

Advanced Strategies for Junction Formation in Germanium

D. De Salvador

Dipartimento di Fisica e Astronomia, Università di Padova, Italy Laboratori Nazionali di Legnaro LNL-INFN

Ge devices

Lasers

Outline

- Introduction
 - Motivations
 - Equilibrium diffusion mechanisms
 - Point defect engineering
- Diffusion under H irradiation
- Oxygen co-implantation
- Pre-amorphisation approch
- Considerations about HPGe doping

Why Germanium? Why diffusion?

(R. Pillarisetty, Nature 2011)

- e- and h+ higher mobility
- CHALLENGE for Ge implementation in devices: Shallow Source/Drain doping with High electrical activation (low Sheet Resistance).

Why Germanium? Why diffusion?

NEED for:

- Deep understanding on dopant <u>diffusion</u> and <u>activation</u> phenomena during junction formation processing
- 2. Development of strategies for their control.

Recent Review Papers

JOURNAL OF APPLIED PHYSICS 113, 031101 (2013)

APPLIED PHYSICS REVIEWS—FOCUSED REVIEW

Mechanisms of boron diffusion in silicon and germanium

S. Mirabella, ^{1,a)} D. De Salvador,² E. Napolitani,² E. Bruno,¹ and F. Priolo¹ ¹MATIS IMM-CNR and Dipartimento di Fisica e Astronomia, Università di Catania, Via Santa, Sofia 64, Catania I-95123, Italy ²MATIS IMM-CNR and Dipartimento di Fisica e Astronomia, Università di Padova, Via, Marzolo 8, Padova I-35131, Italy

(Received 13 June 2012; accepted 25 September 2012; published online 16 January 2013)

APPLIED PHYSICS REVIEWS 1, 011301 (2014)

APPLIED PHYSICS REVIEWS

Diffusion of n-type dopants in germanium

A. Chroneos^{1,2,a)} and H. Bracht^{3,b)}

¹Engineering and Innovation, The Open University, Milton Keynes MK7 6AA, United Kingdom
²Department of Materials, Imperial College, London SW7 2AZ, United Kingdom
³Institute of Materials Physics, University of Münster, Wilhelm-Klemm-Strasse 10, D-48149 Münster, Germany

Point defects - diffusion

Vacancy

Self-interstitial

Substitution impurity

Interstitial impurity

Point defect mediated diffusion

Equilibrium Diffusion in Ge

- Ge self diffusion (E_{self}=3.13 eV) is dominated by vacancies, V²⁻ or V⁰ under n- or p-type doping respectively (see A. Chroneos and H. Bracht APR 2014 and refs. therein)
- N-type dopants: $E_{n-type} < E_{self}$ $A_s^+ + V^{2-} \Leftrightarrow AV_{mobile}^-$
- P-type dopants: $E_{p-type} \approx E_{self}$ $A_s^- + V^0 \Leftrightarrow AV_{mobile}^-$
- Boron: $E_B > E_{self}$ (see S. Mirabella et al. APR 2013, A. Chroneos and H. Bracht APR 2013 and refs. therein) $B_s + I \Leftrightarrow BI_{mobile}$

Solubility

Experimental maximum values with ion implantation or diffusion sources after conventional thermal annealings Role of defects. Main dopant-defect reactions

• Diffusion:

$$I + V \Leftrightarrow 0$$

$$A_{s} + V \Leftrightarrow AV_{mobile} (P, As, Sb, Al, Ga, In)$$

$$A_{s} + I \Leftrightarrow AI_{mobile} (B)$$

Clustering (deactivation):

 $AX(mobile) + A_s \Leftrightarrow A_2 X(immobile)$ $AX(mobile) + X \Leftrightarrow AX_2 (immobile)$ $AX(mobile) + T \Leftrightarrow AXT(immobile)$ X = I or V

Point defect engineering

• Diffusion:

$$I + V \Leftrightarrow 0$$

$$A_{s} + V \Leftrightarrow M_{mobile} (P, As, Sb, Al, Ga, In)$$

$$A_{s} + I \Leftrightarrow AI_{mobile} (B)$$

• Clustering (deactivation):

 $AX(mobile) + A_s \Leftrightarrow A_2 X(immobile)$ $AX(mobile) + X \Leftrightarrow AX_2 (immobile)$ $AX(mobile) + T \Leftrightarrow AXT(immobile)$ X = I or V T=defect and/or impurity trap

Outline

- Introduction
 - Motivations
 - Equilibrium diffusion mechanisms
 - Point defect engineering
- Diffusion under H irradiation
- Oxygen co-implantation
- Pre-amorphisation approch
- Considerations about HPGe doping

Radiation enhanced diffusion

- Deep ion irradiation generates dilute I-V Frenkel pairs.
- B deltas through its diffusion mechanism mediated by I's provide a powerful method to investigate self-interstitials

Radiation Enhanced Diffusion

Stituto Nazionali Laboratori Nazionali di Legnaro

(E. Bruno et al. PRB 2009)

October 4, 2016

Self and donor diffusion under RED

(H. Bracht et al. PRL 2009, S. Schneider et al. APL 2011 and PRB 2013)

- Self-diffusion measured by isotopically enriched MBE Ge layers
- n-type dopant co-diffusion
- Full model based on differential equation of all species/ reactions involved
- <u>RED enhances self-diffusion and B diffusion, while donor</u> <u>diffusion is less affected</u>

I-morph

Outline

- Introduction
 - Motivations
 - Equilibrium diffusion mechanisms
 - Point defect engineering
- Diffusion under H irradiation
- Oxygen co-implantation
- Pre-amorphisation approch
- Considerations for HPGe doping

GeO₂ nanoclusters

(Scapellato et al. PRB 2011)

$$I + V \Leftrightarrow 0 \qquad I \uparrow \Longrightarrow V \downarrow$$

I's injection related to the formation and shape transformation of GeO_2 nanoclusters.

O+P implantation

Outline

- Introduction
 - Motivations
 - Equilibrium diffusion mechanisms
 - Point defect engineering
- Diffusion under H irradiation
- Oxygen co-implantation
- Amorphisation/regrowth approch and EOR
- Persepctives for HPGe doping

Amorphisation/regrowth approach

- Highly non equilibrium process
- Dopant incorporation influneced by interface mechanisms
- I injection from inner defects (EOR)
- SPE can be done at low temperatures (T=3-400°C)

PAI and End-Of-Range defects

- After Preamorphization and Solid Phase Epitaxy, End-Of-Range defects form inducing positive strain, i.e. are formed by I's
- After annealing EOR defects dissolve with a Ea=2.1 eV injecting I's.
- This is a further direct evidence of Imediated mechanism of B diffusion

Electrical activation and EOR dissolution

(J. Vanhellemont and E. Simoen, Mat. Sci. In Semicond. Proc. 2012)

INFŃ

Flash lamp ms-annealing

Very high activation bringing the system very out from equilbrium

Prucnal, S. et al. Sci. Rep. 6, 27643; doi: 10.1038/srep27643 (2016)

Summary

- We show possible methods to increase activation related with an increase of C_I:
 - Irradiation at high T (not much effective)
 - Significant injection of I's can be induced by O clustering.
- Amorphising ion implantation + annealing looks very effective
 - EOR injects interstitial
 - Very high activation is demonstrated under fast annealing conditions

Outline

- Introduction
 - Motivations
 - Equilibrium diffusion mechanisms
 - Point defect engineering
- Diffusion under H irradiation
- Oxygen co-implantation
- Pre-amorphisation approch and EOR
- Considerations about HPGe doping

Relevant diffuser fo HP-Ge processes

• Cu: dissociative process

$$Cu_{s}^{-} \Leftrightarrow CuI_{mobile}^{+} + V^{-2}$$

- P-Doping metal contaminant
- Less vacancy more diffusion
- Lithium:

$$Li_{s}^{+} \Leftrightarrow LiI_{mobile}^{+} + V^{0}$$
 (???)

- Low temperature diffuser
- It diffuse too much (diffusion length of mm order but 100nm is enough)

Activation for HPGE

- Interview Control Antionale di Fisica Nucleanaro Laboratori Nazionali di Legnaro
- Activation and junction depth are not so critical
- Large area and possibly low costs
- Metal contamination of high purity Ge is a main issues:
 - High purity processes
 - Low temperature processes

Doping possibilities

- Equilibrium diffusion of standrad dopants can meet junction depth and activation requirements. (SOD of P next talk)
 - Low cost
 - Large area
 - Short junction depth (easy to segment)
 - but relatively high termal budget....
- PAI coud be considered with a specific R&D.

Acnowledgments

- E. Napolitani, S. Carturan, G. Maggioni, A. Carnera. University of Padova, Italy
- D.R. Napoli, INFN Laboratori Nazionali di Legnaro
- G. Impellizzeri, S. Boninelli, E. Bruno, S. Mirabella, G. Scapellato, F. Priolo, V. Privitera. *MATIS IMM-CNR and University of Catania, Italy*
- H. Bracht. University of Münster, Germany
- A Chroneos. University of Cambridge, UK
- N.E.B. Cowern, S. Simdyankin, C. Ahn, N.S. Bennett. University of Newcastle, UK