complicated functions of the ratios of these scales. In an EFT,
we deal with only one scale at a time, so there are no functions, only constants.
This is done by using a series of theories, SM→ Fermi Theory→ HQET.

• EFTs make symmetries manifest: QCD has a spontaneously broken chiral
symmetry, which is manifest in the chiral Lagrangian. Heavy quarks have an
Isgur-Wise [46] spin-flavor symmetry under which b ↑, b ↓, c ↑, c ↓ transform as
a four-dimensional representation of SU(4). This symmetry is manifest in the
HQET Lagrangian [36], which makes it easy to derive the consequences of this
symmetry. Symmetries such as spin-flavor symmetry are only true for certain
limits of QCD, and so are hidden in the QCD Lagrangian.

• EFTs include only the relevant interactions: EFTs have an explicit power
counting estimate for the size of various interactions. Thus one can only include
the relevant terms in the EFT Lagrangian needed to obtain the required accuracy
of the final result.

• Sum logs of the ratios of scales: This allows one to use renormalization-group
improved perturbation theory, which is more accurate, and has a larger range of
validity than fixed order perturbation theory. For example, the semileptonic B
decay rate depends on powers

(
αs
4π

ln
MW

mb

)n
. (2.4)

Even though αs/(4π) is small, it is multiplied by a large log, and fixed order
perturbation theory can break down. RG improved perturbation theory sums
the corrections in eqn (2.4), so that the perturbation expansion is in powers of
αs/(4π), without a multiplicative log. The resummation of logs is even more
important in SCET, where there are two powers of a log for each αs, the so-called
Sudakov double logarithms.
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The leading-log corrections are not small. For example, the strong interaction
coupling changes by a factor of two between MZ and mb,

αs(MZ) ∼ 0.118, αs(mb) ∼ 0.22.

While summing logs might seem like a technical point, it is one of the main
reasons why EFTs (or equivalent methods such as factorization formulæ in QCD)
are used in practice. In QCD collider processes, resummed cross sections can be
dramatically different from fixed order ones.

• Sum IR logs by converting them to UV logs: This is related to the previous
point. UV logs are summed by the renormalization group equations, since they
are related to anomalous dimensions and renormalization counterterms. There is
no such summation method for IR logs. However, IR logs in the full theory can
be converted to UV logs in the EFT, which can then be summed by integrating
the renormalization group equations in the EFT (see Sec. 5.8). QCD leads to a
number of different effective theories, HQET, NRQCD, SCET and χPT. Each one
is designed to treat a particular IR regime, and sum the corresponding IR logs.

• Non-perturbative effects can be included in a systematic way: In HQET,
powers of ΛQCD are included through the matrix elements of higher dimension
operators, giving the (ΛQCD/mb)

n expansion.

• Efficient method to characterize new physics: EFTs provide an efficient way
to characterize new physics, in terms of coefficients of higher dimension operators.
This method includes the constraints of locality, gauge invariance and Lorentz
invariance. All new physics theories can be treated in a unified framework using
a few operator coefficients.
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The EFT Lagrangian

3.1 Degrees of Freedom

To write down an EFT Lagrangian, we first need to determine the dynamical degrees
of freedom, and thus the field content of the Lagrangian. In cases where the EFT is a
weakly coupled low-energy version of a UV theory, this is simple—just retain the light
fields. However, in many cases, identifying the degrees of freedom in an EFT can be
non-trivial.

NRQCD describes QQ̄ bound states, and is an EFT which follows from QCD.
One formulation of NRQCD has multiple gluon modes, soft and ultrasoft gluons,
which describe different momentum regions contributing to the QQ̄ interaction. SCET
describes the interactions of energetic particles, and is applicable to processes such as
jet production by qq̄ → qq̄ interactions. It has collinear gluon fields for each energetic
particle direction, as well as ultrasoft gluon fields.

A famous example which shows that there is no unique “correct” choice of fields to
use in an interacting quantum field theory is the sine-Gordon – Thirring model duality
in 1 + 1 dimensions [22]. The sine-Gordon model is a bosonic theory of a real scalar
field with Lagrangian

L =
1

2
∂µφ∂

µφ+
α

β2
cosβφ, (3.1)

and the Thirring model is a fermionic theory of a Dirac fermion with Lagrangian

L = ψ̄
(
i/∂ −m

)
ψ − 1

2
g
(
ψ̄γµψ

)2
. (3.2)

Coleman showed that the two theories were identical ; they map into each other with
the couplings related by

β2

4π
=

1

1 + g/π
. (3.3)

The fermion in the Thirring model is the soliton of the sine-Gordon model, and the
boson of the sine-Gordon model is a fermion-antifermion bound state of the Thirring
model. The duality exchanges strongly and weakly coupled theories. This example
also shows that one cannot distinguish between elementary and composite fields in an
interacting QFT.
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3.2 Renormalization

A quick summary of renormalization in QCD is presented here, to define the nota-
tion and procedure we will use for EFTs. A detailed discussion is given in Neubert’s
lectures [71].

QCD is a quantum field theory with Lagrangian

L = −1

4
FAµνF

Aµν +

NF∑

r=1

[
ψri /Dψr −mrψrψr

]
+

θg2

32π2
FAµν F̃

Aµν , (3.4)

where NF is the number of flavors. The covariant derivative is Dµ = ∂µ + igAµ, and
the SU(3) gauge field is a matrix Aµ = TAAAµ , where the generators are normalized

to TrTATB = δAB/2. Experimental limits on the neutron electric dipole moment give
θ . 10−10, and we will neglect it here.

The basic observables in a QFT are S-matrix elements—on-shell scattering ampli-
tudes for particles with physical polarizations. Green functions of ψ and Aµ, which
are the correlation functions of products of fields, are gauge dependent and not exper-
imental observables. The QCD Lagrangian eqn (3.4) is written in terms of fields, but
fields are not particles. The relation between S-matrix elements of particles and Green
functions for fields is through the LSZ reduction formula [60] explained in Sec. 6.1.
One can use any field φ(x) to compute the S-matrix element involving a particle state
|p〉 as long as

〈p|φ(x)|0〉 6= 0 , (3.5)

i.e. the field can create a one-particle state from the vacuum.
Radiative corrections in QCD are infinite, and we need a regularization and renor-

malization scheme to compute finite S-matrix elements. The regularization and renor-
malization procedure is part of the definition of the theory. The standard method used
in modern field theory computations is to use dimensional regularization and the MS
subtraction scheme. We will use dimensional regularization in d = 4− 2ε dimensions.
A brief summary of the procedure is given here.

The QCD Lagrangian for a single flavor in the CP -conserving limit (so that the θ
term is omitted) that gives finite S-matrix elements is

L = −1

4
FA0µνF

Aµν
0 + ψ0i(/∂ + ig0 /A0)ψ0 −m0ψ0ψ0 (3.6a)

= −1

4
ZAF

A
µνF

Aµν + Zψψi(/∂ + igµεZgZ
1/2
A

/A)ψ −mZmZψψψ (3.6b)

where ψ0, A0, g0 and m0 are the bare fields and parameters, which are related to the
renormalized fields and parameters ψ, A, g and m by

ψ0 = Z
1/2
ψ ψ, A0µ = Z

1/2
A Aµ, g0 = Zggµ

ε, m0 = Zmm. (3.7)

The renormalization factors Za have an expansion in inverse powers of ε,

Za = 1 +

∞∑

k=1

Z
(k)
a

εk
, a = ψ,A, g,m, (3.8)
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with coefficients which have an expansion in powers of αs = g2/(4π),

Z(k)
a =

∞∑

r=1

Z(k,r)
a

(αs
4π

)r
. (3.9)

The renormalized parameters g andm are finite, and depend on µ. The renormalization
factors Za are chosen to give finite S-matrix elements.

Separating out the 1 from Za, the Lagrangian eqn (3.6b) can be written as

L = −1

4
FAµνF

Aµν + ψi(/∂ + igµε /A)ψ −mψψ + c.t. (3.10)

where c.t. denotes the renormalization counterterms which are pure poles in 1/ε,

Lc.t. = −1

4
(ZA − 1)FAµνF

Aµν + (Zψ − 1)ψi/∂ψ +
(
ZψZgZ

1/2
A − 1

)
ψigµε /Aψ

− (ZψZm − 1)mψψ . (3.11)

The Lagrangian eqn (3.6a) contains 2 bare parameters, g0 and m0. The Lagrangian
eqn (3.6b) contains two renormalized parameters g(µ), m(µ) and the renormalization
scale µ. As discussed in Neubert’s lectures [71], the renormalization group equation,
which follows from the condition that the theory is µ-independent, implies that there
are only two free parameters, for example g(µ0) and m(µ0) at some chosen reference
scale µ0. The renormalization group equations determine how m and g must vary with
µ to keep the observables the same. We will see later how the freedom to vary µ allows
us to sum logarithms of the ratio of scales. The variation of renormalized parameters
with µ is sometimes referred to as the renormalization group flow.

The bare parameters in the starting Lagrangian eqn (3.6a) are infinite. The infini-
ties cancel with those in loop graphs, so that S-matrix elements computed are finite.
Alternatively, one starts with the Lagrangian split up into the renormalized Lagrangian
with finite parameters plus counterterms, as in eqn (3.10). The infinite parts of loop
graphs computed from the renormalized Lagrangian are cancelled by the counterterm
contributions, to give finite S-matrix elements. The two methods are equivalent, and
give the usual renormalization procedure in the MS scheme. Usually, one computes in
perturbation theory in the coupling g, and determines the renormalization factors Za
order by order in g to ensure finiteness of the S-matrix.

Exercise 3.1 Compute the mass renormalization factor Zm in QCD at one loop. Use this
to determine the one-loop mass anomalous dimension γm,

µ
dm

dµ
= γmm, (3.12)

by differentiating m0 = Zmm, and noting that m0 is µ-independent.
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3.3 Determining the couplings

How do we determine the parameters in the Lagrangian? The bare Lagrangian pa-
rameters are infinite, and cannot be measured directly. The renormalized Lagrangian
parameters are finite. However, in general, they are scheme dependent, and also not
directly measurable. In QCD, the MS quark mass mb(µ) is not a measurable quantity.

Often, people refer to the quark pole mass mpole
b defined by the location of the pole

in the quark propagator in perturbation theory. It is related to the MS mass by

mpole
b = mb(mb)

[
1 +

4αs(mb)

3π
+ . . .

]
. (3.13)

mpole
b is independent of µ, and hence is renormalization-group invariant. Nevertheless,

mpole
b is not measurable—quarks are confined, and there is no pole in gauge-invariant

correlation functions at mpole
b . Instead one determines the B meson mass mB exper-

imentally. The quark mass mb(µ) or mpole
b is fixed by adjusting it till it reproduces

the measured meson mass. To actually do this requires a difficult non-perturbative
calculation, since mpole

b and mB differ by order ΛQCD effects. In practice, one uses
observables which are easier to compute theoretically, such as the electron energy
spectrum in inclusive B decays, or the the e+e− → bb cross section near threshold,
to determine the quark mass. Similarly, the gauge coupling g(µ) is not an observable,
and must be determined indirectly.

Even in QED, the Lagrangian parameters are not direct observables. QED has two
Lagrangian parameters, and two experimental inputs are used to fix these parameters.
One can measure the electron mass mobs

e (which is the pole mass, since electrons are
not confined), and the electrostatic potential at large distances, −αQED/r. These two
measurements fix the values of the Lagrangian parameters me(µ) and e(µ). All other
observables, such as positronium energy levels, the Bhabha scattering cross section,
etc. are then determined, since they are functions of me(µ) and e(µ).

The number of Lagrangian parameters NL tells you how many inputs are needed
to completely fix the predictions of the theory. In general, one computes a set of ob-
servables {Oi} , i = 1, . . . , NL in terms of the Lagrangian parameters. NL observables
are used to fix the parameters, and the remaining NO−NL observables are predictions
of the theory:

O1, . . . , ONL︸ ︷︷ ︸
observables

−→ mi(µ), g(µ), . . .︸ ︷︷ ︸
parameters

−→ ONL+1
, . . .︸ ︷︷ ︸

predictions

. (3.14)

The Lagrangian plays the role of an intermediary, allowing one to relate observables
to each other. The S-matrix program of the 1960’s avoided any use of the Lagrangian,
and related observables directly to each other using analyticity and unitarity.

Given a QFT Lagrangian L , including a renormalization procedure, you can cal-
culate S-matrix elements. No additional outside input is needed, and the calculation
is often automated. For example, in QED, it is not necessary to know that the the-
ory is the low-energy limit of the Standard Model (SM), or to consult an oracle to
obtain the value of certain loop graphs. All predictions of the theory are encoded in
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the Lagrangian. A renormalizable theory has only a finite number of terms in the La-
grangian, and hence only a finite number of parameters. One can compute observables
to arbitrary accuracy, at least in principle, and obtain parameter-free predictions.

The above discussion applies to EFTs as well, including the last bit about a finite
number of parameters, provided that one works to a finite accuracy δn in the power
counting parameter. As an example, consider the Fermi theory of weak interactions,
which we discuss in more detail in Sec. 4.8. The EFT Lagrangian in the lepton sector
is

L = LQED −
4GF√

2
(eγµPLνe)(νµγµPLµ) + . . . , (3.15)

where PL = (1 − γ5)/2, and GF = 1.166 × 10−5 GeV−2 has dimensions of inverse
mass-squared. As in QCD or QED, one can calculate µ-decay directly using eqn (3.15)
without using any external input, such as knowing eqn (3.15) was obtained from the
low-energy limit of the SM. The theory is renormalized as in eqn (3.6a,3.6b,3.7). The
main difference is that the Lagrangian eqn (3.15) has an infinite series of operators
(only one is shown explicitly), with coefficients which absorb the divergences of loop
graphs. The expansion parameter of the theory is δ = GF p

2. To a fixed order in δ, the
theory is just like a regular QFT. However, if one wants to work to higher accuracy,
more operators must be included in L , so that there are more parameters. If one
insists on infinitely precise results, then there are an infinite number of terms and an
infinite number of parameters. Thus an EFT is just like a regular QFT, supplemented
by a power counting argument that tells you what terms to retain to a given order in
δ. The number of experimental inputs used to fix the Lagrangian parameters increases
with the order in δ. In the µ-decay example, GF can be fixed by the muon lifetime.
The Fermi theory then gives a parameter-free prediction for the decay distributions,
such as the electron energy spectrum, electron polarization, etc.

The parameters of the EFT Lagrangian eqn (3.15) can be obtained from low-
energy data. The divergence structure of the EFT is different from that of the full
theory, of which the EFT is a low-energy limit. This is not a minor technicality, but a
fundamental difference. It is crucial in many practical applications, where IR logs can
be summed by transitioning to an EFT.

In cases where the EFT is the low-energy limit of a weakly interacting full theory,
e.g. the Fermi theory as the low-energy limit of the SM, one constructs the EFT
Lagrangian to reproduce the same S-matrix as the original theory, a procedure known
as matching. The full and effective theory are equivalent; they are different ways of
computing the same observables. The change in renormalization properties means that
fields in the EFT are not the same as fields in the full theory, even though they are often
denoted by the same symbol. Thus the electron field e in eqn (3.15) is not the same as
the field e in the SM Lagrangian. The two agree at tree-level, but at higher orders, one
has to explicitly compute the relation between the two. A given high-energy theory can
lead to multiple EFTs, depending on the physical setting. For example, χPT, HQET,
NRQCD and SCET are all EFTs based on QCD.
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3.4 Inputs

I said at the start of the lectures that it was “obvious” that low-energy dynamics was
insensitive to the short-distance properties of the theory. This is true provided the
input parameters are obtained from low-energy processes computed using the EFT.
QED plus QCD with five flavors of quarks is the low-energy theory of the SM below the
electroweak scale. The input couplings can be determined from measurements below
100 GeV.

Now suppose, instead, that the input couplings are fixed at high-energies, and their
low-energy values are determined by computation. Given the QED coupling α(µH) at
a scale µH > mt above the top-quark mass, for example, we can determine the low-
energy value α(µL) for µL smaller than mt. In this case, α(µL) is sensitive to high
energy parameters, such as heavy masses including the top-quark mass. For example,
if we vary the top-quark mass, then

mt
d

dmt

[
1

α(µL)

]
= − 1

3π
, (3.16)

where µL < mt, and we have kept α(µH) for µH > mt fixed. Similarly, if we keep the
strong coupling αs(µH) fixed for µH > mt, then the proton mass is sensitive to mt,

mp ∝ m2/27
t . (3.17)

The bridge-builder mentioned in the introduction would have a hard time designing
a bridge if the density of steel depended on the top-quark mass via eqn (3.17). Luckily,
knowing about the existence of top-quarks is not necessary. The density of steel is an
experimental observable, and its measured value is used in the design. The density is
measured in lab experiments at low-energies, on length scales of order meters, not in
LHC collisions. How the density depends on mt or possible BSM physics is irrelevant.
There is no sensitivity to high-scale physics if the inputs to low-energy calculations
are from low-energy measurements. The short distance UV parameters are not “more
fundamental” than the long-distance ones. They are just parameters. For example, in
QED, is α(µ > mt) more fundamental than αQED = 1/(137.036) given by measuring
the Coulomb potential as r → ∞? It is αQED, for example, which is measured in
quantum Hall effect experiments.

Combining low-energy EFTs with high-energy inputs mixes different scales, and
leads to problems. The natural parameters of the EFT are those measured at low en-
ergies. Using high-energy inputs forces the EFT to use inputs that do not fit naturally
into the framework of the theory. We will return to this point in Sec. A.

Symmetry restrictions from the high-energy theory feed down to the low-energy
theory. QCD (with θ = 0) preserves C, P and CP , and hence so does χPT. Causality
in QFT leads to the spin-statistics theorem. This is a restriction which is imposed in
quantum mechanics, and follows because the quantum theory is the non-relativistic
limit of a QFT.

Exercise 3.2 Verify eqn (3.16) and eqn (3.17).
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3.5 Integrating Out Degrees of Freedom

The old-fashioned view is that EFTs are given by integrating out high momentum
modes of the original theory, and thinning out degrees of freedom as one evolves from
the UV to the IR [55,84,85]. That is not what happens in the EFTs discussed in this
school, which are used to describe experimentally observable phenomena, and it is not
the correct interpretation of renormalization-group evolution in these theories.

In SCET, there are different collinear sectors of the theory labelled by null vectors
ni = (1,ni), n2

i = 1. Each collinear sector of SCET is the same as the full QCD La-
grangian, so SCET has multiple copies of the original QCD theory, as well as ultrasoft
modes that couple the various collinear sectors. The number of degrees of freedom in
SCET is much larger than in the original QCD theory. In χPT, the EFT is written
in terms of meson and baryon fields, whereas QCD is given in terms of quarks and
gluons. Mesons and baryons are created by composite operators of quarks and glu-
ons, but there is no sense in which the EFT is given by integrating out short-distance
quarks and gluons.

The renormalization group equations are a consequence of the µ independence
of the theory. Thus varying µ changes nothing measurable; S-matrix elements are µ
independent. Nothing is being integrated out as µ is varied, and the theory at different
values of µ is the same. The degrees of freedom do not change with µ. The main purpose
of the renormalization group equations is to sum logs of ratios of scales, as we will see
in Sec. 5.10.

It is much better to think of EFTs in terms of the physical problem you are trying
to solve, rather than as the limit of some other theory. The EFT is then constructed
out of the dynamical degrees of freedom (fields) that are relevant for the problem. The
focus should be on what you want, not on what you don’t want.



4

Power Counting

The EFT functional integral is
∫
Dφ eiS , (4.1)

so that the action S is dimensionless. The EFT action is the integral of a local La-
grangian density

S =

∫
ddx L (x) , (4.2)

(neglecting topological terms), so that in d spacetime dimensions, the Lagrangian
density has mass dimension d,

[L (x)] = d , (4.3)

and is the sum

L (x) =
∑

i

ciOi(x) , (4.4)

of local, gauge invariant, and Lorentz invariant operators Oi with coefficients ci. The
operator dimension will be denoted by D , and its coefficient has dimension d−D .

The fermion and scalar kinetic terms are

S =

∫
ddx ψ̄ i/∂ ψ, S =

∫
ddx

1

2
∂µφ∂

µφ, (4.5)

so that dimensions of fermion and scalar fields are

[ψ] =
1

2
(d− 1), [φ] =

1

2
(d− 2). (4.6)

The two terms in the covariant derivative Dµ = ∂µ + igAµ have the same dimension,
so

[Dµ] = 1, [gAµ] = 1 . (4.7)

The gauge field strength Xµν = ∂µAν − ∂νAµ + . . . has a single derivative of Aµ, so
Aµ has the same dimension as a scalar field. This determines, using eqn (4.7), the
dimension of the gauge coupling g,
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[Aµ] =
1

2
(d− 2), [g] =

1

2
(4− d) . (4.8)

In d = 4 spacetime dimensions,

[φ] = 1, [ψ] = 3/2, [Aµ] = 1, [D] = 1, [g] = 0 . (4.9)

In d = 4 − 2ε dimensions, [g] = ε, so in dimensional regularization, one usually uses
a dimensionless coupling g and writes the coupling in the Lagrangian as gµε, as in
eqn (3.7).

The only gauge and Lorentz invariant operators with dimension D ≤ d = 4 that
can occur in the Lagrangian are

D = 0 : 1

D = 1 : φ

D = 2 : φ2

D = 3 : φ3, ψ̄ψ

D = 4 : φ4, φ ψ̄ψ, DµφD
µφ, ψ̄ i /D ψ, X2

µν . (4.10)

Other operators, such as D2φ vanish upon integration over ddx, or are related to
operators already included eqn (4.10) by integration by parts. In d = 4 spacetime
dimensions, fermion fields can be split into left-chiral and right-chiral fields which
transform as irreducible representations of the Lorentz group. The projection operators
are PL = (1 − γ5)/2 and PR = (1 + γ5)/2. Left-chiral fermions will be denoted ψL =
PLψ, etc.

Renormalizable interactions have coefficients with mass dimension≥ 0, and eqn (4.10)
lists the allowed renormalizable interactions in four spacetime dimensions. The distinc-
tion between renormalizable and non-renormalizable operators should be clear after
Sec. 4.2.

In d = 2 spacetime dimensions

[φ] = 0, [ψ] = 1/2, [Aµ] = 0, [D] = 1, [g] = 1, (4.11)

so an arbitrary potential V (φ) is renormalizable, as is the
(
ψ̄ψ
)2

interaction, so that the
sine-Gordon and Thirring models are renormalizable. In d = 6 spacetime dimensions,

[φ] = 2, [ψ] = 5/2, [Aµ] = 2, [D] = 1, [g] = −1. (4.12)

The only allowed renormalizable interaction in six dimensions is φ3. There are no
renormalizable interactions above six dimensions.1

Exercise 4.1 In d = 4 spacetime dimensions, work out the field content of Lorentz-invariant
operators with dimension D for D = 1, . . . , 6. At this point, do not try and work out which
operators are independent, just the possible structure of allowed operators. Use the notation

1There are exceptions to this in strongly coupled theories where operators can develop large
anomalous dimensions.
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φ for a scalar, ψ for a fermion, Xµν for a field strength, and D for a derivative. For example,
an operator of type φ2D such as φDµφ is not allowed because it is not Lorentz-invariant. An
operator of type φ2D2 could be either DµφD

µφ or φD2φ, so a φ2D2 operator is allowed, and
we will worry later about how many independent φ2D2 operators can be constructed.

Exercise 4.2 For d = 2, 3, 4, 5, 6 dimensions, work out the field content of operators with
dimension D ≤ d, i.e. the “renormalizable” operators.

4.1 EFT Expansion

The EFT Lagrangian follows the same rules as the previous section, and has an ex-
pansion in powers of the operator dimension

LEFT =
∑

D≥0,i

c
(D)
i O

(D)
i

ΛD−d =
∑

D≥0

LD

ΛD−d (4.13)

where O
(D)
i are the allowed operators of dimension D . All operators of dimension D

are combined into the dimension D Lagrangian LD . The main difference from the
previous discussion is that one does not stop at D = d, but includes operators of

arbitrarily high dimension. A scale Λ has been introduced so that the coefficients c
(D)
i

are dimensionless. Λ is the short-distance scale at which new physics occurs, analogous
to 1/a in the multipole expansion example in Sec. 2.2. As in the multipole example,
what is relevant for theoretical calculations and experimental measurements is the
product cDΛd−D , not cD and Λd−D separately. Λ is a convenient device that makes it
clear how to organize the EFT expansion.

In d = 4,

LEFT = LD≤4 +
L5

Λ
+

L6

Λ2
+ . . . (4.14)

LEFT is given by an infinite series of terms of increasing operator dimension. An
important point is that the LEFT has to be treated as an expansion in powers of 1/Λ.
If you try and sum terms to all orders, you violate the EFT power counting rules, and
the EFT breaks down.

4.2 Power Counting and Renormalizability

Consider a scattering amplitude A in d dimensions, normalized to have mass dimen-
sion zero. If one works at some typical momentum scale p, then a single insertion of an
operator of dimension D in the scattering graph gives a contribution to the amplitude
of order

A ∼
( p

Λ

)D−d
(4.15)

by dimensional analysis. The operator has a coefficient of mass dimension 1/ΛD−d from
eqn (4.13), and the remaining dimensions are produced by kinematic factors such as
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external momenta to make the overall amplitude dimensionless. An insertion of a set
of higher dimension operators in a tree graph leads to an amplitude

A ∼
( p

Λ

)n
(4.16)

with

n =
∑

i

(Di − d), n =
∑

i

(Di − 4) in d = 4 dimensions, (4.17)

where the sum on i is over all the inserted operators. This follows from dimensional
analysis, as for a single insertion. Equation (4.17) is known as the EFT power counting
formula. It gives the (p/Λ) suppression of a given graph.

The key to understanding EFTs is to understand why eqn (4.17) holds for any
graph, not just tree graphs. The technical difficulty for loop graphs is that the loop
momentum k is integrated over all values of k,−∞ ≤ k ≤ ∞, where the EFT expansion
in powers of k/Λ breaks down. Nevertheless, eqn (4.17) still holds. The validity of
eqn (4.17) for any graph is explained in Sec. 5.3.

The first example of a power counting formula in an EFT was Weinberg’s power
counting formula for χPT. This is covered in Pich’s lectures, and is closely related to
eqn (4.17). Weinberg counted powers of p in the numerator, whereas we have counted
powers of Λ in the denominator. The two are obviously related.

The power counting formula eqn (4.17) tells us how to organize the calculation. If
we want to compute A to leading order, we only use LD≤d, i.e. the renormalizable
Lagrangian. In d = 4 dimensions, p/Λ corrections are given by graphs with a single
insertion of L5; (p/Λ)2 corrections are given by graphs with a single insertion of L6,
or two insertions of L5, and so on. As mentioned earlier, we do not need to assign a
numerical value to Λ to do a systematic calculation. All we are using is eqn (4.17) for
a fixed power n.

We can now understand the difference between renormalizable theories and EFTs.
In an EFT, there are higher dimension operators with dimension D > d. Suppose we
have a single dimension five operator (using the d = 4 example). Graphs with two
insertions of this operator produce the same amplitude as a dimension six operator.
In general, loop graphs with two insertions of L5 are divergent, and we need a coun-
terterm which is an L6 operator. Even if we set the coefficients of L6 to zero in the
renormalized Lagrangian, we still have to add a L6 counterterm with a 1/ε coefficient.
Thus the Lagrangian still has a coefficient c6(µ). c6(µ) might vanish at one special
value of µ, but in general, it evolves with µ by the renormalization group equations,
and so it will be non-zero at a different value of µ. There is nothing special about
c6 = 0 if this condition does not follow from a symmetry. Continuing in this way,
we generate the infinite series of terms in eqn (4.13). We can generate operators of
arbitrarily high dimension by multiple insertions of operators with D − d > 0.

On the other hand, if we start only with operators in LD≤d, we do not generate
any new operators, only the ones we have already included in LD≤d. The reason is
that D − d ≤ 0 in eqn (4.17) so we only generate operators with D ≤ d. Divergences
in a QFT are absorbed by local operators, which have D ≥ 0. Thus new operators
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Fig. 4.1 The left figure is the QED contribution to the γγ scattering amplitude from an

electron loop. The right figure is the low-energy limit of the QED amplitude treated as a

local F 4
µν operator in the Euler-Heisenberg Lagrangian.

generated by loops have 0 ≤ D ≤ d, and have already been included in L . We do not
need to add counterterms with negative dimension operators, such as 1/φ2(x), since
there are no divergences of this type. In general, renormalizable terms are those with
0 ≤ D ≤ d, i.e. the contribution to n in eqn (4.17) is non-positive.

Renormalizable theories are a special case of EFTs, where we formally take the
limit Λ→∞. Then all terms in L have dimension D ≤ d. Scattering amplitudes can
be computed to arbitrary accuracy, as there are no p/Λ corrections. Theories with op-
erators of dimensions D > d are referred to as non-renormalizable theories, because an
infinite number of higher dimension operators are needed to renormalize the theory. We
have seen, however, that as long one is interested in corrections with some maximum
value of n in eqn (4.17), there are only a finite number of operators that contribute,
and non-renormalizable theories (i.e. EFTs) are just as good as renormalizable ones.

4.3 Photon-Photon Scattering

We now illustrate the use of the EFT power counting formula eqn (4.17) with some
simple examples, which show the power of eqn (4.17) when combined with constraints
from gauge invariance and Lorentz invariance.

Consider γγ scattering at energies much lower than the electron mass, E � me.
At these low energies, the only dynamical degrees of freedom in the EFT are photons.
Classical electromagnetism without charged particles is a free theory, but in QED,
photons can interact via electron loops, as shown in Fig. 4.1. In the EFT, there are no
dynamical electrons, so the 4γ interaction due to electron loops is given by a series of
higher dimension operators involving photon fields. The lowest dimension interactions
that preserve charge conjugation are given by dimension eight operators, so the EFT
Lagrangian has the expansion

L = −1

4
FµνF

µν +
α2

m4
e

[
c1 (FµνF

µν)
2

+ c2

(
Fµν F̃

µν
)2
]

+ . . . . (4.18)

This is the Euler-Heisenberg Lagrangian [43]. We can compare eqn (4.18) with the
general form eqn (4.13). We have used me for the scale Λ, since we know that the
higher dimension operators are generated by the electron loop graph in QED shown in
Fig. 4.1. Since QED is perturbative, we have included a factor of e4 from the vertices,
and 1/16π2 from the loop, so that c1,2 are pure numbers.
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The scattering amplitude computed from eqn (4.18) in the center-of-mass frame is

A ∼ α2ω4

m4
e

, (4.19)

where ω is the photon energy. The α2/m4
e factor is from the Lagrangian, and the ω4

factor is because each field-strength tensor is the gradient of Aµ, and produces a factor

of ω. The scattering cross section σ is proportional to |A |2, and has mass dimension
−2. The phase space integral is thus ∝ 1/ω2 to get the correct dimensions, since ω is
the only dimensionful parameter in the low-energy problem. The cross section is then

σ ∼
(
α2ω4

m4
e

)2
1

ω2

1

16π
∼ α4ω6

16πm8
e

. (4.20)

The 1/(16π) will be explained in Sec. 8. The ω6 dependence of the cross section follows
from the lowest operator being of dimension eight, so that A ∝ 1/m4

e, and σ ∝ 1/m8
e,

A ∝ 1

m4
e

⇒ σ ∝ ω6 . (4.21)

If we had assumed (incorrectly) that gauge invariance was not important and written
the interaction operator generated by Fig. 4.1 as the dimension four operator

L = c α2(AµA
µ)2 (4.22)

the cross section would be σ ∼ α4/(16πω2) instead. The ratio of the two estimates is
(ω/me)

8. For ω ∼ 1 eV, the ratio is 1048!
An explicit computation [28,27,43] gives

c1 =
1

90
, c2 =

7

360
, (4.23)

and [61]

σ =
α4ω6

16πm8
e

15568

10125
. (4.24)

Our estimate eqn (4.20) is quite good (about 50% off), and was obtained with very
little work.

For scalar field scattering, the interaction operator would be φ4, so that σ ∼
1/(16πω2), whereas Goldstone bosons such as pions have interactions Π2(∂Π)2/f2,
so that σ ∼ ω4/(16πf4). Cross sections can vary by many orders of magnitude (1048

between scalars and gauge bosons), so dimensional estimates such as this are very
useful to decide whether a cross section is experimentally relevant before starting on
a detailed calculation.
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4.4 Proton Decay

Grand unified theories violate baryon and lepton number. The lowest dimension op-
erators constructed from SM fields which violate baryon number are dimension six
operators,

L ∼ qqql

M2
G

. (4.25)

These operators violate baryon number B and lepton number L, but conserve B −L.
The operator eqn (4.25) leads to the proton decay amplitude p→ e+π0

A ∼ 1

M2
G

, (4.26)

and the proton decay rate

Γ ∼
m5
p

16πM4
G

. (4.27)

In eqn (4.27), we have obtained a decay rate of the correct dimensions using the only
scale in the decay rate calculation, the proton mass mp, and the rule of 1/(16π) for
the final state phase space discussed in Sec. 8. The proton lifetime is

τ =
1

Γ
∼
(

MG

1015 GeV

)4

× 1030 years (4.28)

EFT power counting provides a natural explanation for baryon number conservation.
In the SM, baryon number is first violated at dimension six, leading to a long proton
lifetime.

If baryon number were violated at dimension five (as happens in some supersym-
metric models), eqn (4.26) would be replaced by A ∼ 1/MG, and the proton decay
rate is

Γ ∼
m3
p

16πM2
G

. (4.29)

The proton lifetime is very short,

τ =
1

Γ
∼
(

MG

1015 GeV

)2

× 1 years, (4.30)

and is ruled out experimentally.

4.5 n− n Oscillations

In some theories, baryon number is violated but lepton number is not. Then proton
decay is forbidden. The proton is a fermion, and so its decay products must contain a
lighter fermion. But the only fermions lighter than the proton carry lepton number, so
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proton decay is forbidden. These theories do allow for a new experimental phenomenon,
namely n− n oscillations, which violates only baryon number.

The lowest dimension operator that leads to n − n oscillations, is the ∆B = 2
six-quark operator

L ∼ q6

M5
G

, (4.31)

which is dimension nine, and suppressed by five powers of the scale MG at which the
operator is generated. This leads to an oscillation amplitude

A ∼
(
mn

MG

)5

, (4.32)

which is strongly suppressed.

4.6 Neutrino Masses

The lowest dimension operator in the SM which gives a neutrino mass is the ∆L = 2
operator of dimension five (see Sec. 10.1.1),

L ∼ (H†`)(H†`)

MS
, (4.33)

generated at a high scale MS usually referred to as the seesaw scale. eqn (4.33) gives
a Majorana neutrino mass of order

mν ∼
v2

MS
(4.34)

when SU(2)× U(1) symmetry is spontaneously broken by v ∼ 246 GeV. Using mν ∼
10−2 eV leads to a seesaw scale MS ∼ 6× 1015 GeV. Neutrinos are light if the lepton
number violating scale MS is large.

4.7 Rayleigh Scattering

The scattering of photons off atoms at low energies also can be analyzed using our
power counting results. Here low energies means energies small enough that one does
not excite the internal states of the atom, which have excitation energies of order
electron-Volts.

The atom can be treated as a neutral particle of mass M , interacting with the
electromagnetic field. Let ψ(x) denote a field operator that creates an atom at the
point x. Then the effective Lagrangian for the atom is

L = ψ†
(
i∂t −

∂2

2M

)
ψ + Lint, (4.35)

where Lint is the interaction term. From eqn (4.35), we see that [ψ] = 3/2. Since
the atom is neutral, covariant derivatives acting on the atom are ordinary derivatives,
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and do not contain gauge fields. The gauge field interaction term is a function of the
electromagnetic field strength Fµν = (E,B). Gauge invariance forbids terms which
depend only on the vector potential Aµ. At low energies, the dominant interaction is
one which involves the lowest dimension operators,

Lint = a3
0 ψ
†ψ
(
cEE2 + cBB2

)
. (4.36)

An analogous E ·B term is forbidden by parity conservation. The operators in eqn (4.36)
have D = 7, so we have written their coefficients as dimensionless constants times a3

0.
a0 is the size of the atom, which controls the interaction of photons with the atom, and
[a0] = −1. The photon only interacts with the atom when it can resolve its charged
constituents, the electron and nucleus, which are separated by a0, so a0 plays the role
of 1/Λ in eqn (4.36).

The interaction eqn (4.36) gives the scattering amplitude

A ∼ a3
0ω

2 , (4.37)

since the electric and magnetic fields are gradients of the vector potential, so each
factor of E or B produces a factor of ω. The scattering cross-section is proportional
to |A |2. This has the correct dimensions to be a cross-section, so the phase-space is
dimensionless, and

σ ∝ a6
0 ω

4. (4.38)

Equation (4.38) is the famous ω4 dependence of the Rayleigh scattering cross-section,
which explains why the sky is blue—blue light is scattered 16 times more strongly
than red light, since it has twice the frequency.

The argument above also applies to the interaction of low-energy gluons with QQ̄
bound states such as the J/ψ or Υ. The Lagrangian is eqn (4.36) where E2 and B2 are
replaced by their QCD analogs, EA ·EA and BA ·BA. The scale a0 is now the radius
of the QCD bound state. The Lagrangian can be used to find the interaction energy of
the QQ̄ state in nuclear matter. The ψ field is a color singlet, so the only interaction
with nuclear matter is via the the gluon fields. The forward scattering amplitude off
a nucleon state is

A = a3
0 〈N |cEEA ·EA + cBBA ·BA|N〉 (4.39)

Equation (4.39) is a non-perturbative matrix element of order Λ2
QCD. It turns out

that it can evaluated in terms of the nucleon mass and the quark momentum fraction
measured in DIS [62]. The binding energy U of the QQ̄ state is related to A by

U =
nA

2MN
, (4.40)

where n is the number of nucleons per unit volume in nuclear matter. The 1/(2MN )
prefactor is because nucleon states in field theory are normalized to 2MN rather than
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b c

νe
e

W

Fig. 4.2 Tree-level diagram for semileptonic b→ c decay.

to 1, as in quantum mechanics. Just using dimensional analysis, with n ∼ Λ3
QCD,

A ∼ a3
0Λ2

QCD, and neglecting factors of two,

U =
a3

0Λ5
QCD

MN
. (4.41)

With a0 ∼ 0.2 × 10−15 m for the J/ψ, and ΛQCD ∼ 350 MeV, the binding energy is
U ∼ 5 MeV.

4.8 Low energy weak interactions

The classic example of an EFT is the Fermi theory of low-energy weak interactions.
The full (UV) theory is the SM, and we can match onto the EFT by transitioning to
a theory valid at momenta small compared to MW,Z . Since the weak interactions are
perturbative, the matching can be done order by order in perturbation theory.

The W boson interacts with quarks and leptons via the weak current:

jµW = Vij (ūi γ
µ PL dj) + (ν̄` γ

µ PL `), (4.42)

where ui = u, c, t are up-type quarks, dj = d, s, b are down-type quarks, and Vij is the
CKM mixing matrix. There is no mixing matrix in the lepton sector because we are
using neutrino flavor eigenstates, and neglecting neutrino masses.

The tree-level amplitude for semileptonic b→ c decay from Fig. 4.2 is

A =

(
−ig√

2

)2

Vcb (c̄ γµ PL b)
(
¯̀γν PL ν`

)( −igµν
p2 −M2

W

)
, (4.43)

where g/
√

2 is the W coupling constant. For low momentum transfers, p � MW , we
can expand the W propagator,

1

p2 −M2
W

= − 1

M2
W

(
1 +

p2

M2
W

+
p4

M4
W

+ . . .

)
, (4.44)

giving different orders in the EFT expansion parameter p/MW . Retaining only the
first term gives

A =
i

M2
W

(
−ig√

2

)2

Vcb (c̄ γµ PL b)
(
¯̀γµ PL ν`

)
+O

(
1

M4
W

)
, (4.45)

which is the same amplitude as that produced by the local Lagrangian
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b c

νe e

Fig. 4.3 b→ c vertex in the Fermi theory.

L = − g2

2M2
W

Vcb (c̄ γµ PL b)
(
¯̀γµ PL ν`

)
+O

(
1

M4
W

)
. (4.46)

eqn (4.46) is the lowest order Lagrangian for semileptonic b → c decay in the EFT,
and is represented by the vertex in Fig. 4.3. It is usually written, for historical reasons,
in terms of GF

GF√
2
≡ g2

8M2
W

=
1

2v2
, (4.47)

where v ∼ 246 GeV is the scale of electroweak symmetry breaking,

L = −4GF√
2
Vcb (c̄ γµ PL b)

(
¯̀γµ PL ν`

)
. (4.48)

Similarly, the µ decay Lagrangian is

L = −4GF√
2

(ν̄µ γ
µ PL µ) (ē γµ PL νe) . (4.49)

The EFT Lagrangian eqn (4.48,4.49) is the low-energy limit of the SM. The EFT no
longer has dynamical W bosons, and the effect of W exchange in the SM has been
included via dimension-six four-fermion operators. The procedure used here is referred
to as “integrating out” a heavy particle, the W boson.

The Lagrangian eqn (4.48,4.49) has been obtained by expanding in p/MW , i.e. by
treating MW as large compared with the other scales in the problem. Weak decays
computed using eqn (4.48,4.49) still retain the complete dependence on low energy
scales such as mb, mc and m`. Using eqn (4.48) gives the b lifetime,

Γ(b→ c`ν`) =
|Vcb|2G2

Fm
5
b

192π3
f

(
m2
c

m2
b

)
, (4.50)

where we have neglected m`, and

f (ρ) = 1− 8ρ+ 8ρ3 − ρ4 − 12ρ2 ln ρ, ρ =
m2
c

m2
b

. (4.51)

Equation (4.50) gives the full mc/mb dependence of the decay rate, but drops terms
of order mb/MW and mc/MW . The full m`/mb dependence can also be included by
retaining m` in the decay rate calculation. The use of the EFT Lagrangian eqn (4.48)
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simplifies the calculation. We could have achieved the same simplification by com-
puting Fig. 4.2 in the SM, and expanding the amplitude using eqn (4.44). The true
advantages of EFT show up in higher order calculations including radiative corrections
from loop graphs, which cannot be computed by simply expanding the SM amplitude.

The Fermi Lagrangian can be used to compute electroweak scattering cross sections
such as the neutrino cross section. Here we give a simple dimensional estimate of the
cross section,

σ ∼ 1

16π

(
4GF√

2

)2

E2
CM ∼

1

2π
G2
FE

2
CM , (4.52)

where the GF factor is from the weak interaction Lagrangian, 1/(16π) is two-body
phase space, and ECM gives σ the dimensions of a cross section. For neutrino scattering
off a fixed target, E2

CM = 2EνMT , so neutrino cross sections grow linearly with the
neutrino energy. Neutrino cross sections are weak as long as Eν is much smaller the
electroweak scale.

Exercise 4.3 Compute the decay rate Γ(b→ ce−νe) with the interaction Lagrangian

L = −4GF√
2
Vcb(cγ

µPLb)(νeγµPLe)

with me → 0, mν → 0, but retaining the dependence on ρ = m2
c/m

2
b . It is convenient to write

the three-body phase space in terms of the variables x1 = 2Ee/mb and x2 = 2Eν/mb.

4.9 MW vs GF

The weak interactions have two parameters, g and MW , and the Fermi Lagrangian in
eqn (4.48) depends only on the combination GF in eqn (4.47). Higher order terms in
the expansion eqn (4.44) are of the form

−4GF√
2

[
1 +

p2

M2
W

+ . . .

]
= − 2

v2

[
1 +

p2

M2
W

+ . . .

]
(4.53)

so that the EFT momentum expansion is in powers of δ = p/MW , even though the
first term in Eq (4.53) is ∝ 1/v2. The expansion breaks down for p ∼ MW = gv/2,
which is smaller than v ∼ 246 GeV.

Despite the theory having multiple scales MW and v, we can still use our EFT
power counting rules of Sec. 4.2. From the µ decay rate computed using eqn (4.49)

Γ(µ→ eνµνe) =
G2
Fm

5
µ

192π3
, (4.54)

and the experimental value of the µ lifetime 2.197 × 10−6 s, we obtain GF ∼ 1.16 ×
10−5 GeV−2. Using GF ∼ 1/Λ2 gives Λ ∼ 300 GeV. This indicates that we have an
EFT with a scale of order Λ. This is similar to the multipole expansion estimate for a.

We can then use the power counting arguments of Sec. 4.2. They show that the
leading terms in the decay amplitude are single insertions of dimension-six operators,
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the next corrections are two insertions of dimension-six or one insertion of dimension-
eight operators, etc. None of these arguments care about the precise value of Λ. They
allow one to group terms in the expansion of similar size.

Dimension-eight corrections are p2/Λ2 suppressed. In µ-decay, this implies that
dimension-eight corrections are suppressed by m2

µ/Λ
2. The power counting estimate

using either Λ ∼ MW or Λ ∼ v shows that they are very small corrections. We can
check that these corrections are small from experiment. The Lagrangian eqn (4.49) pre-
dicts observables such as the phase-space distribution of µ decay events over the entire
Dalitz plot, the polarization of the final e−, etc. Comparing these predictions, which
neglect dimension-eight contributions, with experiment provides a test that eqn (4.49)
gives the correct decay amplitude. Very accurate experiments which are sensitive to
deviations from the predictions of eqn (4.49), i.e. have an accuracy m2

µ/M
2
W ∼ 10−6,

can then be used to probe dimension-eight effects, and determine the scale MW .
Historically, when the SM was developed, GF was fixed from µ decay, but the

values of MW and MZ were not known. Their values were not needed to apply the
Fermi theory to low-energy weak interactions. The value of MZ was determined by
studying the energy dependence of parity violation in electron scattering through
γ − Z interference effects. This fixed the size of the dimension-eight p2/M2

Z terms in
the neutral current analog of eqn (4.53), and determined the scale at which the EFT
had to be replaced by the full SM, with dynamical gauge fields.
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Loops

The real power of EFTs becomes apparent when computing loop corrections. There
are several tricky points that must be understood before EFTs can be used at the loop
level, which are explained in this section.

For simplicity consider an EFT of a scalar field φ, with a higher dimension operator

L = LD≤4 +
c6
Λ2

1

6!
φ6 . (5.1)

The dimension-six operator gives a contribution to φ−φ scattering from the graph in
Fig. 5.1,

A = − c6
2Λ2

∫
d4k

(2π)4

1

k2 −m2
φ

. (5.2)

The EFT is valid for k < Λ, so we can use a momentum-space cutoff Λc < Λ. The
scalar mass mφ is much smaller than Λc, since φ is a particle in the EFT. Neglecting
mφ, the integral gives

A ≈ − c6
2Λ2

Λ2
c

16π2
. (5.3)

The integral eqn (5.2) is quadratically divergent, which gives the quadratic cutoff
dependence in eqn (5.3). Similarly, a dimension eight operator φ4(∂µφ)2 with coefficient
c8/Λ

4 has an interaction vertex k2/Λ4, and gives a contribution

A = − c8
Λ4

∫
d4k

(2π)4

k2

k2 −m2
φ

≈ − c8
Λ4

Λ4
c

16π2
, (5.4)

since the integral is quartically divergent.

Fig. 5.1 One-loop correction to φφ scattering from a φ6 interaction.



32 Loops

The results eqn (5.3,5.4) lead to a violation of the power counting formula eqn (4.17),
and the EFT expansion in powers of 1/Λ breaks down, since Λc is the same order as
Λ. Loops with insertions of higher dimension operators give contributions of leading
order in the 1/Λ expansion, which need to be resummed. One could try using Λc � Λ,
but this turns out not to work. Firstly, Λc is an artificial scale that has been intro-
duced, with no connection to any physical scale. In the end, all Λc dependence must
cancel. For example, the weak interactions would require introducing a cutoff scale
mb � Λc � MW to keep the power divergences in eqn (5.3,5.4) under control, and
this would be an artificial scale that cancels in final results. Furthermore, cutoffs do
not allow one to sum large logarithms, which is one of the main reasons why EFTs
are used in the first place, since we are restricted to Λc � Λ. A cutoff has other
problems as well, it violates important symmetries such as gauge invariance and chiral
symmetry. In fact, nobody has successfully performed higher order log-resummation
in EFTs with non-Abelian gauge interactions using a cutoff. Wilson proposed a set of
axioms [83] for good regulators which are discussed in Ref. [23, Chapter 4].

Often, you will see discussions of EFTs where high momentum modes with k > Λc
are integrated out, and the cutoff is slowly lowered to generate an infrared theory.
While ideas like this were historically useful, this is not the way to think of an EFT,
and it is not the way EFTs are actually used in practice.

Let us go back to a loop graph such as eqn (5.1), and for now, retain the cutoff Λc.
In addition to the contribution shown in eqn (5.3), the loop graph also contains non-
analytic terms in mφ. In more complicated graphs, there would also be non-analytic
terms in the external momentum p. Loop graphs have a complicated analytic structure
in p and mφ, with branch cuts, etc. The discontinuities across branch cuts from logs
in loop graphs are related to the total cross section via the optical theorem. The non-
analytic contributions are crucial to the EFT, and are needed to make sure the EFT
respects unitarity. The non-analytic part of the integral can be probed by varying mφ

and p, and arises from k ∼ mφ, p, i.e. loop momenta of order the physical scales in the
EFT. For loop momenta of order Λc, mφ, p � Λc, one can expand in mφ and p, and
the integral gives analytic but Λc dependent contributions such as eqn (5.3).

The high-momentum part of the integral is analytic in the IR variables, and has
the same structure as amplitudes generated by local operators. This is the concept of
locality mentioned in the introduction. Thus the integral has non-analytic pieces we
want, plus local pieces that depend on Λc. The cutoff integral is an approximation to
the actual integral in the full theory. Thus the local pieces computed as in eqn (5.3)
are not the correct ones. In fact, in theories such as χPT where the UV theory is not
related perturbatively to the EFT, the UV part of the integral is meaningless. Luckily,
locality saves the day. The local pieces have the same structure as operators in the
EFT Lagrangian, so they can be absorbed into the EFT Lagrangian coefficients. The
EFT coefficients are then adjusted to make sure the EFT gives the correct S-matrix,
a procedure referred to as “matching.” The difference in UV structure of the full
theory and the EFT is taken care of by the matching procedure. In the end, we only
need the EFT to reproduce the non-analytic dependence on IR variables; the analytic
dependence is absorbed into Lagrangian coefficients. An explicit calculation is given
in Sec. 5.5.
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To actually use EFTs in practice, we need a renormalization scheme that automat-
ically implements the procedure above—i.e. it gives the non-analytic IR dependence
without any spurious analytic contributions that depend on Λc. Such a scheme also
maintains the EFT power counting, since no powers of a high scale Λc appear in the
numerator of loop integrals, and cause the EFT expansion to break down. Dimensional
regularization is a regulator that satisfies the required properties. It has the additional
advantage that it maintains gauge invariance and chiral symmetry.

5.1 Dimensional Regularization

The basic integral we need is

µ2ε

∫
ddk

(2π)d

(
k2
)a

(k2 −M2)
b

=
iµ2ε

(4π)
d/2

(−1)a−bΓ(d/2 + a)Γ(b− a− d/2)

Γ(d/2)Γ(b)

(
M2
)d/2+a−b

(5.5)

where d = 4 − 2ε. The µ2ε prefactor arises from µε factors in coupling constants, as
in eqn (3.7). Equation (5.5) is obtained by analytically continuing the integral from
values of a and b where it is convergent. Integrals with several denominators can be
converted to eqn (5.5) by combining denominators using Feynman parameters.

The integral eqn (5.5) is then expanded in powers of ε. As an example,

I = µ2ε

∫
ddk

(2π)d
1

(k2 −M2)
2 =

iµ2ε

(4π)
2−ε

Γ(ε)

Γ(2)

(
M2
)−ε

,

=
i

16π2

[
1

ε
− γ + log

4πµ2

M2
+O (ε)

]
, (5.6)

where γ = 0.577 is Euler’s constant. In the MS scheme, we make the replacement

µ2 = µ̄2 e
γ

4π
, (5.7)

so that

I =
i

16π2

[
1

ε
+ log

µ̄2

M2
+O (ε)

]
. (5.8)

The 1/ε part, which diverges as ε → 0, is cancelled by a counterterm, leaving the
renormalized integral

I + c.t. =
i

16π2
log

µ̄2

M2
. (5.9)

The replacement eqn (5.7) removes log 4π and −γ pieces in the final result.
There are several important features of dimensional regularization:

• µ̄ only appears as log µ̄, and there are no powers of µ̄. The only source of µ̄ in
the calculation is from powers of µε in the coupling constants, and expanding in
ε shows that only logµ (and hence log µ̄) terms occur.
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• Scaleless integrals vanish,

µ2ε

∫
ddk

(2π)d

(
k2
)a

(k2)
b

= 0 . (5.10)

This follows using eqn (5.5) and taking the limit M → 0. Since integrals in
dimensional regularization are defined by analytic continuation, the limit M → 0
is taken assuming d/2+a−b > 0 so that the limit vanishes. Analytically continuing
to d/2 + a − b ≤ 0, the integral remains 0. The vanishing of scaleless integrals
plays a very important role in calculations using dimensional regularization.

• There are no power divergences. For example, the quadratically divergent integral

µ2ε

∫
ddk

(2π)d
1

(k2 −m2)
= − iµ2ε

(4π)
d/2

Γ(−1 + ε)
(
m2
)1−ε

=
i

16π2

[
m2

ε
+m2 log

µ̄2

m2
+m2 +O (ε)

]
, (5.11)

depends only on powers of the IR scale m. There is no dependence on any UV scale
(such as a cutoff), nor any power-law dependence on µ̄. Similarly, the integral

µ2ε

∫
ddk

(2π)d

(
k2
)

(k2 −m2)
=

iµ2ε

(4π)
d/2

Γ(3− ε)Γ(−2 + ε)

Γ(2− ε)Γ(1)

(
m2
)2−ε

=
i

16π2

[
m4

ε
+m4 log

µ̄2

m2
+m4 +O (ε)

]
, (5.12)

so the quartic divergence of the integral turns into the IR scale m to the fourth
power.

The structure of the above integrals is easy to understand. Evaluating integrals
using dimensional regularization is basically the same as evaluating integrals using
the method of residues. Values of d, a, b are assumed such that the integrand vanishes
sufficiently fast as k → ∞ that the contour at infinity can be thrown away. The in-
tegrand is then given by the sum of residues at the poles. The location of the poles
is controlled by the denominators in the integrand, which only depend on the phys-
ical scales in the low-energy theory, such as particle masses and external momenta.
Dimensional regularization automatically gives what we want—it keeps all the de-
pendence on the physical parameters, and throws away all unphysical dependence on
high-energy scales. It is the simplest physical regulator, and the one used in all higher
order calculations.
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Fig. 5.2 One loop correction to the Higgs mass from the −λ(H†H)2 interaction.

5.2 No Quadratic Divergences

Let us look at the scalar graph Fig. 5.2 which gives a correction to the Higgs mass in
the SM,

δm2
H = −12λµ2ε

∫
ddk

(2π)d
1

(k2 −m2
H)

, (5.13)

where λ is the Higgs self-coupling. You will have heard endless times that Fig. 5.2
gives a correction

δm2
H ∝ Λ2 , (5.14)

to the Higgs mass that depends quadratically on the cutoff. This is supposed to lead
to a naturalness problem for the SM, because the Higgs is so much lighter than Λ,
which is taken to be at the GUT scale or Planck Scale. The naturalness problem also
goes by the names of hierarchy problem or fine-tuning problem.

The above argument for the naturalness problem is completely bogus. The regulator
used for the SM is dimensional regularization, which respects gauge invariance. The
actual value of the integral is eqn (5.11). Adding the renormalization counterterm
cancels the 1/ε piece, resulting in a correction to the Higgs mass

δm2
H = −12λm2

H

16π2

[
log

m2
H

µ̄2
+ 1

]
, (5.15)

which is proportional to the Higgs mass. There is no quadratic mass shift proportional
to the cutoff; there is no cutoff. The argument eqn (5.14) is based on a regulator that
violates gauge invariance and the Wilson axioms, and which is never used for the SM
in actual calculations. Bad regulators lead to bad conclusions.

Exercise 5.1 Compute the one-loop scalar graph Fig. 5.2 with a scalar of mass m and
interaction vertex −λφ4/4! in the MS scheme. Verify the answer is of the form eqn (5.15).
The overall normalization will be different, because this exercise uses a real scalar field, and
H in the SM is a complex scalar field.
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L6L6

Fig. 5.3 Graph with two insertions of dimension-six operators, which requires a dimen-

sion-eight counterterm.

5.3 Power Counting Formula

We can now extend the power counting formula eqn (4.17) to include loop corrections.
If we consider a loop graph with an insertion of EFT vertices with coefficients of order
1/Λa, 1/Λb, etc. then any amplitude (including loops) will have the Λ dependence

1

Λa
1

Λb
. . . =

1

Λa+b+...
(5.16)

simply from the product of the vertex factors. The discussion of Sec. 5.1 shows that
the only scales which can occur in the numerator after doing the loop integrals are
from poles in Feynman propagator denominators. These poles are at scales in the EFT,
none of which is parametrically of order Λ. Thus there are no compensating factors
of Λ in the numerator, i.e. the power of Λ is given by the vertex factors alone, so
eqn (4.17), also holds for loop graphs.

Loop graphs in general are infinite, and the infinities (1/ε poles) are cancelled by
renormalization counterterms. The EFT must include all operators necessary to ab-
sorb these divergences. From n =

∑
i(Di − 4), we see that if there is an operator

with D > 4, we will generate operators with arbitrary high dimension. Thus an EFT
includes all possible higher dimension operators consistent with the symmetries of
the theory. Dimension-six operators are needed to renormalize graphs with two inser-
tions of dimension-five operators; dimension-eight operators are needed to renormalize
graphs with two insertions of dimension-six operators (see Fig. 5.3), etc. and we have
to keep the entire expansion in higher dimension operators

LEFT = LD≤4 +
L5

Λ
+

L6

Λ2
+ . . . . (5.17)

Even if we focus just on the low-dimension operators, it is understood that the higher
dimension operators are still present. It also makes no sense to set their coefficients
to zero. Their coefficients depend on µ̄, and on other choices such as the gauge-fixing
term, etc. and so setting them to zero is a random unmotivated choice which will no
longer hold at a different value of µ̄ unless the operator is forbidden by a symmetry.

5.4 An Explicit Computation

We now analyze a simple toy example, and explicitly compute a one-loop amplitude
in the full theory, in the EFT, and discuss the matching between the two. The toy
example is a two-scale integral that will be evaluated using EFT methods. The entire
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Fig. 5.4 A graph that gives a loop integral of the form eqn (5.18). The solid lines are light

external fields. The thin dashed line is a light particle with mass m. The thick dashed line is

a heavy particle of mass M that is not in the EFT.

argument applies almost without change to a practical example, the derivation of the
HQET Lagrangian to one-loop [66].

Consider the integral

IF = g2µ2ε

∫
ddk

(2π)d
1

(k2 −m2)(k2 −M2)
(5.18)

where we will take m�M . M is the UV scale, and m is the IR scale. Integrals such
as eqn (5.18) arise in loop calculations of graphs with intermediate heavy and light
particles, such as in Fig. 5.4. In eqn (5.18), we have set the external momenta to zero
to get a simple integral which we can analyze to all orders in m/M .

The integral can be done exactly in d = 4− 2ε dimensions

IF = g2µ2ε

∫
ddk

(2π)d
1

(k2 −m2)(k2 −M2)

=
ig2

16π2

[
1

ε
− log

M2

µ̄2
+

m2

M2 −m2
log

m2

M2
+ 1

]
, (5.19)

where we have switched to the MS scheme using eqn (5.7). IF is a relatively simple
integral because there are only two mass scales in the denominator. An integral with
three denominators with unequal masses gives rise to dilogarithms.

The heavy particle M can be integrated out, as was done for the W boson. The
heavy particle propagator is expanded in a power series,

1

k2 −M2
= − 1

M2

(
1 +

k2

M2
+

k4

M4
+ . . .

)
. (5.20)

The loop graph in the EFT is a series of contributions, one from each term in
eqn (5.20),

IEFT = g2µ2ε

∫
ddk

(2π)d
1

(k2 −m2)

[
− 1

M2
− k2

M4
− k4

M6
− . . .

]

=
ig2

16π2M2

[
−m

2

ε
+m2 log

m2

µ̄2
−m2

]
+

ig2

16π2M4

[
−m

4

ε
+m4 log

m2

µ̄2
−m4

]

+
ig2

16π2M6

[
−m

6

ε
+m6 log

m2

µ̄2
−m6

]
+ . . . . (5.21)
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The series in eqn (5.21) is sufficiently simple in this example that we can sum it up,

IEFT =
ig2

16π2

[
−1

ε

m2

M2 −m2
+

m2

M2 −m2
log

m2

µ̄2
− m2

M2 −m2

]
, (5.22)

to compare with IF . However, it is best to think of IEFT in the expanded form
eqn (5.21), since the EFT is an expansion in powers of 1/M .

There are several important points to note:

• The two results IF and IEFT are different. The order of integration and expansion
matters.

• The 1/ε terms do not agree, they are cancelled by counterterms which differ
in the full and EFT. The two theories have different counterterms and hence
different anomalous dimensions. In our example, the 1/ε terms in eqn (5.21)
give the anomalous dimensions of the 1/M2, 1/M4, 1/M6, etc. operators. Each
operator has its own anomalous dimension.

• The full theory and the EFT are independent theories adjusted to give the same
S-matrix. One can use different regulators or gauge-fixing for the two theories.

• The logm2 terms, which are non-analytic in the IR scale, agree in the two theories.
This is the part of IF which must be reproduced in the EFT.

• The logM2 non-analytic terms in M are not present in the EFT integral. This
must be the case, because in the EFT calculation, we integrated an expression
which was a power series in 1/M , and had no non-analytic terms in M .

• The difference between IF and IEFT is from the UV part of the integral, and is
local in the IR mass scale m, so that IF − IEFT is local (i.e. analytic) in m. This
difference is called the matching contribution to the Lagrangian, and is included
in the EFT result by absorbing it into shifts of the EFT Lagrangian coefficients.

• IF has logM2/m2 terms, which involve the ratio of the UV and IR scales. These
logs can be summed using the RGE in the EFT.

Exercise 5.2 Compute IF and IEFT given in eqns (5.19,5.21) in dimensional regularization
in d = 4−2ε dimensions. Both integrals have UV divergences, and the 1/ε pieces are cancelled
by counterterms. Determine the counterterm contributions IF,ct, IEFT,ct to the two integrals.

5.5 Matching

The infinite parts of IF and IEFT are cancelled by counterterms in the full theory and
the EFT, respectively. The difference of the two renormalized integrals is the matching
contribution

IM = [IF + IF,c.t.]− [IEFT + IEFT,c.t.]

=
ig2

16π2

[(
log

µ̄2

M2
+ 1

)
+
m2

M2

(
log

µ̄2

M2
+ 1

)
+ . . .

]
. (5.23)

The terms in parentheses are matching corrections to terms of order 1, order 1/M2,
etc. from integrating out the heavy particle with mass M . They are analytic in the IR
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scale m. In our simple toy example, the (m2/M2)r corrections are corrections to the
coefficient of the χ4 operator, where χ is the external field in Fig. 5.4. If the mass m
is generated from a λφ4/4! interaction when a light field φ gets a vacuum expectation
value 〈φ〉 = v, m2 = λv2/3, then one can treat m2 as λφ2/3, and the series eqn (5.23)
is an expansion in χ4(φ2)r operators of increasing dimension. For this reason, we refer
to the 1/M expansion as being in operators of increasing dimension.

The logarithm of the ratio of IR and UV scales m and M can be written as

log
m2

M2
= − log

M2

µ̄2

︸ ︷︷ ︸
matching

+ log
m2

µ̄2

︸ ︷︷ ︸
EFT

, (5.24)

where the scales have been separated using µ̄. The first piece is in the matching
condition eqn (5.23), and the second in the EFT result eqn (5.22). We have separated
a two-scale calculation into two one-scale calculations. A single scale integral is far
easier to compute than a multi-scale integral, so the two-step calculation is much
easier to do in practice.

Exercise 5.3 Compute IM ≡ (IF + IF,ct)− (IEFT + IEFT,ct) and show that it is analytic in
m.

5.6 Summing Large Logs

The full theory result IF has logM2/m2 terms, which is the ratio of a UV and an IR
scale. At higher orders, one gets additional powers of the log,

[
g2

16π2
log

M2

m2

]n
. (5.25)

If M � m, perturbation theory can break down when g2/(16π2) logM2/m2 ∼ 1. QCD
perturbation theory often breaks down because of such logs, and it is necessary to sum
these corrections.

In the EFT approach, IF has been broken into two pieces, the matching IM and
the EFT result IEFT. IM only involves the high scale M , and logs in IM depend on
the ratio M/µ̄. These logs are not large if we choose µ̄ ∼M . IM can be computed in
perturbation theory with µ̄ ∼M , and perturbation theory is valid as long as g2/(16π2)
is small, a much weaker condition than requiring g2/(16π2) logM2/m2 to be small.

Similarly, IEFT only involves the scale m, and logs in IEFT are logs of the ratio
m/µ̄. The EFT logs are not large if we choose µ̄ ∼ m. Thus we can compute IM and
IEFT if we use two different µ̄ values. The change in µ̄ is accomplished by using the
renormalization group equations in the EFT.

5.7 A Better Matching Procedure

While we argued that single-scale integrals were much easier to evaluate than multi-
scale ones, the way we computed IM as the difference IF − IEFT still required first



40 Loops

computing the multi-scale integral IF . And if we know IF , don’t we essentially have
the answer we want anyway? Why bother with constructing an EFT in the first place?

It turns out there is a much simpler way to compute the matching that does not rely
on first computing IF . IF and IEFT both contain terms non-analytic in the infrared
scale, but the difference IM is analytic in m,

IM (m)︸ ︷︷ ︸
analytic

= IF (m)︸ ︷︷ ︸
non-analytic

− IEFT(m)︸ ︷︷ ︸
non-analytic

. (5.26)

Therefore, we can compute IM by expanding IF − IEFT in an expansion in the IR
scale m. This drops the non-analytic pieces, but we know they cancel in IF − IEFT.

The expansion of IF is

I
(exp)
F = g2µ2ε

∫
ddk

(2π)d
1

k2 −M2

[
1

k2
+
m2

k4
+ . . .

]
. (5.27)

The expansion of IEFT is

I
(exp)
EFT = g2µ2ε

∫
ddk

(2π)d

[
1

k2
+
m2

k4
+ . . .

] [
− 1

M2
− k2

M4
− . . .

]
. (5.28)

Both I
(exp)
F and I

(exp)
EFT have to be integrated term by term. The expansions I

(exp)
F and

I
(exp)
EFT drop non-analytic terms in m, and do not sum to give IF and IEFT. However,

the non-analytic terms in m cancel in the difference, so I
(exp)
F −I(exp)

EFT does sum to give
IM .

Non-analytic terms in dimensional analysis arise from contributions of the form

1

ε
mε =

1

ε
+ logm+ . . . (5.29)

in integrals done using dimensional regularization. In eqns (5.27,5.28), we first expand
in the IR scale m, and then expand in ε. In this case,

1

ε
mε =

1

ε

[
mε
∣∣∣
m=0

+ εmε−1
∣∣∣
m=0

+ . . .
]
. (5.30)

In dimensional regularization, the m = 0 limit of all the terms in the square brackets
vanishes. Expanding in m sets all non-analytic terms in m to zero.

I
(exp)
EFT has to be integrated term by term. Each term is a scaleless integral, and

vanishes. For example the first term in the product is

g2µ2ε

∫
ddk

(2π)d

[
1

k2

] [
− 1

M2

]
= − 1

M2
g2µ2ε

∫
ddk

(2π)d
1

k2
= 0 . (5.31)

This is not an accident of our particular calculation, but completely general. IEFT was

given by expanding the integrand of IF in inverse powers of the UV scale M . I
(exp)
EFT is

given by taking the result and expanding the integrand in powers of the IR scale m.
The resulting integrand has all scales expanded out, and so is scaleless and vanishes.
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I
(exp)
F , on the other hand, now only depends on the UV scale M ; the IR scale m has

been expanded out. Integrating term by term reproduces eqn (5.23) for the matching
integral IM . Thus the matching is given by evaluating IF with all IR scales expanded
out. This is a much easier way to compute IM than computing IF and IEFT and taking
the difference.

Exercise 5.4 Compute I
(exp)
F , i.e. IF with the IR m scale expanded out

I
(exp)
F = −iµ2ε

∫
ddk

(2π)d
1

(k2 −M2)

[
1

k2
+
m2

k4
+ . . .

]
.

Note that the first term in the expansion has a 1/ε UV divergence, and the remaining terms
have 1/ε IR divergences.

Exercise 5.5 Compute I
(exp)
F +IF,ct using IF,ct determined in Exercise 5.2. Show that the UV

divergence cancels, and the remaining 1/ε IR divergence is the same as the UV counterterm
IEFT,ct in the EFT.

Something remarkable has happened. We have taken IF , and expanded term by
term in inverse powers of 1/M , i.e. by assuming k � M , to get IEFT. Then we have
taken the original IF and expanded term by term in powers of m, i.e. by assuming

k � m, to get I
(exp)
F = IM . The sum of the two contributions is exactly the original

integral IF . Adding two different expansions of the same integrand recovers the original
result, not twice the original result. The agreement is exact. One might worry that we
have counted the regionm� k �M in both integrals. But this double-counting region

is precisely I
(exp)
EFT , and vanishes in dimensional regularization. It does not vanish with

other regulators, such as a cutoff. One can understand why the EFT method works
by using the analogy of dimensional regularization with integration using the method
of residues. The IF integrand has UV poles at M and IR poles at m. Expanding out
in 1/M to get IEFT leaves only the IR poles. Expanding out in m leaves only the UV
poles in IM . The sum of the two has all poles, and gives the full result.

Dimensional regularized integrals are evaluated with k set by the physical scales in
the problem. There are no artificial scales as in a cutoff regulator that lead to spurious
power divergences which have to be carefully subtracted away.

The method of regions [13] is a very clever procedure for evaluating Feynman
integrals which is closely related to the above discussion. One finds momentum regions
which lead to poles in the integrand, expands in a power series in each region, and
integrates term-by-term using dimensional regularization. Adding up the contributions
of all the momentum regions gives the original integrand. In our example, the two
regions were the hard region k ∼ M , and the soft region k ∼ m. The method of
regions provides useful information to formulate an EFT, but it is not the same as
an EFT. In an EFT, one has a Lagrangian, and the EFT amplitudes are given by
computing graphs using Feynman rules derived from the Lagrangian. One cannot
add or subtract modes depending on which momentum region contributes to an EFT
graph. For example, in HQET, graphs get contributions from momenta of order mb,
and of order mc. Nevertheless, HQET only has a single gluon field, not separate ones
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for each scaling region. In the method of regions, the contribution of different regions
can depend on how loop momenta are routed in a Feynman graph, though the total
integral given by summing all regions remains unchanged. In an EFT, the Lagrangian
and Feynman rules do not depend on the momentum routing used.

5.8 UV and IR Divergences

Let us look in more detail at the 1/ε terms. The original integral IF can have both
UV and IR divergences. In our example, it only has a UV divergence. The terms in
IEFT are expanded in k2/M2 and become more and more UV divergent. The terms in

I
(exp)
F are expanded in m2/k2 and become more and more IR divergent. Dimensional

regularization regulates both the UV and IR divergences. It will be useful to separate
the divergences into UV and IR, and label them by εUV or εIR. In reality, there is only
one ε = εUV = εIR given by ε = (4−d)/2. At higher loops, one has to be careful about
mixed divergences which are the product of IR and UV divergences.

The log divergent (in d = 4) scaleless integral vanishes
∫

ddk

(2π)d
1

k4
= 0. (5.32)

It is both UV and IR divergent, and can be split into UV divergent and IR divergent
integrals

∫
ddk

(2π)d
1

k4
=

∫
ddk

(2π)d

[
1

k2(k2 −m2)
− m2

k4(k2 −m2)

]
, (5.33)

by introducing an arbitrary mass scale m. The first term is UV divergent, and the
second is IR divergent. Using εUV, εIR, and evaluating the pieces, eqn (5.33) becomes

∫
ddk

(2π)d
1

k4
=

i

16π2

[
1

εUV
− 1

εIR

]
= 0. (5.34)

Log divergent scaleless integrals vanish because of the cancellation of 1/εUV with 1/εIR.
Power law divergent scaleless integrals simply vanish, and do not produce 1/ε poles,
e.g.

∫
ddk

(2π)d
1

k2
= 0 ,

∫
ddk

(2π)d
1 = 0 , (5.35)

so there are no quadratic or quartic divergences in dimensional regularization.
Let us go back to our matching example. IF and IEFT have the same IR behavior,

because the EFT reproduces the IR of the full theory. Now consider a particular term

in I
(exp)
F with coefficient mr,

I
(exp)
F (m) =

∑

r

mr I
(r)
F . (5.36)

We have expanded out the IR scale m, so there can be IR divergences which would
otherwise have been regulated by m. The integral is a single scale integral depending
only on M , and has the form
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I
(r)
F =

A(r)

εUV
+
B(r)

εIR
+ C(r) , (5.37)

where A(r) is the UV divergence, B(r) is the IR divergence, and C(r) is the finite part.
For example from eqn (5.27)

I
(0)
F = g2µ2ε

∫
ddk

(2π)d
1

k2 −M2

1

k2
=

ig2

16π2

[
1

εUV
+ log

µ̄2

M2
+ 1

]
,

I
(2)
F = g2µ2ε

∫
ddk

(2π)d
1

k2 −M2

1

k4
=

ig2

16π2

1

M2

[
1

εIR
+ log

µ̄2

M2
+ 1

]
, (5.38)

so that

A(0) =
ig2

16π2
, A(2) = 0,

B(0) = 0, B(2) =
ig2

16π2

1

M2
,

C(0) =
ig2

16π2

[
log

µ̄2

M2
+ 1

]
, C(2) =

ig2

16π2

1

M2

[
log

µ̄2

M2
+ 1

]
. (5.39)

Now look at the terms in I
(exp)
EFT ,

I
(exp)
EFT (m) =

∑

r

mr I
(r)
EFT . (5.40)

I
(exp)
EFT is a scaleless integral, and vanishes. However, we can still pick out the log

divergent terms, and write 0 in the form eqn (5.34). In general, we have

I
(r)
EFT = −B

(r)

εUV
+
B(r)

εIR
= 0 , (5.41)

and there is no finite piece, since the integral vanishes. B(r) is the same as in eqn (5.37),
because the two integrals have the same IR divergence, so the 1/εIR terms must agree.

In our example, from eqn (5.28),

I
(0)
EFT = 0 since there is no m0/k4 term,

I
(2)
EFT = −g2 1

M2
µ2ε

∫
ddk

(2π)d
1

k4
= − i

16π2

1

M2

[
1

εUV
− 1

εIR

]
, (5.42)

so that

B(0) = 0, B(2) =
ig2

16π2

1

M2
, (5.43)

which agree with B(0) and B(2) in eqn (5.39), as expected. The renormalized expression

for I
(r)
F is given by adding the full theory counterterm −A(r)/εUV,
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I
(r)
F + I

(r)
F,c.t. =

B(r)

εIR
+ C(r) , (5.44)

and the renormalized expression for I
(r)
EFT by adding the EFT counterterm B(r)/εUV,

I
(r)
EFT + I

(r)
EFT,c.t. =

B(r)

εIR
. (5.45)

Note that one does not cancel IR divergences by counterterms. The difference of
eqn (5.44) and eqn (5.45) is

I
(r)
M =

[
I

(r)
F + I

(r)
F,c.t.

]
−
[
I

(r)
EFT + I

(r)
EFT,c.t.

]
= C(r). (5.46)

The infrared divergences cancel between the two, leaving only the finite part C(r).

Exercise 5.6 Compute I
(exp)
EFT , i.e. IEFT with the IR m scale expanded out. Show that it is

a scaleless integral which vanishes. Using the known UV divergence from Exercise 5.2, write
it in the form

I
(exp)
EFT = −B 1

16π2

[
1

εUV
− 1

εIR

]
,

and show that the IR divergence agrees with that in I
(exp)
F + IF,ct.

Exercise 5.7 Compute
(
I
(exp)
F + IF,ct

)
−
(
I
(exp)
EFT + IEFT,ct

)
and show that all the 1/ε di-

vergences (both UV and IR) cancel, and the result is equal to IM found in Exercise 5.3.

This gives the prescription for the matching condition: Expand IF in IR scales,
and keep only the finite part. However, we have obtained some new information. The
anomalous dimension in the full theory is proportional to the UV counterterm −A.
The anomalous dimension in the EFT is proportional to the EFT counterterm B,
which can be different from A. By the argument just given, B is the IR divergence
of the full theory. By using an EFT, we have converted IR divergences (i.e. the logm
terms) in the full theory into UV divergences in the EFT. This converts IR logs into
UV logs, which can be summed using the renormalization group. In the EFT, logM/m
terms in the full theory are converted to log µ̄/m terms, since M → ∞ in the EFT.
These are summed by the EFT renormalization group equations.

Exercise 5.8 Make sure you understand why you can compute IM simply by taking I
(exp)
F

and dropping all 1/ε terms (both UV and IR).
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Finally, if we do the EFT calculation without expanding out the IR scale m, then
the EFT calculation is no longer IR divergent and can have a finite part,

I
(r)
EFT = −B

(r)

εUV
+D(r) , (5.47)

where the UV divergence remains the same as before. The finite part of the full am-
plitude IF has been split into C(r) +D(r), with C(r) from the matching and D(r) from
the EFT. In our example,

D(0) = 0,

D(2) =
ig2

16π2

1

M2

[
log

m2

µ2
− 1

]
, (5.48)

from eqn (5.21).

5.9 Summary

It has taken a while to get to the final answer, but we can now summarize our results.
The general procedure is simple to state:

• Compute the full theory graphs expanding in all IR scales. The integrals are
single-scale integrals involving only the high scale M . Drop the 1/ε terms from
both UV and IR divergences. This gives C(r)(µ). To avoid large logarithms, µ
should be chosen to be of order the high scale M . The starting values of the EFT
coefficient at the high scale are C(r)(µ ∼M).

• Evolve the EFT down from µ ∼M to a low scale µ ∼ m using the renormalization
group equations in the EFT. This sums logs of the ratios of scales, lnM/m.

• Compute in the EFT using µ ∼ m. There are no large logs in the EFT calculation.

• Combine the pieces to get the final result.

One computation has been broken up into several much simpler calculations, each of
which involves a single scale.

Exercise 5.9 Compute the QED on-shell electron form factors F1(q2) and F2(q2) expanded
to first order in q2/m2 using dimensional regularization to regulate the IR and UV divergences.
This gives the one-loop matching to heavy-electron EFT. Note that it is much simpler to first
expand and then do the Feynman parameter integrals. A more difficult version of the problem
is to compute the on-shell quark form factors in QCD, which gives the one-loop matching to
the HQET Lagrangian. For help with the computation, see Ref. [66]. Note that in the non-
Abelian case, using background field gauge is helpful because the amplitude respects gauge
invariance on the external gluon fields.

Exercise 5.10
The SCET matching for the vector current ψγµψ for the Sudakov form factor is a variant
of the previous problem. Compute F1(q2) for on-shell massless quarks, in pure dimensional
regularization with Q2 = −q2 6= 0. Here Q2 is the big scale, whereas in the previous problem
q2 was the small scale. The spacelike calculation Q2 > 0 avoids having to deal with the +i0+

terms in the Feynman propagator which lead to imaginary parts. The timelike result can then
be obtained by analytic continuation.
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Exercise 5.11
Compute the SCET matching for timelike q2, by analytically continuing the previous result.
Be careful about the sign of the imaginary parts.

5.10 RG Improved Perturbation Theory

We have mentioned several times that renormalization group improved perturbation
theory is better than fixed order perturbation theory. To understand the difference,
consider an example where an operator coefficient c(µ) satisfies the one-loop renor-
malization group equation

µ
d

dµ
c(µ) =

[
γ0
g2(µ)

16π2
+O

(
g2(µ)

16π2

)2
]
c(µ), (5.49)

where γ0 is a constant. The evolution of g(µ) is given by the β-function equation

µ
dg(µ)

dµ
= −b0

g3(µ)

16π2
+O

[
g5(µ)

(16π2)2

]
. (5.50)

As long as g2(µ)/(16π2) is small, we can integrate the ratio of eqn (5.49) and eqn (5.50)
to get

c(µ1)

c(µ2)
=

[
αs(µ1)

αs(µ2)

]−γ0/(2b0)

, αs(µ) =
g2(µ)

4π
. (5.51)

Integrating eqn (5.49,5.50) term by term, or equivalently, expanding eqn (5.51) gives

c(µ1)

c(µ2)
= 1 + γ0

αs(µ1)

4π
log

µ1

µ2
− 1

2
γ0(2b0 − γ0)

[
αs(µ1)

4π
log

µ1

µ2

]2

+
1

6
γ0(2b0 − γ0)(4b0 − γ0)

[
αs(µ1)

4π
log

µ1

µ2

]3

+ . . . (5.52)

The renormalization group sums the leading log (LL) series αns logn, as can be seen
from eqn (5.52). One can show that the higher order corrections in eqn (5.49,5.50) do
not contribute to the leading log series, since they are suppressed by αs/(4π) without a
log. Including the two-loop terms gives the next-to-leading-log (NLL) series αns logn−1,
the three-loop terms give the NNLL series αns logn−2, etc.

The change in g(µ) and c(µ) can be very large, even if αs(µ) is small. For example,
in the strong interactions, αs(MZ) ≈ 0.118 and αs(mb) ≈ 0.22, a ratio of about two.
Even though both values of αs are small, weak decay operator coefficients also change
by about a factor of two between MZ and mb, as shown below.

5.10.1 Operator Mixing

Summing logs using the renormalization group equations allows us to include operator
mixing effects in a systematic way. This is best illustrated by the simple example of
non-leptonic weak b→ c decays via the effective Lagrangian
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Fig. 5.5 . Graph contributing to the anomalous dimension of O1 and O2. One has to sum over

gluon exchange between all possible pairs of lines, and also include wavefunction corrections.

L = −4GF√
2
VcbV

∗
ud (c1O1 + c2O2) , (5.53)

where the two operators and their tree-level coefficients at µ = MW are

O1 = (c̄α γµ PL bα)
(
d̄β γµ PL uβ

)
, c1 = 1 +O (αs) , (5.54)

O2 = (c̄α γµ PL bβ)
(
d̄β γµ PL uα

)
, c2 = 0 +O (αs) , (5.55)

where α and β are color indices. Since the W boson is color-singlet, only O1 is produced
by the tree-level graph. O2 is generated by loop graphs involving gluons, which are
suppressed by a power of αs.

The renormalization group equations can be computed from the one-loop graph in
Fig. 5.5 [38],

µ
d

dµ

[
c1
c2

]
=
αs
4π

[
−2 6
6 −2

] [
c1
c2

]
. (5.56)

Exercise 5.12 Compute the anomalous dimension mixing matrix in eqn (L5.56), Two other
often used bases are

Q1 = (bγµPLc)(uγ
µPLd) Q2 = (bγµPLT

Ac)(uγµPLT
Ad)

and

O± = O1 ±O2

So let

L = c1O1 + c2O2 = d1Q1 + d2Q2 = c+O+ + c−O−

and work out the transformation between the anomalous dimensions for d1,2 and c+,− in
terms of those for c1,2,

The anomalous dimension matrix is not diagonal, which is referred to as operator
mixing. In this simple example, the equations can be integrated by taking the linear
combinations c± = c1 ± c2,

µ
d

dµ

[
c+
c−

]
=
αs
4π

[
4 0
0 −8

] [
c+
c−

]
, (5.57)
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which decouples the equations. The solution is

c+(µ1)

c+(µ2)
=

[
α(µ1)

α(µ2)

]−6/23

,
c−(µ1)

c−(µ2)
=

[
α(µ1)

α(µ2)

]12/23

, (5.58)

using eqn (5.51), with b0 = 11 − 2/3nf = 23/3 and nf = 5 dynamical quark flavors.
With αs(mb) ∼ 0.22 and αs(MZ) ∼ 0.118,

c+(mb)

c+(MW )
= 0.85,

c−(mb)

c−(MW )
= 1.38, (5.59)

so that

c1(mb) ≈ 1.12, c2(mb) ≈ −0.27 . (5.60)

A substantial c2 coefficient is obtained at low scales, even though the starting value is
c2(MW ) = 0.

Equation (5.52) for the general matrix case is

c(µ1) =

[
1 + γ0

αs(µ1)

4π
log

µ1

µ2
− 1

2
γ0(2b0 − γ0)

[
αs(µ1)

4π
log

µ1

µ2

]2

+
1

6
γ0(2b0 − γ0)(4b0 − γ0)

[
αs(µ1)

4π
log

µ1

µ2

]3

+ . . .

]
c(µ2), (5.61)

where γ0 is a matrix and c is a column vector. Equation (5.61) shows that c2(mb) in
eqn (5.60) is a leading-log term, even though it starts at c2(MW ) = 0. In examples with
operator mixing, it is difficult to obtain the leading-log series eqn (5.61) by looking at
graphs in the full theory. The method used in practice to sum the leading-log series is
by integrating anomalous dimensions in the EFT.

The above discussion of renormalization group equations and operator mixing also
holds in general EFTs. The EFT Lagrangian is an expansion in higher dimension
operators,

L = LD≤4 +
1

Λ
c
(5)
i O

(5)
i +

1

Λ2
c
(6)
i O

(6)
i + . . . . (5.62)

The running of the coupling constants in LD≤4 is given by the usual β-functions of
the low-energy theory, e.g. by the QCD and QED β-functions. The other terms in L
are higher dimension operators, and their anomalous dimensions are computed in the
same way as eqn (5.56) for the weak interactions. The additional piece of information
we have is the EFT power counting formula. This leads to RGE equations of the form

µ
d

dµ
c
(5)
i = γ

(5)
ij c

(5)
j ,

µ
d

dµ
c
(6)
i = γ

(6)
ij c

(6)
j + γijk c

(5)
j c

(5)
k , (5.63)

and in general
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µ
d

dµ
c
(D)
i = γij1j2...jrc

(D1)
j1

. . . c
(Dr)
jr

, (5.64)

with D−4 =
∑
i(Di−4), where the anomalous dimensions γ are functions of the cou-

pling constants in LD≤4. The renormalization group equations are non-linear. Graphs
with two insertions of a dimension-five operator need a dimension-six counterterm

leading to the c
(5)
j c

(5)
k term in the anomalous dimension for c

(6)
i , etc. In the presence

of mass terms such as m2
H , one also gets mixing to D − 4 <

∑
r(Dr − 4) operators,

e.g.

µ
d

dµ
c
(4)
i = m2

Hγ
(6→4)
ij c

(6)
j + . . . . (5.65)

as in SMEFT [53].



6

Field Redefinitions and Equations of
Motion

6.1 LSZ Reduction Formula

Experimentally observable quantities in field theory are S-matrix elements, whereas
what one computes from the functional integral are correlation functions of quantum
fields. The LSZ reduction formula relates the two. For simplicity, we discuss a theory
with a scalar field φ(x). The momentum space Green’s functions are defined by

G(q1, . . . , qm; p1, . . . , pn)

=

m∏

i=1

∫
d4yi e

iqi·yi
n∏

j=1

∫
d4xj e

−ipj ·xj 〈0|T {φ(y1) . . . φ(ym)φ(x1) . . . φ(xn)} |0〉

(6.1)

where the momenta pi are incoming, and momenta qi are outgoing, as shown in Fig. 6.1.
These Green’s functions can be computed in perturbation theory using the usual
Feynman diagram expansion. The φ propagator in Fig. 6.2 is a special case of eqn (6.1),

D(p) =

∫
d4x eip·x 〈0|T {φ(x)φ(0)} |0〉 . (6.2)

If the field φ(x) can produce a single particle state |p〉 with invariant mass m from the
vacuum,

〈p|φ(x)|0〉 6= 0 , (6.3)

q1

q2

q3

q4

p1

p2

p3

Fig. 6.1 Green’s function with 3 incoming particles and 4 outgoing particles.



Field Redefinitions 51

pp

Fig. 6.2 Two-point function D(p).

then the propagator D(p) has a pole at p2 = m2,

D(p) ∼ iR
p2 −m2 + iε

+ non-pole terms. (6.4)

φ is called an interpolating field for |p〉. The wavefunction factor R is defined by

lim
p2→m2

p0>0

(
p2 −m2

)
D(p) ≡ iR . (6.5)

R is finite, since D(p), the renormalized propagator, is finite.
The S-matrix is computed from the Green’s function by picking out the poles for

each particle,

lim
q2i→m

2

q0i>0

lim
p2j→m

2

p0j>0

m∏

i=1

(
q2
i −m2

) n∏

j=1

(
p2
j −m2

)
G(q1, . . . , qm; p1, . . . , pn)

=

m∏

i=1

(
i
√
Ri
) n∏

j=1

(
i
√
Rj
)

out〈q1, . . . , qm|p1, . . . , pn〉in , (6.6)

i.e. the n+m particle pole of the Green’s function gives the S-matrix up to wavefunc-
tion normalization factors. Equation (6.6) is called the LSZ reduction formula [60].
The only complication for fermions and gauge bosons is that one has to contract with

spinors u(p, s), v(p, s) and polarization vectors ε
(s)
µ (p).

The important feature of eqn (6.6) is that the derivation only depends on eqn (6.3),
so that any interpolation field can be used. Particle states are given by the physical
spectrum of the theory, and Green’s functions are given by correlation functions of
fields. S-matrix elements, which are the physical observables, depend on particle states,
not fields. Fields and particles are not the same.

6.2 Field Redefinitions

It is now easy to see why field redefinitions do not change the S-matrix. The LSZ
reduction formula does not care what field is used. To understand this in more detail,
consider the functional integral

Z[J ] =

∫
Dφ ei

∫
L[φ]+Jφ. (6.7)

The Green’s functions

〈0|T {φ(x1) . . . φ(xr)} |0〉 =

∫
Dφ φ(x1) . . . φ(xr) e

iS(φ)

∫
Dφ eiS(φ)

, (6.8)
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are given by

〈0|T {φ(x1) . . . φ(xr)} |0〉 =
1

Z[J ]

δ

i δJ(x1)
. . .

δ

i δJ(xr)
Z[J ]

∣∣∣∣
J=0

. (6.9)

Consider a local field redefinition,

φ(x) = F [φ′(x)] , (6.10)

such as

φ(x) = φ′(x) + c1∂
2φ′(x) + c2φ

′(x)3 . (6.11)

The field redefinition F [φ′(x)] can involve integer powers of φ and a finite number of
derivatives. Then L′ defined by

L[φ(x)] = L[F [φ′(x))] = L′[φ′(x)] , (6.12)

is the new Lagrangian after the field redefinition eqn (6.10).
The functional integral Z ′ with the new field φ′(x) and Lagrangian L′

Z ′[J ] =

∫
Dφ′ ei

∫
L′[φ′]+Jφ′

=

∫
Dφ ei

∫
L′[φ]+Jφ , (6.13)

gives correlation functions of φ′ computed using L′[φ′], or equivalently, correlation
functions of φ computed using L′[φ], since φ′ is a dummy integration variable and
can be replaced by φ. The original functional integral eqn (6.7) under the change of
variables eqn (6.10) becomes

Z[J ] =

∫
Dφ′

∣∣∣∣
δF

δφ′

∣∣∣∣ ei
∫
L′[φ′]+JF [φ′] . (6.14)

The Jacobian |δF/δφ′| is unity in dimensional regularization, except for the special
case of a fermionic chiral transformation, where there is an anomaly [31]. Neglecting
anomalies, and dropping primes on the dummy variable φ′ gives

Z[J ] =

∫
Dφ ei

∫
L′[φ]+JF [φ]. (6.15)

Thus Z[J ], which gives the Green’s functions of φ computed using Lagrangian L[φ] by
eqn (6.7), also gives the Green’s functions of F [φ] computed using Lagrangian L′[φ]. In
contrast, Z ′[J ] gives the correlation functions of φ computed using the new Lagrangian
L′[φ]. The two correlation functions are different, so Green’s functions change under
a field redefinition. However, the S-matrix remains unchanged. Z[J ] computes the
S-matrix using Lagrangian L′[φ] and F [φ] as the interpolating field, by eqn (6.15).
Z ′[J ] computes the S-matrix using Lagrangian L′[φ] and φ as the interpolating field,
by eqn (6.13). The S-matrix does not care about the choice of interpolating field (i.e.
field redefinition) as long as

〈p|F [φ]|0〉 6= 0, (6.16)

so a field redefinition leaves the S-matrix unchanged.
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In field theory courses, we study renormalizable Lagrangians with terms of dimen-
sion 6 4. The only field redefinitions allowed are linear transformations,

φ′i = Cij φj . (6.17)

These are used to put the kinetic term in canonical form,

1

2
∂µφi ∂

µφi. (6.18)

In an EFT, there is much more freedom to make field redefinitions, since the
Lagrangian includes higher dimensional operators. One makes field redefinitions that
respect the EFT power counting, e.g.

φ→ φ+
1

Λ2
φ3 + . . . (6.19)

and work order by order in 1/Λ. Field redefinitions are often used to put EFT La-
grangians in canonical form. The EFT Lagrangian is then given by matching from the
full theory, followed by a field redefinition, so fields in the EFT are not the same as in
the full theory.

6.3 Equations of Motion

A special case of field redefinitions is the use of equations of motion [37,75]. Let E[φ]
be the classical equation of motion

E[φ] ≡ δS

δφ
. (6.20)

For example, if

L =
1

2
∂µφ∂

µφ− 1

2
m2φ2 − 1

4!
λφ4, (6.21)

E[φ] is

E[φ] = −∂2φ(x)−m2φ(x)− 1

3!
λφ3(x) . (6.22)

Let θ be an operator with a factor of the classical equation of motion,

θ[φ] = F [φ]E[φ] = F [φ]
δS

δφ
, (6.23)

and consider the functional integral

Z[J, J̃ ] =

∫
Dφ ei

∫
L[φ]+J φ+J̃θ[φ]. (6.24)

The correlation function
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〈0|T {φ(x1) . . . φ(xn)θ(x)} |0〉 (6.25)

with one insertion of the equation-of-motion operator θ is given by evaluating

〈0|T {φ(x1) . . . φ(xn)θ(x)} |0〉 =
1

Z[J, J̃ ]

δ

i δJ(x1)
. . .

δ

i δJ(xr)

δ

i δJ̃(x)
Z[J, J̃ ]

∣∣∣∣∣
J=J̃=0

.

(6.26)

Make the change of variables

φ = φ′ − J̃F [φ′] (6.27)

in the functional integral eqn (6.24),

Z[J, J̃ ] =

∫
Dφ′

∣∣∣∣
δφ

δφ′

∣∣∣∣ e
i
∫
L[φ′]− δS

δφ |φ′ J̃F [φ′]+Jφ′−JJ̃F [φ′]+J̃θ[φ′]+O(J̃)2

,

=

∫
Dφ′

∣∣∣∣
δφ

δφ′

∣∣∣∣ ei
∫
L[φ′]+Jφ′−JJ̃F [φ′]+O(J̃)2 , (6.28)

by eqn (6.23). The Jacobian

∣∣∣∣
δφ(x)

δφ′(y)

∣∣∣∣ = det

[
δ(x− y)− J̃ δF [φ′(x)]

δφ′(y)

]
, (6.29)

is unity in dimensional regularization. Relabeling the dummy integration variable as
φ gives

Z[J, J̃ ] =

∫
Dφ ei

∫
L[φ]+Jφ−JJ̃F [φ]+O(J̃)2 . (6.30)

Taking the J̃ derivative and setting J̃ = 0 gives, by using the equality of eqn (6.24)
and eqn (6.30),

∫
Dφ θ(x) ei

∫
L[φ]+Jφ = −

∫
Dφ J(x)F [φ(x)] ei

∫
L[φ]+Jφ . (6.31)

Differentiating multiple times w.r.t. J gives the equation-of-motion Ward identity

〈0|T {φ(x1) . . . φ(xn)θ(x)} |0〉

= i
∑

r

δ(x− xr) 〈0|T
{
φ(x1) . . .���φ(xr) . . . φ(xn)F [φ(xr)]

}
|0〉 . (6.32)

The S matrix element with an insertion of θ vanishes,

out〈q1, . . . , qm|θ|p1, . . . , pn〉in = 0 , (6.33)

because it is given by picking out the term with m+n poles on the l.h.s. of eqn (6.32).
But the r.h.s. shows that the matrix element of the rth term has no pole in pr, because
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of the δ function. Each term in the sum vanishes, leading to eqn (6.33). As a result,
equation-of-motion operators can be dropped because they do not contribute to the
S-matrix.

Note that eqn (6.33) implies that the classical equations of motion can be dropped.
The equations of motion have quantum corrections, but the Ward identity eqn (6.33)
is for the classical equations of motion without the quantum corrections. The Ward
identity holds even for insertions of the equation-of-motion operator in loop graphs,
where the particles are off-shell, and do not satisfy the classical equations of motion.

Using the equations of motion is a special case of a field redefinition. Consider the
field redefinition (with ε� 1):

φ(x) = φ′(x) + ε F [φ′(x)] . (6.34)

The change in the Lagrangian due to eqn (6.34) is

L[φ] = L[φ′] + ε F [φ′]
δS[φ′]

δφ′
+O

(
ε2
)

= L[φ′] + ε θ[φ′] + +O
(
ε2
)
. (6.35)

We have already seen that a field redefinition leaves the S-matrix invariant. Thus
the S-matrix computed with the new Lagrangian L′[φ] = L[φ] + εθ[φ] is the same as
that computed with L[φ].1 Thus we can shift the Lagrangian by equation-of-motion
terms. The way equations-of-motion are used in practice is to eliminate operators with
derivatives in the EFT Lagrangian.

Exercise 6.1 The classical equation of motion for λφ4 theory,

L =
1

2
(∂µφ)2 − 1

2
m2φ2 − λ

4!
φ4 ,

is

E[φ] = (−∂2 −m2)φ− λ

3!
φ3 .

The EOM Ward identity for θ = F [φ]E is eqn (L6.32). Integrate both sides with∫
dx e−iq·x

∏
i

∫
dxi e

−ipi·xi

to get the momentum space version of the Ward identity

〈0|T
{
φ̃(p1) . . . φ̃(pn)θ̃(q)

}
|0〉 = i

n∑
r=1

〈0|T
{
φ̃(p1) . . .���φ̃(pr) . . . φ̃(pn)F̃ (q + pr)

}
|0〉 .

(a) Consider the equation of motion operator

θ1 = φE[φ] = φ(−∂2 −m2)φ− λ

3!
φ4 ,

1Remember φ is a dummy variable, so we can use L′[φ] instead of L′[φ′].
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and verify the Ward identity by explicit calculation at order λ (i.e. tree level) for φφ scattering,
i.e. for φφ→ φφ.
(b) Take the on-shell limit p2r → m2 at fixed q 6= 0 of∏

r

(−i)(p2r −m2)×Ward identity ,

and verify that both sides of the Ward identity vanish. Note that both sides do not vanish if
one first takes q = 0 and then takes the on-shell limit.
(c) Check the Ward identity to one loop for the equation of motion operator

θ2 = φ3E[φ] = φ3(−∂2 −m2)φ− λ

3!
φ6 .

As an example of the use of the equations-of-motion, suppose we have an EFT
Lagrangian

L =
1

2
∂µφ∂

µφ− 1

2
m2φ2 − 1

4!
λφ4 +

c1
Λ2
φ3∂2φ+

c6
Λ2
φ6 + . . . . (6.36)

Then making the field redefinition

φ→ φ+
c1
Λ2
φ3 , (6.37)

gives the new Lagrangian

L =
1

2
∂µφ∂

µφ− 1

2
m2φ2 − 1

4!
λφ4 +

c1
Λ2
φ3∂2φ+

c6
Λ2
φ6

+
c1
Λ2
φ3

[
−∂2φ−m2φ− λ

3!
φ3

]
+ . . .

=
1

2
∂µφ∂

µφ− 1

2
m2φ2 −

[
1

4!
λ+

c1
Λ2
m2

]
φ4 +

[
c6
Λ2
− c1

Λ2

λ

3!

]
φ6 + . . . . (6.38)

The two Lagrangians eqn (6.36) and eqn (6.38) give the same S-matrix. In eqn (6.38),
we have eliminated the φ3∂2φ operator at the cost of redefining the coefficients of the
φ4 and φ6 operators. The EFT power counting has been maintained in going from
eqn (6.36) to eqn (6.38). It is easier to do computations with eqn (6.38) rather than
eqn (6.36), because eqn (6.38) has fewer independent operators. In EFTs, one usually
applies the equations of motion to eliminate as many operators with derivatives as
possible.

The calculation above only retained terms up to dimension six. If one works to
dimension eight, one has to retain the terms quadratic in c1/Λ

2 in the transformed
Lagrangian. These terms are second order in the equation of motion. Working to second
order in the equations of motion is tricky [50, 66, 68], and it is best to systematically
use field redefinitions to eliminate operators to avoid making mistakes.
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Using field redefinitions rather than the equations of motion also clears up some
subtleties. For example, the fermion kinetic term is

ψ i /Dψ. (6.39)

This operator vanishes using the fermion equation of motion i /D ψ = 0. However, it is
not possible to eliminate this term by a field redefinition, so one cannot eliminate the
fermion kinetic energy using the equations of motion. One can eliminate higher order
terms such as φ2ψ i /Dψ. Another interesting example is given in Ref. [50].

Exercise 6.2 Write down all possible C-even dimension six terms in eqn (4.18), and show
how they can be eliminated by field redefinitions.

Exercise 6.3 Take the heavy quark Lagrangian

Lv = Q̄v

{
iv ·D + i /D⊥

1

2m+ iv ·Di /D⊥

}
Qv

= Q̄v

{
iv ·D − 1

2m
/D⊥ /D⊥ +

1

4m2
/D⊥ (iv ·D) /D⊥ + . . .

}
Qv

and use a sequence of field redefinitions to eliminate the 1/m2 suppressed v · D term. The
equation of motion for the heavy quark field is (iv ·D)Qv = 0, so this example shows how to
eliminate equation-of-motion operators in HQET. Here vµ is the velocity vector of the heavy
quark with v · v = 1, and

Dµ
⊥ ≡ D

µ − (v ·D)vµ .

If you prefer, you can work in the rest frame of the heavy quark, where vµ = (1, 0, 0, 0),
v ·D = D0 and Dµ

⊥ = (0,D). See Ref. [66] for help.

In general, there are are many equation-of-motion operators Ei. Under renormal-
ization, these operators mix among themselves,

µ
d

dµ
Ei = γijEj , (6.40)

where γij can be gauge dependent. The reason is that the l.h.s. vanishes when inserted
in an S-matrix element, and this needs to hold for all values of µ. Ei are not observable
quantities, and their anomalous dimensions can depend on choice of gauge. For non-
equation-of-motion operators Oi, the anomalous dimensions take the form

µ
d

dµ
Oi = γijOj + ΓikEk. (6.41)

An operator Oi is not an equation-of-motion operator if Oi contributes to S-matrix
elements. Under µ evolution, these operators can mix with {Ei}, since {Ei} have zero
contributions to S-matrix elements. Since Oi are observable, γij is gauge independent,
but Γik can be gauge dependent.
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Fig. 6.3 Penguin graph in the weak interactions.

Fig. 6.4 Penguin and four-quark contribution to qq → qq.

A well-known example of the use of equations-of-motion is for penguin graphs in
the weak interactions [38], shown in Fig. 6.3. The penguin graph is divergent, and
requires the counterterm

L =
4GF√

2

cP
ε
g(ψγµTAψ) (DνFµν)

A
. (6.42)

The penguin counterterm is eliminated from the Lagrangian by making a field redefi-
nition,

L =
4GF√

2

cP
ε
g(ψγµTAψ) (DνFµν)

A → 4GF√
2

cP
ε
g(ψγµTAψ)g(ψγµT

Aψ) , (6.43)

and replacing it by a four-quark operator. The field redefinition needed for eqn (6.43)
is

AAµ → AAµ −
4GF√

2

cP
ε
gψγµTAψ , (6.44)

which is a field redefinition with an infinite coefficient. Green’s functions using the
redefined Lagrangian eqn (6.43) are infinite, but the S-matrix is finite. There is no
counterterm to cancel the penguin graph divergence, but the on-shell four-quark am-
plitude gets both the penguin and counterterm contributions (Fig. 6.4) and is finite.
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Decoupling of Heavy Particles

Heavy particles do not decouple in a mass-independent subtraction scheme such as
MS. For example, the one-loop QCD β-function coefficient is b0 = 11− 2/3nf , where
nf is the number of quark flavors. Thus b0 has the same value for all µ, independent of
the quark masses. One expects that the top quark only contributes to the β-function
for µ� mt, and no longer contributes when µ� mt, i.e. heavy particles decouple at
low energy.

To understand the decoupling of heavy particles, consider the contribution of a
charged lepton of mass m to the one-loop β function in QED. The diagram Fig. 7.1
in dimensional regularization gives

i
e2

2π2

(
pµpν − p2gµν

) [ 1

6ε
−
∫ 1

0

dx x(1− x) log
m2 − p2x(1− x)

µ2

]

≡ i
(
pµpν − p2gµν

)
Π(p2) (7.1)

where p is the external momentum.

7.1 Momentum-Subtraction Scheme

Consider a mass-dependent scheme, the momentum space subtraction scheme, where
one subtracts the value of the graph at a Euclidean momentum point p2 = −µ2

M , to
get the renormalized vacuum polarization function,

Πmom(p2,m2, µ2
M ) = − e2

2π2

[∫ 1

0

dx x(1− x) log
m2 − p2x(1− x)

m2 + µ2
Mx(1− x)

]
. (7.2)

The fermion contribution to the QED β-function is obtained by acting on Π with
(e/2)µM d/dµM ,

βmom (e) = −e
2
µM

d

dµM

e2

2π2

[∫ 1

0

dx x(1− x) log
m2 − p2x(1− x)

m2 + µ2
Mx(1− x)

]

=
e3

2π2

∫ 1

0

dx x(1− x)
µ2
Mx(1− x)

m2 + µ2
Mx(1− x)

. (7.3)

p p

Fig. 7.1 One loop contribution to the QED β-function from a fermion of mass m
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Fig. 7.2 Contribution of a fermion of mass m to the QED β-function. The result is given

for the momentum-space subtraction scheme, with renormalization scale µM . The β function

does not attain its limiting value of e3/12π2 until µM & 10m. The fermion decouples for

µM � m.

The fermion contribution to the β-function is plotted in Fig. 7.2. When the fermion
massm is small compared with the renormalization point µM ,m� µM , the β-function
contribution is

β (e) ≈ e3

2π2

∫ 1

0

dx x(1− x) =
e3

12π2
. (7.4)

As the renormalization point passes through m, the fermion decouples, and for µM �
m, its contribution to β vanishes as

β (e) ≈ e3

2π2

∫ 1

0

dx x(1− x)
µ2
Mx(1− x)

m2
=

e3

60π2

µ2
M

m2
→ 0 (7.5)

Thus in the momentum space scheme, we see the expected behavior that heavy parti-
cles decouple, which is an example of the Appelquist-Carazzone decoupling theorem [7].

7.2 The MS Scheme

In the MS scheme, one subtracts only the 1/ε pole of eqn (7.1), so

ΠMS(p2,m2, µ2) = − e2

2π2

[∫ 1

0

dx x(1− x) log
m2 − p2x(1− x)

µ2

]
. (7.6)

The fermion contribution to the QED β-function is obtained by acting with (e/2)µ̄d/dµ̄
on Π,
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βMS (e) = −e
2
µ̄

d

dµ̄

e2

2π2

[∫ 1

0

dx x(1− x) log
m2 − p2x(1− x)

µ2

]

=
e3

2π2

∫ 1

0

dx x(1− x) =
e3

12π2
, (7.7)

which is independent of the fermion mass and µ̄.
The fermion contribution to the β-function in the MS scheme does not vanish as

m� µ̄, so the fermion does not decouple as it should. There is another problem: from
eqn (7.6), the finite part of the Feynman graph in the MS scheme at low momentum
is

ΠMS(0,m2, µ2) = − e2

2π2

[∫ 1

0

dx x(1− x) log
m2

µ̄2

]
. (7.8)

For µ̄� m the logarithm becomes large, and perturbation theory breaks down. These
two problems are related. The large finite part corrects for the fact that the value of
the running coupling used at low energies is “incorrect,” because it was obtained using
the “wrong” β-function.

The two problems can be solved at the same time by integrating out heavy particles.
One uses a theory including the heavy fermion as a dynamical field when m < µ̄, and
a theory without the fermion field when m > µ̄. Effects of the heavy particle in the low
energy theory are included via higher dimension operators, which are suppressed by
inverse powers of the heavy particle mass. The matching condition of the two theories
is that S-matrix elements for light particle scattering in the low-energy theory must
equal the S-matrix elements for light particle scattering in the high-energy theory.
Schematically, one matches

L (nl+1) → L (nl) , (7.9)

from a theory with nl light particles and one heavy particle to a theory with nl light
particles. The effects of the heavy particles are absorbed into changes in the coefficients
of L . These are referred to as threshold corrections. Thus at the matching scale, L
changes, both in terms of the field content and the values of the Lagrangian coefficients.
However, nothing discontinuous is going on, and the physics (i.e. S-matrix elements)
are continuous across the threshold. The description changes, but the resulting S-
matrix elements remain the same.

In our example, we can integrate out the heavy lepton at the matching scale µ̄.
The effect of the one-loop heavy lepton graph Fig. 7.1 can be expanded for p2 � m2

as

ΠMS(p2,m2, µ2) = − e2

2π2

∫ 1

0

dx x(1− x)

{
log

m2

µ2 + log

[
1− p2

m2
x(1− x)

]}

= − e2

2π2

∫ 1

0

dx x(1− x)

{
log

m2

µ2 −
p2

m2
x(1− x) + . . .

}

= − e2

2π2

[
1

6
log

m2

µ2 +
p2

30m2
+O

(
p4

m4

)]
. (7.10)
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The first term is included in L (nl) by a shift in the gauge kinetic term. Rescaling the
gauge field to restore the kinetic term to its canonical normalization −F 2

µν/4 gives a
shift in the gauge coupling constant,

1

e2
L(µ)

=
1

e2
H(µ)

− 1

12π2
log

m2

µ2 . (7.11)

where eL is the gauge coupling in the low-energy theory, and eH is the gauge coupling
in the high-energy theory. The µ dependence of the threshold correction is related to
the difference in β-functions of the two theories.

The second term in eqn (7.10) gives a dimension six operator in the low-energy
theory,

L =
e2

240π2m2
∂αFµν∂

αFµν , (7.12)

and so on. While the Lagrangian has changed at µM , the S-matrix has not. The
change in the Lagrangian is exactly the same as the contribution from Fig. 7.1, which
is present in the high energy theory but not in the low-energy theory.

Exercise 7.1 Verify that the first term in eqn (7.10) leads to the threshold correction in the
gauge coupling given in eqn (7.11). If one matches at µ̄ = m, then eL(µ̄) = eH(µ̄), and the
gauge coupling is continuous at the threshold. Continuity does not hold at higher loops, or
when a heavy scalar is integrated out.

Exercise 7.2 Assume the threshold correction is of the form

1

e2L(µ)
=

1

e2H(µ)
+ c log

m2

µ2 .

Find the relation between c and the difference βH −βL of the β-functions in the two theories,
and check that this agrees with eqn (7.11).
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Naive Dimensional Analysis

There is a slightly more sophisticated version of the EFT power counting formula
which is referred to as naive dimensional analysis (NDA) [64]. It is a power counting
formula that keeps track of the 4π factors from loop graphs. If φ, ψ and Xµν , g,
y, λ denote generic scalar fields, fermion fields, gauge field-strength tensors, gauge
couplings, Yukawa couplings and φ4 couplings, then the NDA formula says that an
operator in the EFT should be normalized as

Ô = f2Λ2

[
∂

Λ

]Np [φ
f

]Nφ [A
f

]NA [ ψ

f
√

Λ

]Nψ [ g
4π

]Ng [ y
4π

]Ny [ λ

16π2

]Nλ
. (8.1)

where Λ and f are related by

Λ = 4πf , (8.2)

and Λ is the scale of the EFT derivative expansion. With this normalization, EFT
coefficients are expected to be of order unity,

L =
∑

ĈiÔi , (8.3)

with Ĉi ∼ 1. A generalization of NDA to d dimensions can be found in Ref. [34]. From
eqn (8.1),

D

Λ
=
∂ + igA

Λ
=
∂

Λ
+ i
[ g

4π

] [A
f

]
(8.4)

so that both parts of a covariant derivative have the same power counting.
Loop graphs in the EFT maintain the NDA form, i.e. an arbitrary graph with

insertions of operators of the form eqn (8.1) generates an operator of the same form.
The proof, which relies on counting 1/(16π2) factors from each loop and the topological
identity for a connected graph V − I + L = 1, where V is the number of vertices, I
the number of internal lines, and L the number of loops, is left as an exercise.

Exercise 8.1
Show that the power counting formula eqn (8.1) for an EFT Lagrangian is self-consistent,
i.e. an arbitrary graph with insertions of vertices of this form generates an interaction which
maintains the same form. (See [34] and [64]). Show that eqn (8.1) is equivalent to

Ô ∼ Λ4

16π2

[
∂

Λ

]Np [4π φ

Λ

]Nφ [4π A

Λ

]NA [4π ψ

Λ3/2

]Nψ [ g
4π

]Ng [ y
4π

]Ny [ λ

16π2

]Nλ
.
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Using the more sophisticated power counting of eqn (8.1) instead of only counting
factors of Λ makes a big difference in estimating the coefficients of higher dimen-
sion terms in the Lagrangian. For example, the four-quark dimension six operator is
normalized to

Ô = f2Λ2

(
ψγµψ

)2

(f
√

Λ)4
=

1

f2

(
ψγµψ

)2
=

16π2

Λ2

(
ψγµψ

)2
.

The extra 16π2 makes a difference of ∼ 150 in the normalization of the operator.
In χPT, the Lagrangian is written in terms of

U(x) = e2iΠ(x)/f , (8.5)

where Π(x) is a matrix of pion fields. U(x) satisfies eqn (8.1), since every Π comes with
a factor 1/f . The normalization of the two-derivative term in the chiral Lagrangian is

Ô = Λ2f2 ∂U

Λ

∂U†

Λ
= f2 ∂µU∂

µU† (8.6)

which is the usual normalization of the kinetic term. The four-derivative term is nor-
malized to

Ô = Λ2f2 ∂U

Λ

∂U†

Λ

∂U

Λ

∂U†

Λ
=

1

16π2
∂µU∂

µU†∂µU∂
µU† . (8.7)

The four-derivative coefficients in the chiral Lagrangian are usually denoted by Li,
and eqn (8.7) shows that one expects Li ∼ 1/(16π2) ∼ 4× 10−3, which is true experi-
mentally (see [73]).

The difference between f = 93 MeV and Λ = 4πf = 1.2 GeV is very important for
χPT. The value of f is fixed from the experimental value of the π → µνµ decay rate.
If we did not keep track of the 4π factors, this would imply that the scale Λ of χPT is
Λ ∼ f , and χPT breaks down for momenta of order f . If this is the case, χPT is not
very useful, since the pion mass is around 140 MeV, so χPT breaks down for on-shell
pions. Luckily, eqn (8.2) says that Λχ, the scale of the χPT derivative expansion is
4πf [64] which is much larger than f , so that χPT is valid for π− π scattering at low
momentum. Loop corrections in pion χPT are of order [mπ/(4πf)]2 ∼ 0.014, and are
a few percent. χPT for kaons has corrections of order [mK/(4πf)]2 ∼ 0.2.

The NDA formula eqn (8.1) implies that if all operators in the Lagrangian are
normalized using NDA, then an arbitrary loop graph gives

δĈi ∼
∏

k

Ĉk , (8.8)

where the graph has insertions of Lagrangian terms ĈkÔk, and produces an amplitude
of the form ĈiÔi. All the 4π factors have disappeared, and one obtains a very simple
form for the amplitudes. The results are equally valid for strongly and weakly coupled
theories.
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The NDA formula eqn (8.8) also shows that in strongly coupled theories Ĉ . 1 [64].

The reason is that if Ĉ � 1, then the hierarchy of equations eqn (8.8) is unstable,

because higher order contributions to Ĉi are much larger than Ĉi. On the other hand,
there is no inconsistency if Ĉi � 1, since all this implies is that higher order corrections
are small, a sign of a weakly coupled theory. eqn (8.8) shows that an interaction

becomes strongly coupled when Ĉ ∼ 1. For the dimension-four interactions, strong
coupling is when gauge couplings are g ∼ 4π, Yukawa couplings are y ∼ 4π and scalar
self-couplings are λ ∼ (4π)2.

One can use NDA for cross sections as well as amplitudes. A cross section is the
imaginary part of the forward scattering amplitude, so one can estimate cross sec-
tions by using NDA for the forward amplitude, and then multiplying by π, since the
imaginary part comes from log(−1) = iπ. Since two-body final states give a one-loop
forward scattering diagram, and n-body final states give a n− 1 loop diagram, the 4π
counting rules for phase space are: 1/(16π) for the first two particles, and 1/(16π2)
for each additional particle. We used this 4π counting rule earlier in these lectures in
our estimates of cross sections.
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Invariants

EFT Lagrangians are constructed using gauge and Lorentz invariant operators which
are polynomials in the basic fields. Classifying these operators is a fun topic which is
extensively studied in the mathematics invariant theory literature. I discuss invariant
theory briefly in this section. For an elementary summary, see Refs. [42, 49].

Start with the simple example of a theory with Nf fermions with mass term

L = −ψLMψR + h.c. , (9.1)

where M is an Nf ×Nf matrix. We can make a field redefinition (ignoring anomalies),

ψL → LψL, ψR → RψR, (9.2)

under which

M → LMR† . (9.3)

Under CP , M →M∗. The S-matrix is invariant under the field redefinition eqn (9.2),
and depends only on invariants constructed from M . To eliminate R, define

X ≡MM†, X → LXL†, (9.4)

which transforms only under L. Then the invariants are

I2n = 〈Xn〉 , (9.5)

where 2n is the degree of the invariant in the basic object M , and 〈 · 〉 denotes a trace.
Suppose Nf = 1. Then X is a 1× 1 matrix, and

〈
X2
〉

= I4 = I2
2 = 〈X〉2 ,

〈
X3
〉

= I6 = I3
2 = 〈X〉3 , (9.6)

and there is one independent invariant of every even degree, I2n = In2 = 〈X〉n.
The Hilbert series is defined as

H(q) =

∞∑

n=0

Nnq
n (9.7)

where Nn is the number of invariants of degree n, and N0 = 1 by convention. In the
1× 1 matrix example,

H(q) = 1 + q2 + q4 + . . . =
1

1− q2
. (9.8)

The denominator of H(q) in eqn (9.8) tells us that there is one generator of degree
two, which is 〈X〉, and that all invariants are given by powers of this generator. Given
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I2, we can determine the fermion mass, m =
√
I2, as a real, non-negative number. The

invariant is CP even, since under CP , X → X∗, and 〈X〉 → 〈X∗〉 =
〈
X†
〉

= 〈X〉
since X is Hermitian, and the trace is invariant under transposition of the matrix.

The next case is Nf = 2, with invariants

〈X〉 ,
〈
X2
〉
,
〈
X3
〉
, . . . . (9.9)

These are not all independent, because the Cayley-Hamilton theorem implies

〈
X3
〉

=
3

2
〈X〉

〈
X2
〉
− 1

2
〈X〉3 , (9.10)

for any 2× 2 matrix. This identity eliminates all traces of Xn for n ≥ 3. There is one
invariant of degree 2, 〈X〉, two of degree four 〈X〉2 and

〈
X2
〉
, etc. The Hilbert series

is

H(q) = 1 + q2 + 2q4 + . . . =
1

(1− q2)(1− q4)
. (9.11)

The denominator factors imply that all invariants are generated by products of 〈X〉
and

〈
X2
〉
. Given 〈X〉 and

〈
X2
〉
, we can find the two masses by solving

〈X〉 = m2
1 +m2

2,
〈
X2
〉

= m4
1 +m4

2 . (9.12)

For Nf = 3, the generators are 〈X〉,
〈
X2
〉
,
〈
X3
〉
. Higher powers are eliminated by

the Cayley-Hamilton theorem,

〈
X4
〉

=
1

6
〈X〉4 − 〈X〉2

〈
X2
〉

+
4

3

〈
X3
〉
〈X〉+

1

2

〈
X2
〉2
, (9.13)

and the Hilbert series is

H(q) = 1 + q2 + 2q4 + . . . =
1

(1− q2)(1− q4)(1− q6)
. (9.14)

Exercise 9.1 By explicit calculation, show that[
1

2
〈A〉2 − 1

2

〈
A2〉]1− 〈A〉A+A2 = 0 ,

1

6
〈A〉3 − 1

2
〈A〉

〈
A2〉+

1

3

〈
A3〉 = 0 ,

for a general 2× 2 matrix A and that

〈A〉 〈B〉 〈C〉 − 〈A〉 〈BC〉 − 〈B〉 〈AC〉 − 〈C〉 〈AB〉+ 〈ABC〉+ 〈ACB〉 = 0 .

for general 2× 2 matrices A,B,C. Identities analogous to this for 3× 3 matrices are used in
χPT to remove L0 and to replace it by L1,2,3, as discussed by Pich in his lectures [73].
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Now consider the case of two quark types, u and d, in the SM. There are two mass
matrices Mu and Md which transform as

Mu → LMuR
†
u , Md → LMdR

†
d . (9.15)

Equation (9.15) results because the right handed quarks uR and dR are independent
fields with independent transformations Ru and Rd in the SM, whereas the left-handed
quarks are part of a weak doublet,

qL =

[
uL
dL

]
, (9.16)

so Lu = Ld = L. To construct invariants, we can eliminate Ru,d by constructing

Xu = MuM
†
u, Xd = MdM

†
d , (9.17)

which transform as

Xu → LXuL
†, Xd → LXdL

† . (9.18)

For Nf = 1, Xu and Xd are numbers, and the only independent invariants are 〈Xu〉
and 〈Xd〉, and the Hilbert series is

H(q) =
1

(1− q2)2
. (9.19)

For Nf = 2, the independent generators are 〈Xu〉, 〈Xd〉,
〈
X2
u

〉
,
〈
X2
d

〉
and 〈XuXd〉,

and

H(q) =
1

(1− q2)2(1− q4)3
. (9.20)

〈Xu〉 and
〈
X2
u

〉
determine the two u-quark masses mu and mc as in eqn (9.12).

〈Xd〉 and
〈
X2
d

〉
determine the two d-quark masses md and ms. 〈XuXd〉 determines the

Cabibbo angle,

〈XuXd〉 = (m2
um

2
d +m2

cm
2
s)− (m2

c −m2
u)(m2

s −m2
d) sin2 θ . (9.21)

If mu = mc or if md = ms, θ is not defined (or can be rotated away).
All the invariants are CP even, so there is no CP violation in the quark sector for

two quark flavors. For example, under CP ,

〈XuXd〉 → 〈X∗uX∗d 〉 =
〈
(X∗uX

∗
d )T
〉

=
〈
X†dX

†
u

〉
= 〈XdXu〉 = 〈XuXd〉 (9.22)

since Xu and Xd are Hermitian, and the trace is invariant under transposition and
cyclic permutation.
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The first non-trivial example is Nf = 3. The CP even generators are

〈Xu〉 ,
〈
X2
u

〉
,
〈
X3
u

〉
, 〈Xd〉 ,

〈
X2
d

〉
,
〈
X3
d

〉
, 〈XuXd〉 ,

〈
X2
uXd

〉
,
〈
XuX

2
d

〉
,
〈
X2
uX

2
d

〉
.

(9.23)

They determine the quark massesmu,c,t,md,s,b, and the three CKM angles θ12, θ13, θ23.
However, the terms in eqn (9.23) do not generate all the invariants. We also have the
CP odd invariant

I− =
〈
X2
uX

2
dXuXd

〉
−
〈
X2
dX

2
uXdXu

〉
=

1

3

〈
[Xu, Xd]

3
〉
. (9.24)

and the CP even invariant

I+ =
〈
X2
uX

2
dXuXd

〉
+
〈
X2
dX

2
uXdXu

〉
. (9.25)

I+ is not independent; it can be written as a linear combination of the lower order
invariants in eqn (9.23).

While I− is not a linear combination of the invariants in eqn (9.23), it turns out
that I2

− is a linear combination. This is an example of a relation among the invariants.
There also can be relations among relations, which are known as syzygies. Thus the
independent invariants are arbitrary products of powers of eqn (9.23) plus I− to at
most the first power. This gives the Hilbert series for Nf = 3

H(q) =
1 + q12

(1− q2)2(1− q4)3(1− q6)4(1− q8)
, (9.26)

where the +q12 in the numerator is the contribution from I−. I− is related to the
Jarlskog invariant J ,

I− = 2i(m2
c −m2

u)(m2
t −m2

c)(m
2
t −m2

u)(m2
s −m2

d)(m
2
b −m2

s)(m
2
b −m2

d)J, (9.27)

where

J = Im [V11V
∗
12V22V

∗
21] = c12s12c13s

2
13c23s23sδ, (9.28)

using the CKM matrix convention of the PDG [72].
The CP -even invariants in eqn (9.23) determine J2, and hence J but an overall

sign. The invariant I− fixes the sign. This analysis should be familiar from the study of
CP violation in the SM. By measuring CP conserving decay rates, one can determine
the lengths of the three sides of the unitarity triangle. This determines the triangle
(including the area, which is a measure of CP violation) up to an overall reflection,
which is fixed by the sign of J . Thus, one can determine if CP is violated only from
CP conserving measurements.
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Exercise 9.2 Show that the invariant

I− =
〈
X2
uX

2
dXuXd

〉
−
〈
X2
dX

2
uXdXu

〉
,

is the lowest order CP -odd invariant made of the quark mass matrices. Show that I− also
can be written in the form

I− =
1

3

〈
[Xu, Xd]

3〉 ,
and explicitly work out I− in the SM using the CKM matrix convention of the PDG [72].
Verify eqns (9.27,9.28).

Exercise 9.3 Compute the Hilbert series for the ring of invariants generated by
(a) x, y (each of dimension 1), and invariant under the transformation (x, y)→ (−x,−y).
(b) x, y, z (each of dimension 1), and invariant under the transformation (x, y, z)→ (−x,−y,−z).

The general structure of H(q) is the ratio of a numerator N(q) and a denominator
D(q),

H(q) =
N(q)

D(q)
, (9.29)

where the denominator D(q) is a product of the form

D(q) = (1− qn1)r1(1− qn2)r2 . . . (9.30)

and the numerator N(q) is a polynomial with non-negative coefficients of degree dN
which is palindromic, i.e.

qdNN(1/q) = N(q) . (9.31)

The number of denominator factors
∑
ri is the number of parameters [57]. In eqn (9.26)

the number of parameters is 10, which are the six masses, 3 angles and one phase.
As a non-trivial example, the lepton sector of the seesaw theory for ng = 2 gen-

erations has invariants generated by the mass matrices for the charged leptons mE ,
neutrinos mν and the singlet Majorana mass matrix M . The Hilbert series is [49]

H(q) =
1 + q6 + 3q8 + 2q10 + 3q12 + q14 + q20

(1− q2)3(1− q4)5(1− q6)(1− q10)
, (9.32)

which has a palindromic numerator. The numerator is of degree twenty, and the coeffi-
cients are 1, 0, 0, 0, 0, 0, 1, 0, 3, 0, 2, 0, 3, 0, 1, 0, 0, 0, 0, 0, 1, which is the same string read
in either direction.

To construct an EFT, we have basic fields ψ(x), φ(x), etc. which transform under
various symmetries, and we want to construct invariant Lagrangians which are poly-
nomials in the basic fields. This is a problem in invariant theory, with a few additional
requirements.
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• We can act with covariant derivatives on fields, Dµφ(x), to get an object that
transforms the same way as φ(x) under gauge and flavor symmetries, but adds
an extra Lorentz index.

• We can drop total derivatives since they vanish when integrated to get the action.
Equivalently, we are allowed to integrate by parts.

• We can make field redefinitions or equivalently use the equations of motion to
eliminate operators.

Counting invariants including these constraints seems simple, but there is a subtlety.
Terms such as

∂µ(φ†∂µφ− ∂µφ†φ) (9.33)

vanish because they are a total derivative, and also by using the equations of mo-
tion. We have to make sure we do not double count the terms eliminated by these
two conditions. This is a non-trivial problem that was recently solved in Ref. [44]
using representations of the conformal group. The HQET/NRQCD dimension-eight
operators were recently classified with the help of invariants [59].
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SMEFT

The SMEFT is an EFT constructed using the basic fields of the SM given in Table 10.1.
For an extensive recent review, see Ref. [15]. The dimension-four terms give the usual
SM Lagrangian. There is only a single U(1) gauge field in the SM. In theories with
multiple Abelian gauge fields, the general kinetic energy for the U(1) gauge fields has
the form

L = −1

4
CijF

(i)
µν F

(j)
µν , (10.2)

where C is a real symmetric matrix with positive eigenvalues, which is referred to as
kinetic mixing [32,45],

Constructing the higher dimension operators in SMEFT is not easy. It is useful to
note that Lorentz invariance requires that fermion fields come in pairs. The allowed
fermion bilinears written in terms of chiral fields are

ψLγ
µψL, ψRγ

µψR, ψLψR, ψLσ
µνψR, ψRψL, ψRσ

µνψL. (10.3)

One can always replace a right-handed field ψR by its charge-conjugate left-handed
field ψcL,

Lorentz SU(3) SU(2) U(1)

Gµν (1, 0) + (0, 1) 8 1 0

Wµν (1, 0) + (0, 1) 1 3 0

Bµν (1, 0) + (0, 1) 1 1 0

H (0, 0) 1 2 1
2

q (1/2, 0) 3 2 1
6

l (1/2, 0) 1 2 − 1
2

u (0, 1/2) 3 1 2
3

d (0, 1/2) 3 1 − 1
3

e (0, 1/2) 1 1 −1

(10.1)

Table 10.1 Fields of the Standard Model. The Lorentz group is SU(2)L × SU(2)R. The

fermions have a generation index ng = 1, 2, 3.
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ψR = Cψc∗L , (10.4)

where C = iγ2. Thus we can use either a right-handed e−R field, or a left-handed
e+
L field. The SMEFT is usually written using left-handed SU(2) doublet fields, and

right-handed SU(2) singlet fields, as shown in Table 10.1.
Mass terms and dipole interactions are written in terms of left-handed field bilinears

ψRψL = ψcTL CψL, ψRσ
µνψL = ψcTL CσµνψL. (10.5)

In general, if there are multiple left-handed fields, the mass and dipole operators are

ψTLrCψLs, ψTLrCσ
µνψLs, (10.6)

where r, s are flavor indices. The mass term is symmetric in rs, and the dipole term is
antisymmetric in rs. One still has to ensure that the terms in eqn (10.6) respect gauge
invariance, so that a mass term e+T

L Ce−L is allowed, but not e−TL Ce−L .
Left-handed fields transform as (1/2, 0) under the Lorentz group, so that the

fermion bilinear χTLCΓψL transforms as (1/2, 0)⊗ (1/2, 0) = (0, 0)⊕ (1, 0). The (0, 0)
representation is χTLCψL and the (1, 0) representation is χTLCσ

µνψL. The (1, 0) repre-
sentation is self-dual because of the self-duality condition on σµνPL,

i

2
εαβµνσµνPL = σαβPL . (10.7)

Similarly, the right-handed matrix satisfies the anti-self-duality condition

i

2
εαβµνσµνPR = −σαβPR . (10.8)

Exercise 10.1 Show that (ψTLrCψLs) is symmetric in rs and (ψTLrCσ
µνψLs) is antisymmet-

ric in rs.

Exercise 10.2 Prove the duality relations eqns (10.7,10.8). The sign convention is γ5 =
iγ0γ1γ2γ3 and ε0123 = +1.

The lowest dimension term in the SMEFT with D > 4 is the dimension-five term

L (5) = C 5
rs
εijεkl(lTir C lks)HjHl + h.c. . (10.9)

Here r, s are flavor indices, and i, j, k, l are SU(2) gauge indices. The coefficient C 5
rs

is

symmetric in rs, by Exercise 10.1. L (5) is a ∆L = 2 interaction, and gives a Majorana
mass term to the neutrinos when H gets a vacuum expectation value.

It can be shown [58] that invariant operators constructed from SM fields satisfy

1

2
(∆B −∆L) ≡ D mod 2 . (10.10)

Thus a D = 5 operator cannot conserve both baryon and lepton number.
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Exercise 10.3
Show that eqn (10.9) is the unique dimension-five term in the SMEFT Lagrangian. How many
independent operators are there for ng generations?

Exercise 10.4 Show that eqn (10.9) generates a Majorana neutrino mass when H gets a
vacuum expectation value, and find the neutrino mass matrix Mν in terms of C5 and v.

At dimension-six there are eight different operator classes, X3, H6, H4D2, X2H2,
ψ2H3, ψ2XH, ψ2H2D and ψ4, in terms of their field content. Determining the in-
dependent operators is a non-trivial task [17, 41]. Here I discuss a few aspects of the
analysis.

The four-quark operators ψ4 can be simplified using Fierz identities. Consider
invariants made from two lΓ l bilinears. Since l is a left-handed field, the only gamma-
matrix allowed is Γ = γµ. Bilinears constructed from l can be either SU(2) singlets or
SU(2) triplets, so the l4 invariants are

Q ll
prst

= (lipγ
µlir)(ljsγµl

j
t),

Q
(3)
ll
prst

= (lipγ
µ[τa]ij l

j
r)(lksγµ[τa]kml

m
t), (10.11)

where p, r, s, t are generation (flavor) indices and i, j, k,m are weak SU(2) indices.
Using the SU(2) Fierz identity (Exercise 1.3)

[τa]ij [τ
a]km = 2δimδ

k
j − δijδkm, (10.12)

the second bilinear can be written as

Q
(3)
ll
prst

= 2(lipγ
µljr)(ljsγµl

i
t)− (lipγ

µlir)(ljsγµl
j
t). (10.13)

Applying the spinor Fierz identity (Exercise 1.4)

(ψ1γ
µPLψ2)(ψ3γµPLψ4) = (ψ1γ

µPLψ4)(ψ3γµPLψ2) (10.14)

on the first term of eqn (10.13) gives

Q
(3)
ll
prst

= 2(lipγ
µlit)(ljsγµl

j
r)− (lipγ

µlir)(ljsγµl
j
t) = 2Q ll

ptsr
−Q ll

prst
. (10.15)

Equation (10.15) implies that we do not need to include Q
(3)
ll
prst

operators, as they are

linear combinations of Qll operators, so the independent l4 operators are Qll.
For lq operators,

Q
(1)
lq
prst

= (lipγ
µlir)(qαjsγµq

αj
t),

Q
(3)
lq
prst

= (lipγ
µ[τa]ij l

j
r)(qαksγµ[τa]kmq

αm
t), (10.16)

the identity eqn (10.14) cannot be used since it would produce (lq) bilinears. Thus
both lq operators in eqn (10.16) are independent.
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For four-quark operators (qγµq)(qγµq), there are four possible gauge invariants,
written schematically as

1⊗ 1, τa ⊗ τa, TA ⊗ TA, τaTA ⊗ τaTA, (10.17)

depending on what gauge generators are inserted in each bilinear. The SU(N) version
of eqn (10.12) from Exercise 1.3

[TA]αβ [TA]λσ =
1

2
δασ δ

λ
β −

1

2N
δαβ δ

λ
σ , (10.18)

can be used for the color generators with N = 3. One can view the index con-
tractions for the SU(2) and SU(3) generators as either direct or swapped, i.e. in
(q1γ

µq2)(q3γµq4) contracted between q1, q2 and q3, q4, or between q1, q4 and q2, q3.
Then the four possible terms in eqn (10.17) are

direct, SU(2) swapped, SU(3) swapped, both swapped. (10.19)

The spinor Fierz identity eqn (10.14) exchanges the q fields, so it swaps both the SU(2)
and SU(3) indices, and hence converts

direct↔ both swapped SU(2) swapped↔ SU(3) swapped. (10.20)

Thus there are only two independent invariants out of the four in eqn (10.17), which
are chosen to be 1⊗ 1 and τa ⊗ τa.

For ψ4 operators involving σµν , the duality relations eqns (10.7,10.8) can be used
to eliminate εµναβ contracted with σ matrices. One also has the relation

(AσµνPLB)(CσµνPRD) = 0 (10.21)

The left-hand side is a Lorentz singlet in the tensor product (1, 0) ⊗ (0, 1) = (1, 1),
and so must vanish.

Using the above results, one can determine the independent ψ4 operators.

Exercise 10.5 Prove eqn (10.21).

10.1 SMEFT Operators

Since the SMEFT is playing an increasingly important role in current research, I will
summarize the operators in SMEFT up to dimension six. The number of operators of
each type is listed, and their CP property is given as a subscript. For non-Hermitian
operators O, O+O† is CP even, and O−O† is CP -odd. The flavor indices have not
been included for notational simplicity. For example, including flavor indices, QeW is
QeW
pr

and Qll is Q ll
prst

, etc.

Table 10.2 gives a summary of the SMEFT operators up to dimension six. For
ng = 3, there are 6 ∆L = 2 operators plus their Hermitian conjugates, 273 ∆B =
∆L = 1 operators plus their Hermitian conjugates, and 2499 Hermitian ∆B = ∆L = 0
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dim ng = 1 ng = 3
CP -even CP -odd Total CP -even CP -odd Total

5 ∆L = 2 1 6
5 ∆L = −2 1 6
6 ∆B = ∆L = 1 4 273
6 ∆B = ∆L = −1 4 273

6 X3 2 2 4 2 2 4
6 H6 1 0 1 1 0 1
6 H4D2 2 0 2 2 0 2
6 X2H2 4 4 8 4 4 8
6 ψ2H3 3 3 6 27 27 54
6 ψ2XH 8 8 16 72 72 144
6 ψ2H2D 8 1 9 51 30 81
6 (L̄L)(L̄L) 5 0 5 171 126 297
6 (R̄R)(R̄R) 7 0 7 255 195 450
6 (L̄L)(R̄R) 8 0 8 360 288 648
6 (L̄R)(R̄L) + h.c. 1 1 2 81 81 162
6 (L̄R)(L̄R) + h.c. 4 4 8 324 324 648

Total ∆B = ∆L = 0 53 23 76 1350 1149 2499

Table 10.2 Number of operators of each type in the SMEFT up to dimension six.

operators [5]. For ng = 1, there are 76 Hermitian ∆B = ∆L = 0 operators. In
the literature, you will often see that there are 59 ∆B = ∆L = 0 operators. This
counts the number of operator types listed in the tables below. Some of the operators,
such as (H†H)3 are Hermitian, whereas others, such as (H†H)(l̄eH) are not, and
count as two Hermitian operators. Hermitian operators have a real coefficient in the
Lagrangian, whereas non-Hermitian operators have a complex coefficient. Counting
Hermitian operators is equivalent to counting real Lagrangian parameters.

10.1.1 Dimension 5

The dimension five operators Q5 are ∆L = 2 operators.

(LL)HH + h.c.

Q5
1
2ng(ng + 1) εijεk`(lTipClkr)HjH`

Total 1
2ng(ng + 1) + h.c.

There are ng(ng + 1)/2 ∆L = 2 operators, and ng(ng + 1)/2 ∆L = −2 Hermitian
conjugate operators. CP exchanges the ∆L = ±2 operators. The ∆L = ±2 operators
give a Majorana neutrino mass when the weak interactions are spontaneously broken.
Since neutrino masses are very small, the ∆L = ±2 operators are assumed to be
generated at a very high scale (which could be the GUT scale).
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10.1.2 Dimension 6, ∆B = ∆L = 1

The dimension six operators can be divided into several groups. The first group are
the ∆B = ∆L = 1 operators and their Hermitian conjugates.

∆B = ∆L = 1 + h.c.

Qduql n4
g εαβγεij(dTαpCuβr)(q

T
γisCljt)

Qqque
1
2n

3
g(ng + 1) εαβγεij(qTαipCqβjr)(u

T
γsCet)

Qqqql
1
3n

2
g(2n

2
g + 1) εαβγεi`εjk(qTαipCqβjr)(q

T
γksCl`t)

Qduue n4
g εαβγ(dTαpCuβr)(u

T
γsCet)

Total 1
6n

2
g(19n2

g + 3ng + 2) + h.c.

The ∆B = ∆L = 1 operators violate baryon number, and lead to proton decay. They
are generated in unified theories, and are suppressed by two powers of the GUT scale.

10.1.3 Dimension 6, X3

There are 2 CP -even and 2 CP -odd operators with three field-strength tensors. In
this and subsequent tables, the CP property is shown as a subscript.

X3

QG 1+ fABCGAνµ GBρν GCµρ

QG̃ 1− fABCG̃Aνµ GBρν GCµρ

QW 1+ εIJKW Iν
µ W Jρ

ν WKµ
ρ

Q
W̃

1− εIJKW̃ Iν
µ W Jρ

ν WKµ
ρ

Total 2+ + 2−

10.1.4 Dimension 6, H6

There is a single operator involving six Higgs fields. It adds a h6 interaction of the
physical Higgs particle to the SMEFT Lagrangian after spontaneous symmetry break-
ing.

H6

QH 1+ (H†H)3

Total 1+
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10.1.5 Dimension 6, H4D2

H4D2

QH2 1+ (H†H)2(H†H)

QHD 1+

(
H†DµH

)∗ (
H†DµH

)

Total 2+

10.1.6 Dimension 6, X2H2

X2H2

QHG 1+ H†H GAµνG
Aµν

QHG̃ 1− H†H G̃AµνG
Aµν

QHW 1+ H†HW I
µνW

Iµν

Q
HW̃

1− H†H W̃ I
µνW

Iµν

QHB 1+ H†H BµνB
µν

QHB̃ 1− H†H B̃µνB
µν

QHWB 1+ H†τ IHW I
µνB

µν

Q
HW̃B

1− H†τ IH W̃ I
µνB

µν

Total 4+ + 4−

The X2H2 operators are very important phenomenologically. They lead to gg → h and
h → γγ vertices, and contribute to Higgs production and decay. The corresponding
SM amplitudes start at one loop, so LHC experiments are sensitive to X2H2 operators
via interference effects with SM amplitudes [40,70].

10.1.7 Dimension 6, ψ2H3

(L̄R)H3 + h.c.

QeH n2
g (H†H)(l̄perH)

QuH n2
g (H†H)(q̄purH̃)

QdH n2
g (H†H)(q̄pdrH)

Total 3n2
g + h.c.

These operators are H†H times the SM Yukawa couplings, and violate the relation
that the Higgs boson coupling to fermions is proportional to their mass.
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10.1.8 Dimension 6, ψ2XH

(L̄R)XH + h.c.

QeW n2
g (l̄pσ

µνer)τ
IHW I

µν

QeB n2
g (l̄pσ

µνer)HBµν

QuG n2
g (q̄pσ

µνTAur)H̃ GAµν

QuW n2
g (q̄pσ

µνur)τ
IH̃ W I

µν

QuB n2
g (q̄pσ

µνur)H̃ Bµν

QdG n2
g (q̄pσ

µνTAdr)H GAµν

QdW n2
g (q̄pσ

µνdr)τ
IHW I

µν

QdB n2
g (q̄pσ

µνdr)H Bµν

Total 8n2
g + h.c.

When H gets a VEV, these operators lead to dipole operators for transitions such as
µ→ eγ, b→ sγ and b→ sg.

10.1.9 Dimension 6, ψ2H2D

ψ2H2D

Q
(1)
Hl

1
2ng(ng + 1)+ + 1

2ng(ng − 1)− (H†i
←→
D µH)(l̄pγ

µlr)

Q
(3)
Hl

1
2ng(ng + 1)+ + 1

2ng(ng − 1)− (H†i
←→
D I
µH)(l̄pτ

Iγµlr)

QHe
1
2ng(ng + 1)+ + 1

2ng(ng − 1)− (H†i
←→
D µH)(ēpγ

µer)

Q
(1)
Hq

1
2ng(ng + 1)+ + 1

2ng(ng − 1)− (H†i
←→
D µH)(q̄pγ

µqr)

Q
(3)
Hq

1
2ng(ng + 1)+ + 1

2ng(ng − 1)− (H†i
←→
D I
µH)(q̄pτ

Iγµqr)

QHu
1
2ng(ng + 1)+ + 1

2ng(ng − 1)− (H†i
←→
D µH)(ūpγ

µur)

QHd
1
2ng(ng + 1)+ + 1

2ng(ng − 1)− (H†i
←→
D µH)(d̄pγ

µdr)

QHud + h.c. n2
g + h.c. i(H̃†DµH)(ūpγ

µdr)

Total 1
2ng(9ng + 7)+ + 1

2ng(9ng − 7)−

The ψ2H2D operators modify the coupling of electroweak bosons to fermions. (QHud±
Q†Hud) are CP -even/odd combinations, and contribute n2

g CP -even and n2
g CP -odd

operators to the total.

10.1.10 Dimension 6, (L̄L)(L̄L)

The ψ4 operators can be grouped into different sets, depending on the chirality prop-
erties of the operators. We have seen earlier why the (L̄L)(L̄L) invariants are the ones
listed in the table.
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(L̄L)(L̄L)

Qll
1
4n

2
g(n

2
g + 3)+ + 1

4n
2
g(n

2
g − 1)− (l̄pγµlr)(l̄sγ

µlt)

Q
(1)
qq

1
4n

2
g(n

2
g + 3)+ + 1

4n
2
g(n

2
g − 1)− (q̄pγµqr)(q̄sγ

µqt)

Q
(3)
qq

1
4n

2
g(n

2
g + 3)+ + 1

4n
2
g(n

2
g − 1)− (q̄pγµτ

Iqr)(q̄sγ
µτ Iqt)

Q
(1)
lq

1
2n

2
g(n

2
g + 1)+ + 1

2n
2
g(n

2
g − 1)− (l̄pγµlr)(q̄sγ

µqt)

Q
(3)
lq

1
2n

2
g(n

2
g + 1)+ + 1

2n
2
g(n

2
g − 1)− (l̄pγµτ

I lr)(q̄sγ
µτ Iqt)

Total 1
4n

2
g(7n

2
g + 13)+ + 7

4n
2
g(n

2
g − 1)−

10.1.11 Dimension 6, (R̄R)(R̄R)

(R̄R)(R̄R)

Qee
1
8ng(ng + 1)(n2

g + ng + 2)+ + 1
8 (ng − 1)ng(ng + 1)(ng + 2)− (ēpγµer)(ēsγ

µet)

Quu
1
4n

2
g(n

2
g + 3)+ + 1

4n
2
g(n

2
g − 1)− (ūpγµur)(ūsγ

µut)

Qdd
1
4n

2
g(n

2
g + 3)+ + 1

4n
2
g(n

2
g − 1)− (d̄pγµdr)(d̄sγ

µdt)

Qeu
1
2n

2
g(n

2
g + 1)+ + 1

2n
2
g(n

2
g − 1)− (ēpγµer)(ūsγ

µut)

Qed
1
2n

2
g(n

2
g + 1)+ + 1

2n
2
g(n

2
g − 1)− (ēpγµer)(d̄sγ

µdt)

Q
(1)
ud

1
2n

2
g(n

2
g + 1)+ + 1

2n
2
g(n

2
g − 1)− (ūpγµur)(d̄sγ

µdt)

Q
(8)
ud

1
2n

2
g(n

2
g + 1)+ + 1

2n
2
g(n

2
g − 1)− (ūpγµT

Aur)(d̄sγ
µTAdt)

Total 1
8ng(21n3

g + 2n2
g + 31ng + 2)+ + 1

8ng(n
2
g − 1)(21ng + 2)−

10.1.12 Dimension 6, (L̄L)(R̄R)

(L̄L)(R̄R)

Qle
1
2n

2
g(n

2
g + 1)+ + 1

2n
2
g(n

2
g − 1)− (l̄pγµlr)(ēsγ

µet)

Qlu
1
2n

2
g(n

2
g + 1)+ + 1

2n
2
g(n

2
g − 1)− (l̄pγµlr)(ūsγ

µut)

Qld
1
2n

2
g(n

2
g + 1)+ + 1

2n
2
g(n

2
g − 1)− (l̄pγµlr)(d̄sγ

µdt)

Qqe
1
2n

2
g(n

2
g + 1)+ + 1

2n
2
g(n

2
g − 1)− (q̄pγµqr)(ēsγ

µet)

Q
(1)
qu

1
2n

2
g(n

2
g + 1)+ + 1

2n
2
g(n

2
g − 1)− (q̄pγµqr)(ūsγ

µut)

Q
(8)
qu

1
2n

2
g(n

2
g + 1)+ + 1

2n
2
g(n

2
g − 1)− (q̄pγµT

Aqr)(ūsγ
µTAut)

Q
(1)
qd

1
2n

2
g(n

2
g + 1)+ + 1

2n
2
g(n

2
g − 1)− (q̄pγµqr)(d̄sγ

µdt)

Q
(8)
qd

1
2n

2
g(n

2
g + 1)+ + 1

2n
2
g(n

2
g − 1)− (q̄pγµT

Aqr)(d̄sγ
µTAdt)

Total 4n2
g(n

2
g + 1)+ + 4n2

g(n
2
g − 1)−
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10.1.13 Dimension 6, (L̄R)(R̄L)

(L̄R)(R̄L) + h.c.

Qledq n4
g (l̄jper)(d̄sqtj)

Total n4
g + h.c.

10.1.14 Dimension 6, (L̄R)(L̄R)

(L̄R)(L̄R) + h.c.

Q
(1)
quqd n4

g (q̄jpur)εjk(q̄ksdt)

Q
(8)
quqd n4

g (q̄jpT
Aur)εjk(q̄ksT

Adt)

Q
(1)
lequ n4

g (l̄jper)εjk(q̄ksut)

Q
(3)
lequ n4

g (l̄jpσµνer)εjk(q̄ksσ
µνut)

Total 4n4
g + h.c.

Exercise 10.6
In the SMEFT for ng generations, how many operators are there of the following kind (in

increasing order of difficulty): (a) QHe (b) Qledq (c) Q
(1)
lq (d) Q

(1)
qq (e) Qll (f) Quu (g) Qee

(h) show that there are a total of 2499 Hermitian dimension-six ∆B = ∆L = 0 operators.

The NDA normalization eqn (8.1) for the SMEFT leads to an interesting pattern
for the operators [34,52],

L ∼ ĈH
(4π)4

Λ2
H6

+ Ĉψ2H3

(4π)3

Λ2
ψ2H3

+ ĈH4D2

(4π)2

Λ2
H4D2 + Ĉψ2H2D

(4π)2

Λ2
ψ2H2D + Ĉψ4

(4π)2

Λ2
ψ4

+ Ĉψ2XH
(4π)

Λ2
gψ2XH

+ ĈX2H2

1

Λ2
g2X2H2

+ ĈX3

1

(4π)2Λ2
g3X3 (10.22)

with 4π factors ranging from (4π)4 to 1/(4π)2, a variation of ∼ 4× 106.
The complete renormalization group equations for the SMEFT up to dimension

six have been worked out [3, 5, 53, 54]. A very interesting feature of these equations
is that they respect holomorphy, reminiscent of what happens in a supersymmetric
gauge theory [4]. The renormalization group equations take a simpler form if written
using the normalization eqn (10.22).



82 SMEFT

10.2 EFT below MW

Below the electroweak scale, one can write a low energy effective theory (LEFT) with
quark and lepton fields, and only QCD and QED gauge fields. The operators have been
classified in Ref. [50,51]. Since SU(2) gauge invariance is no longer a requirement, there
are several new types of operators beyond those in SMEFT.

• There are dimension-three νν operators which give a Majorana neutrino mass for
left-handed neutrinos.

• There are dimension-five dipole operators. These are the analog of the (L̄R)XH
operators in sec 10.1.8, which turn into dimension-five operators when H is re-
placed by its vacuum expectation value v. There are 70 Hermitian ∆B = ∆L = 0
dipole operators for ng = 3.

• There are X3 and ψ4 operators as in SMEFT, but operators containing H are no
longer present.

• There are ∆L = 4 ν4 operators, and ∆L = 2 (ψ̄ψ)νν four-fermion operators, as
well as four-fermion ∆B = −∆L operators.

• There are 3631 Hermitian ∆B = ∆L = 0 dimension-six operators for ng = 3.

The complete renormalization group equations up to dimension-six have been
worked out for LEFT [50,51]. Since the theory has dimension-five operators, there are
non-linear terms from two insertions of dimension-five operators for the dimension-six
running. Various pieces of the computation have been studied previously [1, 2, 14, 16,
19–21,24–26,29,39].
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Appendix A

Naturalness and The Hierarchy
Problem

In the SM, most Lagrangian terms have dimension four, but there is an operator of
dimension two,

L = λv2H†H . (A.1)

m2
H = 2λv2 is the mass of the physical Higgs scalar h. If we assume the SM is an EFT

with a power counting scale Λ� v, then blindly applying eqn (4.17) gives

L ∼ Λ2H†H . (A.2)

The quadratic Λ2 dependence in eqn (A.2) is the so-called hierarchy problem: that the
Higgs mass gets a correction of order Λ. Similarly, the cosmological constant c, the
coefficient of the dimension-zero operator 1 is of order Λ4, whereas we know experi-

mentally that c ∼
(
2.8× 10−3 eV

)4
.

The power counting argument of eqn (4.17) does not imply that mH ∝ Λ or c ∝ Λ4.
We have seen in Sec. 5.2 and eqns (5.35) that there are no Λ2 and Λ4 contributions from
loops in dimensional regularization. By construction, the EFT describes the dynamics
of a theory with particles with masses mH much smaller than Λ. Since H is in our
EFT Lagrangian, its mass mH is a light scale, mH � Λ. With this starting point,
corrections to mH only depend on other light scales and possible suppression factors
of 1/Λ from higher-dimension terms. There are no positive powers of Λ.

Let us look at the hierarchy problem in more detail. The usual argument is that
loop corrections using a cutoff Λ give contributions to m2

H of order Λ2, so that the bare
m2

0H
†H coupling in the Lagrangian must be fine-tuned to cancel the Λ2 contribution,

leaving a small remainder of order v2. Furthermore, this cancellation is unnatural,
because m2

0 must be fine-tuned order-by-order in perturbation theory to cancel the
Λ2 terms from higher order corrections. There are several reasons why this argument
is invalid: Firstly, Nature does not use perturbation theory, so what happens order-
by-order in perturbation theory is irrelevant. Secondly, in a sensible renormalization
scheme that factorizes scales properly, such as dimensional regularization, there are
no Λ2 loop contributions, and no fine-tuning is needed. Explicit computation of the
Higgs mass correction in eqn (5.15) shows that the correction is proportional to m2

H ,
not Λ2.

Here is an even better argument—assume there is new BSM physics with particles
at a high scale MG, say the GUT scale. Then loop corrections to the renormalized mass
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m2 are proportional toM2
G, and these must be cancelled order-by-order in perturbation

theory to give a Higgs mass mH much smaller than MG. The order-by-order problem is
irrelevant, as before. However, we still have corrections m2 ∝M2

G, even if we compute
exactly. These terms show the sensitivity of IR physics (the Higgs mass mH) to UV
parameters (MG). Recall that in the introduction, it was obvious that short- and
long-distance physics factorized, and our bridge-builder did not need to know about
MG to design a bridge. The sensitive dependence of mH on MG follows because we
are computing low-energy observables in terms of high-energy parameters. We have
already seen an example of this in Sec 3.4. The solution is to use parameters defined
at the scale of the measurement. Using the EFT ideas discussed so far, it should be
clear that if we do this, all MG effects are either logarithmic, and can be absorbed
into running coupling constants, or are suppressed by powers of 1/MG. There are no
corrections with positive powers of MG.

Naturalness arguments all rely on the sensitivity of low-energy observables to high-
energy (short distance) Lagrangian parameters. But treating this as a fundamental
problem is based on attributing an unjustified importance to Lagrangian parameters.
Lagrangian parameters are a convenient way of relating physical observables to each
other, as discussed in Sec. 3.3. As an example, consider the computation of hadron
properties using lattice gauge theory, with Wilson fermions. The bare quark masses
m0 get corrections of order Λ ∼ 1/a, where a is the lattice spacing. m0 must be
adjusted so that the physical pion mass is small (remember that one cannot measure
the quark mass), and this is what is done in numerical simulations. Obtaining light
Wilson fermions in the continuum limit is a numerical problem, not a fundamental one.
The lattice fine-tuning required does not imply that QCD has a naturalness problem.
We know this, because there are other ways to calculate in which the fine-tuning is
absent. Similarly, in GUTs, there are ways to calculate in which there is no fine-tuning
required for the Higgs mass.

We now consider the only version of the hierarchy problem which does not depend
on how experimental observables are calculated. Assume we have a theory with two
scales MG, and mH , which are widely separated, mH � MG. Here mH and MG are
not Lagrangian parameters, but experimentally measured physical scales. mH can be
obtained by measuring the physical Higgs mass, mH ∼ 125 GeV. MG can be measured,
for example, from the proton decay rate (if the proton does decay). The hierarchy
problem is simply the statement that two masses, mH and MG, are very different. But
suppose instead that we had a situation where mH and MG were comparable. Then we
would have a different naturalness problem—mH and MG can differ by many orders of
magnitude, so why are they comparable? The only physics problem is to understand
why experimentally measurable quantities such as αQED, me, mµ, mB etc. have the
values they have. Naturalness is not such a problem. The 40+ years of failure in
searches for new physics based on naturalness, as well as the non-zero value of the
cosmological constant, have shown that Nature does not care about naturalness.

Finally, let me comment on another fine-tuning problem that many of you are
excited about. There will be a total solar eclipse on Aug 21, 2017, shortly after the Les
Houches school ends. The angular diameter of the Sun and Moon as seen from Earth
are almost identical—the Moon will cover the Sun, leaving only the solar corona visible
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Fig. A.1 Photos of the 21 Aug 2017 solar eclipse. [Credit: P. Stoffer]

(see Fig. A.1). The angular diameters of the Sun and Moon are both experimentally
measured (unlike in the Higgs problem where the Higgs mass parameter m at the high
scale MG is not measured) and the difference of angular diameters is much smaller
than either.1 Do you want to spend your life solving such problems?

1The angular diameters are not constant, but change because of the small eccentricity of the orbit.
As a result, one can have both total and annular eclipses. Furthermore, the Earth-Sun-Moon system
is almost planar; otherwise there would not be an eclipse. These are two additional fine-tunings.
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