Imaging with a highly-segmented, position sensitive HPGe detector – The Cologne Compton camera

T. Steinbach, R. Hirsch, B. Birkenbach, B. Bruyneel, J. Eberth, H. Hess, L. Lewandowski, P. Reiter IKP, Universität zu Köln

> R. Gernhäuser, L. Maier, M. Schlarb, B. Weiler, M. Winkel **E12, TU München**

PSeGe workshop 2016, Orsay, France

4. Oct. 2016

Overview

- Theoretical Background
- Experimental Setup
- Coincidence Mode
 - Measurements with Two Sources
- High-Efficiency Mode
 - PSA Optimization
 - Angular Resolution Depending on Interaction Point Distances

Principle of a Compton Camera

Imaging requires:

- Energy E_v
- Energy loss by Compton scattering
- Interaction points
- Multiple interactions

$$\cos\left(\theta\right) = 1 + m_e c^2 \left(\frac{1}{E_{\gamma}} - \frac{1}{E_{\gamma} - E_1}\right)$$

Pulse Shape Analysis

Coincidence Mode with DSSD

High-Efficiency Mode

Experimental Setup

Highly-segmented AGATA-HPGe detector

- 36 segments
- Pulse-shape analysis (PSA) sensitive to interaction position

Digital Pixie-16 elektronics

- 5 Pixie-16 modules
- Listmode data
- 12 bit ADC
- 100 MSPS

Experimental Setup

Angular Resolution Method (ARM)

Coincidence Mode

Energy sum of HPGe and DSSD [keV]

Coincidence Mode

Imaging with Two Sources

Imaging with Two Sources

Imaging with Two Sources

High-Efficiency Mode

Intersection with sphere

- Near-field imaging
- Walking algorithm

S. J. Wilderman et al.,, IEEE Transactions on Nuclear Science 45 (3) (1998) 957–962.

- Sensitive to nearly 4π solid angle

Sinusoidal map projection

High-Efficiency Mode

Intersection with sphere

- Near-field imaging
- Walking algorithm

S. J. Wilderman et al.,, IEEE Transactions on Nuclear Science 45 (3) (1998) 957–962.

- Sensitive to nearly 4π solid angle

Conditions Necessary for the High-Efficiency Mode

Multiplicity

Source: Na-22 (75 kBq) Duration of measurement: 30 min Distance source ↔ HPGe: 33 cm Efficiency: 23 % (corrected for activity and geometry)

Compare: coinc. measurement: ~1.7x10⁻⁵

PSA Optimization

High-Efficiency Imaging after PSA Optimization

Angular resolution: 31.8°

Interaction Point Sequence

Up to now: Higher energy deposition → First interaction

Exchanged only if first energy deposition exceeds the energy of the Compton edge (~1060 keV)

→ Reduced forward scattering

Now: Tracking

- Accumulation point roughly known
- Segment multiplicity = 2

Exchange of interaction point sequence, if

- a) absolute angle difference $\Theta_{\text{ARM}} > 35^{\circ}$
- b) absolute angle difference Θ_{ARM} reduced

High-Efficiency Imaging with Exchange of Interaction Points

Without exchange of interaction points: 31.8°

High-Efficiency Imaging with Exchange of Interaction Points

With exchange of interaction points: 30.9°

Comparison: Without exchange of interaction points: 31.8°

Angular Resolution Dependant on Interaction Point Distance

Angular Resolution Dependant on Interaction Point Distance

High-Efficiency Imaging without Interaction in Neighbouring Segments

Efficiency: 7 % Angular Resolution: $\Delta \theta = 18,7^{\circ}$

Weighting by the interaction point distance

High-Efficiency Imaging without Interaction in Neighbouring Segments

Efficiency: 7 % Angular Resolution: $\Delta \theta = 16, 1^{\circ}$

Two Different Modes

- \rightarrow 2 complementary modes operate simultaneous
- Coincidence mode
 - Angular resolution 4.6°
 - Efficiency 1.7x10⁻⁵

- High-Efficiency mode
 - Angular resolution (between 14° and 19°)
 - Efficiency up to 23%

Comparison

- Coincidence mode
 - Angular resolution 4.6°
 - Efficiency 1.7x10⁻⁵

• Setup with AGATA HPGe and double-sided planar HPGe detector S. Moon et al., Journal of Instrumentation 6 (12) (2011) C12048.

Source: Cs-137 (E_{γ} = 662 keV) 2-dimensional Lorentzian peak fit FWHM between 8.9° and 11.2°

- High-Efficiency mode
 - Angular resolution (between 14° and 19°)
 - Efficiency up to 23%

Comparable Setup

F. Recchia et al., Nucl. Instr. Meth. Phys. Res. A 604 (12) (2009) 60 - 63

Source: Co-60 (E_{y} = 1332 keV)

- FWHM of the projections
- 17.0° for ϕ
- 22.5° for θ

Outlook

Possible improvement

- Segment Multiplicity > 2 in the High-Efficiency mode
- Distinguish interactions in one segment
- Optimizing PSA

EPJ A to be submitted

Compton Imaging with a highly segmented, position-sensitive HPGe Detector

T. Steinbach^a, R. Hirsch^a, P. Reiter^a, B. Birkenbach^a, B. Bruyneel^a, J. Eberth^a, R. Gernhäuser^b, H. Hess^a, L. Lewandowski^a, L. Maier^b, M. Schlarb^b, B. Weiler^b, M. Winkel^b

^aInstitut für Kernphysik, Universität zu Köln, 50937 Köln, Germany ^bPhysik Department E12, Technische Universität München, D-85748 Garching, Germany

Thank you for your attention

T. Steinbach, R. Hirsch, B. Birkenbach, B. Bruyneel, J. Eberth, H. Hess, L. Lewandowski, P. Reiter IKP, Universität zu Köln

> R. Gernhäuser, L. Maier, M. Schlarb, B. Weiler, M. Winkel **E12, TU München**

PSeGe workshop 2016, Orsay, France