

1 Technical specifications

2 Hardware solution : VC707 + RASPBERRY

-VC707 : highlights -RASPBERRY : highlights

3 Firmware developments

- -Block diagram
- -Implementation

4 Software developments

- Registers
- Python commands
- High Level commands

5 Early tests

- GTS tree VC707 optical link
- GTS TP core test

6 Conclusion

AGATA Week / ORSAY, FRANCE / 3rd-7th October 2016 / M. TRIPON GANIL, CAEN, FRANCE

1Technical specifications

GANIL GTS Trigger Processor specifications : STP-439-A

http://wiki.ganil.fr/gap/GAMMA/attachment/wiki/EXOGAM2/Projet/TP/STP-439A%20-%20SP%20Exogam2%20Trigger%20Processor.pdf

Two main constraints:

≻Coupling of the EXOGAM, AGATA detectors with ancillaries such as NEDA, DIAMANT, VAMOS.

>Full compatibility with the current GTS system which equips the AGATA detector:

- ✓ Optical fiber connection to GTS V3 Root
- \checkmark TR label is delivered on eight bits => TP cannot handle more than 256 TR labels
- ✓ Aurora protocol message are transmitted at 2 Gb/s

Summary of Physics specifications (EXOGAM, AGATA, NEDA, TRACE):

Multiple simultaneous trigger capabilities for a large set of detectors such as AGATA, EXOGAM, NEDA, DIAMANT, VAMOS

> Multiplicities and prompt or-delayed coincidences (example: $\gamma - \gamma - \gamma OR \gamma - n$)

Complete freedom to define the partitions (channels are split up into partitions)

➢No dead time; continuous coincidence analysis

>Possibility to validate data from a detector which does not participate to the trigger decision

Flexibility (easiness to adjust new trigger conditions)

Generate an event pattern to identify trigger type

1Technical specifications

Main steps of the trigger processing cycle:

1) SORTING

- To sort the incoming GTS leaves messages according to the assignment TR label channel number
- To distribute and to store the TS into FIFO according to the channel number

2) MULTIPLICITY

- To issue the individual multiplicity window of each channel when (channel TS) = (reference TS)
- To perform the multiplicity of each partition
- To issue the multiplicity result of each partition according to the multiplicity threshold

3) ACCEPTANCE

- To issue the acceptance window of each partition
- To validate channels in coincidence with the acceptance window

4) COINCIDENCE

• To issue the coincidence window of each partition

5) ANALYSIS

- To combine the coincidence windows into the logical equation
- To source the event validation signal or event reject signal

6) EVENT PARAMETERS

• To build and to register the event parameters (TR pattern, the event number and the event time stamp) block.

7) **REPLY**

• To send back to each GTS leaves the validation or reject messages

2. TP hardware : VC707 key features

AGATA Week / ORSAY, FRANCE / 3rd-7th October 2016 / M. TRIPON GANIL, CAEN, FRANCE

2. TP hardware : VC707 key features

Comparison of resources:

Virtex XC7VX485T-2FFG1761C - XC5VFX200T (current AGATA TP) => Twice more ressources in Vitex7 than in Virtex 5

Device	Logic Cells	Configurable Logic Blocks (CLBs)		RAM Blocks	GTX	l/O Banks	User I/O
		Slices	Distributed RAM (kb)	(KD)			
XC7VX485T	485 760	75 900	8 175	37 090	56	14	700
XC5VFX200T	196 608	30 720	2 280	16 416	24	13	960

2. TP hardware : RASPBERRY key features

RASPBERRY Hardware features

- 700 MHz ARM11 processor
- 512 MB of RAM
- Ethernet port
- Four USB ports
- HDMI output
- Audio output and composite video output
- 40-pin GPIO header
- Camera interface (CSI)
- Display interface (DSI)
- Micro SD card slot

RASPBERRY PI Model B

Software:

- Open source
- RASPBIAN: free Operating System based on Debian LINUX
- PYTHON : powerfull programming language

What you need to add:

- 5V power source
- Micro SD card
- Custom interface card for electric levels adaptation

Low cost:

- RASPBERRY + micro SD card = 50€
- Custom interface card : 50€

Custom interface

<u>3. Firmware developments</u>: Extra constraints and features

- 256 channels (Trigger Request labels on 8 bits)
- 13 Partitions:
 - P128: 128 channels
 - P64: 64 channels
 - P32: 32 channels
 - P16: 16 channels
 - P8: 8 channels
 - P1_1 to P1_8: one channel in each of 8 partitions
- Window Width range on 10 bits:
 - 13 Multiplicity Windows
 - 13 Acceptance Windows
 - 13 Coincidence Windows
- Window Delay range on 10 bits
 - 13 Coincidence Window Delays
- Validation/Rejection signal issued from one Logic Equation
 - 13 CW logically combined in one Logical Equation
 - LE = OR¹³ (AND¹³CW_n)

<u>3. Firmware developments</u>: GTS TP simplified block diagram

AGATA Week / ORSAY, FRANCE / 3rd-7th October 2016 / M. TRIPON GANIL, CAEN, FRANCE

3. Firmware developments: VHDL implementation in Virtex7

EXOGAM2_GTS_TP project tree

🗄 📲 🔲 ila_1 (ila_1.xci) **Project Summary** ⊕ □ IP Update Log (3)

Constraints (1)	Project Settings	Utilization - Post-Implementation *	Power
	Project name: EXOGAM2_GTS_TP_MT Project location: E:/Xilinx_projects/EXOGAM2_GTS_TP Product family: Virtex-7 Project part: <u>Virtex-7 VC707 Evaluation Platform (xc7vx485tffg1761-2)</u> Top module name: exogam2_GTS_TP_top	FF - 15%6 LUT - 15%6 Memory LUT - 1%6	Total On-Chip Power: 1.321 W Junction Temperature: 26,5 °C Thermal Margin: 58,5 °C (49,3 W) Effective & dJA: 1,1 °C/W Power supplied to off-chip devices: 0.006 W
i∰-⊈⊒ila_1 (ila_1.xo i∰ ि Waveform Con	Board Part Display name: Virtex-7 VC707 Evaluation Platform Board part name: xilinx.com:vc707:part0:1.1	10 - 4% BRAM - 56% BLFG - 28% MICH - 7%	Confidence level:
	Repository path: C:/Xilinx/Vivado/2015.2/data/boards/board_parts URL: www.xilinx.com/vc707 Board overview: Virtex-7 VC707 Evaluation Platform	GT - 3% 0 25 50 75 100 Ublication (%)	Conflict nets: 0 Unrouted nets: 0 Partially routed nets: 0 Fully routed nets: 143726
		Graph Table	

<u>4. Software developments</u>: SPI registers

14 SPI control and status registers

REG_0_CTRL: General Control (reset, TP_on, start_TS_counter, enable self start_TS_counter enable_test) REG 1 CTRL: TS offset of the root counter **REG 2 CTRL**: It sets the label for the readout of the STATUS registers **REG 3 CTRL**: LUT: CHANnb to IPnb. (256 sub-registers) REG_3_STATUS : read LUT (set by REG_2_CTRL) REG_4_CTRL: start delay of the TS root counter **REG 5 CTRL:** Multiplicity Window Width (13 sub-registers) **REG 5 STATUS:** Multiplicity Window Width (set by REG 2 CTRL) **REG 6 CTRL:** Multiplicity Threshold (13 sub-registers) REG_6_STATUS: Multiplicity Threshold (set by REG_2_CTRL) REG_7_CTRL: Acceptance Window Width (13 sub-registers) **REG_7_STATUS:** Acceptance Window Width (set by REG_2_CTRL) **REG 8 CTRL**:Coincidence Window Width (13 sub-registers) REG_8_STATUS: Coincidence Window Width (set by REG_2_CTRL) **REG 9 CTRL**:Coincidence Window Delay (13 sub-registers) REG_9_STATUS: Coincidence Window Delay (set by REG_2_CTRL) REG_10_CTRL: Logic Equation (13 sub-registers) **REG 10 STATUS:** Logic Equation (set by REG 2 CTRL) **REG** 11 CTRL : Enable multiplicities windows of the 256 channels and multiplicity validations (256 sub-registers) **REG_11_STATUS:** Channel number or partition number (set by REG_2_CTRL) REG_12_CTRL: Logic Inspection (4 sub-registers for connecting ≈300 signals to 4 inspection lines) REG_12_STATUS: Logic Inspection (set by REG_2_CTRL) **REG 15 CTRL: Event pattern**

AGATA Week / ORSAY, FRANCE / 3rd-7th October 2016 / M. TRIPON GANIL, CAEN, FRANCE

4. Software developments: Python commands

tripon@ganp292 MINGW64 ~
\$ ssh -x pi@193.48.111.229
pi@193.48.111.229's password:
Linux raspberrypi 4.1.13+ #826 PREEMPT Fri Nov 13 20:13:22 GMT 2015 armv6l
The programs included with the Debian GNU/Linux system are free software;
the exact distribution terms for each program are described in the individual files in /usr/share/doc/*/copyright.
Debian GNU/Linux comes with ABSOLUTELY NO WARRANTY, to the extent permitted by applicable law.
Last login: Thu Sep 22 08:47:35 2016 from ganp292.in2p3.fr
pi@raspberrypi ~ \$ ls
Desktop indiecity ocr_pi.png python_games python-spi SPI_prog test_rgb_mezz.sh vid.h264 WebIOPi-0.6.0 WebIOPi-0.6.0.tar.gz
WiringPi_prog
pi@raspberrypi~\$cd_python-spi
pi@raspberrypi ~/python-spi \$ ls
git rd_spi.py Register_GTS_TP.pyc Register.pyc setup_GTS_TP.txt spidev_module.c test_spi.py test_units.py
TP_EvtParam_rd_spi.py Units.py wr_spi.py _info.txt Register_GTS_TP.py Register.py setup_GTS_TP.py setup.py
test_rd_spi.py test_units.help.txt test_wr_spi.py TP_test_wr_spi.py Units.pyc
pi@raspberrypi~/python-spi\$

Two basic R/W python command:

test_wr_spi.py

test_rd_spi.py

Python script files:

TP_test_wr_spi.py : TP setup for test
TP EvtParam rd spi.py : read pattern

laboratoire commun CEA/DSM

The GANIL GTS Trigger Processor

4. Software developments: HL commands

REG_1_CTRL: TS offset of the root counter (0ns-42949672950ns): offset(1)= 0ns

REG_3_CTRL: LUT channel index vs IP address (0-255 or P*.*-.*): LUT(11)= P128.1-.0, P128.2-.1, P128.18-.18, P128.35-.35, P128.52-.52, P128.69-.69, P128.86-.86, P128.103-.103, P128.120-.120, P1_1-.248, P1_2-.249

REG_4_CTRL: start delay of the TS root counter (0ns-40950ns): delay(1)= 10230ns

REG_5_CTRL: Multiplicity Window Width (10ns-10us): MWW(3)= P128-.140ns, P1_1-.210ns, P1_2-.220ns

REG_6_CTRL: Multiplicity Threshold (1-256): MT(3)= P128-.5, P1_1-.1, P1_2-.1

REG_7_CTRL: Acceptance Window Width (10ns-10us): AWW(3)= P128-.320ns, P1_1-.10ns, P1_2-.10ns

REG_8_CTRL: Coincidence Window Width (10ns-10us): CWW(3)= P128-.480ns, P1_1-.530ns, P1_2-.540ns

REG_9_CTRL: Coincidence Window Delay (10ns-10us): CWD(3)= P128-.1120ns, P1_1-.1170ns, P1_2-.1180ns

REG_10_CTRL: Logic Equation LE index vs Operand Number (13): LE(2)= P128-.0 P1_1-.1, P1_2-.1

REG_11_CTRL: Enable Multiplicity Window (P*.*): EMW(11)= P128.1, P128.2, P128.18, P128.35, P128.52, P128.69, P128.86, P128.103, P128.120, P1_1, P1_2 REG_11_CTRL: Enable Partitions Multiplicity Validation: (P*) : EPMV (3)= PMV128, PMV1_1, PMV1_2

File Edit View Terminal Go Help

EMW #11 (256)	^				
Enable Multiplicity Window (P*.*) ([channel])					
[01] or 0					
$ar{(1\ 1\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\$	Θ				
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0	<pre></pre>				
\circ	1				
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0				
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Θ				
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0				
0 0 0 0 0 0 0 1 1 0 0 0 0 0 0] dimensionless					
CWW #8 (13)					
Coincidence Window Width (10ns-10us) ([time])					
[11000] or -1					
[48 20 30 40 50 53 54 10 10 10 10 10 10] tic					
CWD #9 (13)					
Coincidence Window Delay (10ns-60us) ([time])					
[16000] or -1					
[112 2 3 4 5 117 118 100 100 100 100 100 100] tic					
AWW #7 (13)					
Acceptance Window Width (10ns-10us) ([time])					
[11000] or -1					
[32 20 30 40 50 1 1 1 1 1 1 1 1] tic					
-LUT as plot:					
duplicate IP addresses 2 [123 123]	=				
@ indexes 2 [34 51]	~				

5. Early tests: GTS tree – VC707 optical link

Test aiming at the validation of the optical communication between VC707 and GTS tree.

GTS protocol:

- Aurora 8b/10b encoding
- 64 bits frame

Hardware:

- GTS tree: 1 ROOT V3, 3 FIFO V3, 8 NUMEXO2
- VC707

VC707 firmware:

- AURORA IP: Xilinx GTX IP, 8b/10b encoding, framing.
- -TX_CRC, RX_CRC IPs
- Very light TP core: incoming GTS leaf message always accepted

Acquisition run:

- GTS built and aligned
- TP included in the GTS tree
- Acquisition is started => GTS leaf messages are sent to GTS upstream link
- NUMEXO2 inspection lines: Trigger validation is displayed on scope, as expected

Conclusion of the test: GTS tree - VC707 link has been successfully tested

AURORA+CRC firmware in VC707 is validated

AGATA Week / ORSAY, FRANCE / 3rd-7th October 2016 / M. TRIPON GANIL, CAEN, FRANCE

5. Early tests: GTS TP core test

5. Early tests: GTS TP core test

```
Test aiming at the validation of the TP core in VC707:
                                                                                                          ID TS
                                                                          test message GTS i <= x"000000000 01 00F1";
- No connection to the GTS tree
                                                                          test message GTS i <= x"000000000 12 00F2";
- GTS leaf messages are sourced by an inner IP : test_GTS_TP
                                                                          test message GTS i <= x"000000000 23 00F3";
- GTS TP setup:
                                                                          test message GTS i <= x"000000000 34 00F4";
      - 3 partitions are enabled : P128, P1_1, P1_2
                                                                          test message GTS i <= x"0000000000 45 00F5";
      - 10 channels are enabled, with IP number = channel number :
                                                                          test message GTS i <= x"0000000000 56 0F6";
            - 8 in P128: 1, 12, 23, 34, 45, 56, 67, 78
                                                                          test message GTS i <= x"000000000 67 00F7";
                                                                          test message GTS i <= x"000000000 78 0148";
           - 1 in P1 1: F8
                                                                          test message GTS i <= x"000000000 F8 0001";
           - 1 in P1 2: F9
                                                                          test message GTS i <= x"000000000 F9 0010";
      - Windows Widths
            MWWP128 = 160ns, MWWP1 1 = 210ns
                                                           MWWP1 2 = 220 ns
           AWWP128 = 320ns
           CWWP128 = 480ns, CWWP1 1 = 530ns, CWWP1 2 = 540ns
      -Multiplicity Thresholds:
            - MTHP128 = 5
      - CW Delays
            CWDP128 = 1120ns, CWDP1 1 = 1170ns, CWDP1 2 = 1180ns
      - LE = CWP128 OR (CWP1_1 AND CWP1_2)
   pi@raspberrypi~/python-spi$./TP test wr spi.py
                                                                           #GTS TP setup
   pi@raspberrypi ~/python-spi $ ./test wr spi.py 0X00 0X0C 0X01 0X31 0X00 0X02
                                                                           #OR MW on IL2
   pi@raspberrypi~/python-spi$./test wr spi.py 0X00 0X0C 0X01 0X33 0X00 0X04
                                                                           #OR CW on IL3
   pi@raspberrypi~/python-spi$./test wr spi.py 0X00 0X0C 0X01 0X30 0X00 0X08
                                                                           #LF on IL4
   pi@raspberrypi ~/python-spi $ ./test wr spi.py 0X00 0X00 0X00 0X00 0X00 0X1A
                                                                           # enable test and TP on
   pi@raspberrypi~/python-spi$./TP EvtParam rd spi.py
```

SPI evt pattern read

5. Early tests: GTS TP core test

GTS messages returned to the leaves:

 TS
 ID
 accept EvtnNb

 message_GTS_s (63..0):
 0001
 F8
 8000
 000009

 message_GTS_s (63..0):
 0010
 F9
 8000
 000009

 message_GTS_s (63..0):
 0148
 78
 0000
 000000

 message_GTS_s (63..0):
 00F3
 23
 8000
 00000A

 message_GTS_s (63..0):
 00F5
 45
 8000
 00000A

 message_GTS_s (63..0):
 00F4
 34
 8000
 00000A

 message_GTS_s (63..0):
 00F6
 56
 8000
 00000A

 message_GTS_s (63..0):
 00F1
 01
 8000
 00000A

 message_GTS_s (63..0):
 00F7
 67
 8000
 00000A

 message_GTS_s (63..0):
 00F7
 67
 8000
 00000A

Conclusion:

1- GTS messages issued from the TP core matched with the incoming test GTS messages
2- Event Pattern is in accordance with the incoming test GTS messages

Event pattern	
pi@raspberrypi ~/python-spi \$./TP_EvtParau ('0x0', '0x0', '0xca', '0xfe', '0xab', '0xcd')	m_rd_spi.py
('0x0', '0x0', '0xef', '0x0', '0x0', '0x9')	#event number 9
('0x0', '0x0', '0x0', '0x0', '0x0', '0x0')	
('0x0', '0x0', '0x0', '0x0', '0x0', '0x0')	
('0x0', '0x0', '0x0', '0x0', '0x0', '0x0')	
('0x0', '0x0', '0x0', '0x0', '0x0', '0x0')	
('0x0', '0x0', '0x0', '0x0', '0x0', '0x0')	
('0x0', '0x0', '0x0', '0x0', '0x0', '0x0')	
('0x0', '0x0', ' <mark>0x3', '0x0', '0x0', '0x0'</mark>)	#channels F8 and F9
('0x0', '0x0', '0x0', '0x0', '0x0', '0x0')	
('0x0', '0x0', '0x0', '0x0', '0x0', '0x70')	# evt TS
('0x0', '0x0', '0x8c', '0xf4', '0x0', '0xa8')	
pi@raspberrypi ~/python-spi \$./TP_EvtPara	m_rd_spi.py
('0x0', '0x0', '0xca', '0xfe', '0xab', '0xcd')	
('0x0', '0x0', '0xef', <mark>'0x0', '0x0', '0xa</mark> ')	#event number a
('0x0', '0x0', '0x0', '0x4', '0x0', '0x2')	#channels 1 and 12
('0x0', '0x0', '0x0', '0x10', '0x0', '0x8')	#channels 23 and 34
('0x0', '0x0', '0x0', '0x40', '0x0', '0x20')	# channels 45 and 56
('0x0', '0x0', '0x0', '0x0', '0x0', '0x80')	# channels 67
('0x0', '0x0', '0x0', '0x0', '0x0', '0x0')	
('0x0', '0x0', '0x0', '0x0', '0x0', '0x0')	
('0x0', '0x0', '0x0', '0x0', '0x0', '0x0')	
('0x0', '0x0', '0x0', '0x0', '0x0', '0x0')	
('0x0', '0x0', '0x0', '0x0', '0x0', '0x70')	# evt TS
('0x0', '0x0', '0x8c', '0xf4', '0x1', '0x7d')	

5. Early tests: GTS TP core test

GTS TP cycle: Signals displayed on Vivado ILA board

Haro	ware I	1anager - localhost/xilinx_tcf/l	Digilent/210203343631A						×
() I	lo hard	vare target is open. <u>Open targ</u>	<u>et</u>						
s l	🔊 da	shboard_1 ×							B C ×
B Waveform - hw_ila_1							_ & ×		
di la))								2,953
0	1+	Name	Value	82	1500	11 000	11 500	2,004	
	14	TH GTS CLK 100MHz s	0			1,000	1,500	2,000	<u> </u>
vare		Und rx fifo s	0						
			000000000001ffff			0000	0000001ffff		
		We multiplicidow_s_1[1]	0					i i i i i i i i i i i i i i i i i i i	
		Ummultiplicitow_s_2[18]	0						
	<u> </u>	堤 multiplicitow_s_3[35]	0						
		U multiplicitow_s_4[52]	0						
		U multiplicitow_s_5[69]	0					n	MUL
	12	Ummultiplicitow_s_6[86]	0					_	
	2	103] www.w_w_w_w_w_w_w_w_w_w_w_w_w_w_w_w_w_w	0					_	
	4	120] wultipliciw_s_8[120]	0						
		multiplicidow_s[248]	0						
		multiplicidow_s[249]	0						
		u acceptancs_P128_s	0						
		W acceptancs_P1_1_s	0						
	<u></u>	We acceptancs_P1_2_s	0						
	» 💻	Coincidenws_P1_25_s	0						
		Coincidenws P1 2 s	0						DEN
		Use Logic Equation s	0						
		U rd_FIFO_GTS_s	0						
		message_GTS_s[63:0]	00f3238000000002			000000000000000		00104980	00000001

- 3 partitions : P128, P1_1, P1_2
- 10 channels :
 - 8 in P128: 1, 12, 23, 34, 45, 56, 67, 78
 - 1 in P1_1: F8
 - 1 in P1_2: F9
 - LE = CWP128 OR (CWP1_1 AND CWP1_2)

5. Early tests: GTS TP core test

GTS TP cycle:

Signals connected to 4 Inspection Lines and displayed on oscilloscope

<u>5. Conclusion</u>:

Early tests:

- -GTS V3 tree <=> VC707 communication : OK
- GTS TP core: OK

<u>To do</u>:

- To connect the GTS TP to the GTS tree
- To house the GTS TP in a box (19" case, rack mount, 1 U)
- To debug the GTS TP core
- To implement the GTS TP in detector instrumentation
- To develop the IP protocol (pattern readout)

2. TP hardware

TP hardware components housed in a custom box (19" case, rack mount, 1 U)

