

New developments in n-type junction for Ge detectors

<u>V. Boldrini^{1,2}, S.M. Carturan^{1,2}, G. Maggioni^{1,2}, D.R. Napoli², E. Napolitani^{1,2}</u> and D. De Salvador^{1,2}

¹Dipartimento di Fisica e Astronomia "G. Galilei", Università di Padova, via Marzolo 8, 35131 Padova, Italy ²INFN-LNL, Viale dell'Università 2, 35020 Legnaro (Padova), Italy

Ge-based devices

Plasmonic molecular sensors

32 Germanium 72.64

γ-Ray detectors

October 4th 2016

1st PSeGe Detectors technology and application Workshop, CSNSM and IPNO, Orsay

Lasers

Ge-based devices

Plasmonic molecular sensors

Photodetectors

γ-Ray detectors

1st PSeGe Detectors technology and application Workshop, CSNSM and IPNO, Orsay

Ge-based devices

Plasmonic molecular sensors

Germanium

72.64

Photodetectors

γ-Ray detectors

October 4th 2016

1st PSeGe Detectors technology and application Workshop, CSNSM and IPNO, Orsay

Lasers

High Purity Germanium flat detector

Problems with current n⁺ layer

Thermal diffusion of lithium is not a satisfying technique for n⁺ layer formation, due to Li high diffusivity in Ge at low temperature:

- Too thick (600 μ m) \rightarrow DEAD LAYER!
- Li migration also at room temperature prevents:
 - high T damage-recovery annealing
 - durable and fine segmentation on n⁺ contact

Find a different technique for n⁺ layer formation

October 4th 2016

Requirements for a new n⁺ contact

HPGe • High doping concentration to enable Metal n+ p⁺ Metal electron tunneling $\approx 10^{19}$ cm⁻³ Barrier height for hole $\phi_B^{\ e}$ blocking $\Phi_{\rm B}{}^{\rm h} \ge 0.7 \text{ eV}$ E_F Thickness \geq 100 nm to • Tunnelling E_c compensate HPGe depleted charge E_F h+ ϕ_B^h Ev

Spin-On-Doping from P-containing sol-gel

Spin-On-Doping from P-containing sol-gel

Spin-On-Doping from P-containing sol-gel

Relative humidity effect – Surface corrosion

If the SOD film absorbed water:

- Cracks in Ge surface (RH>30%)
- $Ge(s) + H_2O(g) \iff GeO(g) + H_2(g)$

October 4th 2016

1st PSeGe Detectors technology and application Workshop, CSNSM and IPNO, Orsay

Four point probe electrical measurements

Hall configuration \rightarrow dose

Curing t and T effects (tests on microel. Ge)

FTIR spectra on P507 films

Rutherford Backscattering Spectrometry (RBS)

Curing time	% Si	% O	% P	% Ge
15 min	20 ± 1	68 ± 2	7 ± 2	4.7 ± 0.5
30 min	21 ± 1	64 ± 2	11 ± 2	4.3 ± 0.5
120 min	18 ± 1	68 ± 2	6 ± 2	5.0 ± 0.5

October 4th 2016

Tuning the junction and test on HPGe

[V. Boldrini, Applied Surface Science (2016) in press]

The technique, optimized for µ-electronic Ge, has been applied to p-type HPGe, with the following annealing treatment:

• spike annealing up to 610 °C in 12 minutes

HPGe				
$R_{sheet} [\Omega/sq.]$	40			
dose [cm ⁻²]	-2.8x10 ¹⁴			
μ [cm²/Vs]	572			

- Spin-On-Doping can be effectively applied to Ge.
- Due to the reactivity of Ge surface when exposed to heat or humid environment, the optimization of a process protocol was necessary and has been achieved.
- Homogeneous phosphorus-doped layers, characterized by high concentration ([3-6]x10¹⁹ cm⁻³ $\rightarrow \Phi_B{}^h = [0.69-0.72 \text{ eV}])$ and tunable thickness [100 nm-1 µm] have been produced in Ge.
- The technique turns out to be applicable also to HPGe and a first doped layer, electrically active, has been obtained.

Outlooks

- Further tests on HPGe (probing other spike annealings and performing SIMS measurements).
- Fabrication of flat diodes on HPGe wafers of n- and p-type, by substituting Li with P.
- Test the operation of these diodes at LN2 (77 °K) and try them as detectors.
- Work on the segmentation of the phosphorus contact.

Thanks for VOUr attention!

virginia.boldrini@phd.unipd.it

October 4th 2016

1st PSeGe Detectors technology and application Workshop, CSNSM and IPNO, Orsay