

B. PIRARD, Recent HPGe developments at CANBERRA

Recent developments in HPGe detectors

AT CANBERRA (MIRION TECHNOLOGIES)

B. PIRARD, Recent HPGe developments at CANBERRA

Presentation Summary

Recent HPGe developments in HPGe detectors

Presentation of CANBERRA (Mirion Technologies)
 Key expertise and technologies
 Recent HPGe detector developments

B. PIRARD, Recent HPGe developments at CANBERRA

1st PSeGe Workshop, Orsay, 4 October 2016 p. 3

CANBERRA

Presentation of the company

B. PIRARD, Recent HPGe developments at CANBERRA

1st PSeGe Workshop, Orsay, 4 October 2016 p. 4

CANBERRA is part of Mirion Technologies since July 1st, 2016

Key elements of the merger

Mirion - Canberra Overview

- 980 employees in 7 countries
- II production sites (in USA, Canada, France, UK, Finland)
- 100+ distribution channels worldwide
- Build-up from successive mergers since 2003

KEY INDUSTRY PLAYER IN :

- Dosimetry Services
- Health Physics
- Radiation Monitoring Systems
- Sensing Systems
- Imaging Systems
- Maintenance / Repair Services

- 930 employees in 9 countries
- 5 production sites (in USA, Canada, France & Belgium)
- 35 independent distributors
- Build-up from acquisitions from 1965 2002

KEY INDUSTRY PLAYER IN :

- Spectroscopy
- Health Physics
- Radiation Monitoring Systems
- Non-Destructive Assay
- Maintenance / Repair Services
- Measurement & Expertise

1st PSeGe Workshop, Orsay, 4 October 2016 p. 5

Technologies

Expertise and know-how overview

B. PIRARD, Recent HPGe developments at CANBERRA

1st PSeGe Workshop, Orsay, 4 October 2016 p. 6

Key expertise and technologies

Project Management

- Long background in both developing advanced technologies (specialty detectors) and large-scale products (standard detectors)
- Technology Readiness Level (TRL) typically from 3 to 9

 System/ Subsystem Development

 Technology Readiness

 Technology Readiness

 Levels as originally developed by NASA in the 1980s

System Test, Launch &

Operations

TRL 9

TRL 8

TRL 7

TRL 6

TRL 5

TRL 4

TRL 3

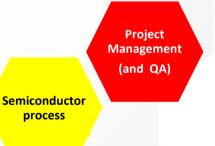
TRL 2

TRL 1

Project Management (and QA)

B. PIRARD, Recent HPGe developments at CANBERRA

1st PSeGe Workshop, Orsay, 4 October 2016 p. 7

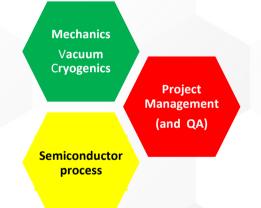


Key expertise and technologies

Project Management

Semiconductor Process

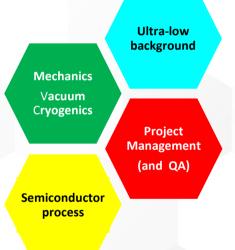
- Large know-how and proprietary processes (segmentation, passivation)
- Full and redundant set of process equipment for Si, Si(Li) and Ge: shaping, PVD, CVD, implantation, diffusion, outgassing / annealing capabilities
- Thin layer characterization capability (thickness, stress, reliability, charge carrier life time)
- Management of clean / radiopure environments


Key expertise and technologies

- Project Management
- Semiconductor Process
- Mechanics, vacuum and cryogenics
 - Development of low-vibration and longlife cryocoolers for HPGe

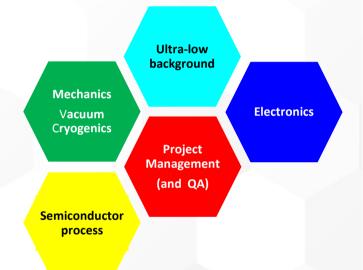
- Improved thermal balance (necessary for electrical cooling)
- Proprietary technologies to hold and encapsulated HPGe detectors.
- Long experience with UHV process

B. PIRARD, Recent HPGe developments at CANBERRA

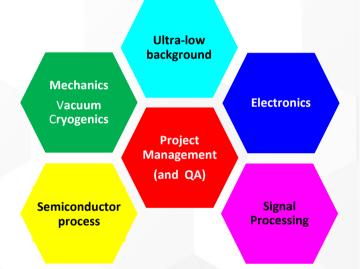

1st PSeGe Workshop, Orsay, 4 October 2016 p. 9

CANBERRA

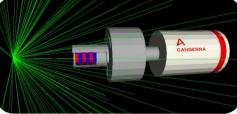
Key expertise and technologies

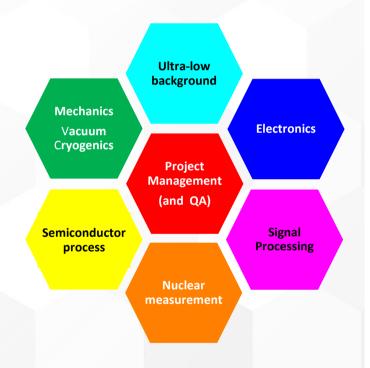

- Project Management
- Semiconductor Process
- Mechanics, vacuum and cryogenics
- Ultra-low background
 - Systematic characterization, traceability and underground storage of radiopure materials
 - Collaboration with international low-background laboratories and experiments (double B decay, Dark Matter, neutrino scattering)

Key expertise and technologies


- Project Management
- Semiconductor Process
- Mechanics, vacuum and cryogenics
- Ultra-low background
- Electronics
 - Strong expertise in analog electronics
 - Continuous challenge for low-noise, high count rate, low power, multi-channel and more integrated electronics

Key expertise and technologies


- Project Management
- Semiconductor Process
- Mechanics, vacuum and cryogenics
- Ultra-low background
- Electronics
- Signal Processing
 - Pulse shape analysis techniques transferred from physics to industrial applications
 - Growing know-how with digital acquisition to characterize multichannel detectors



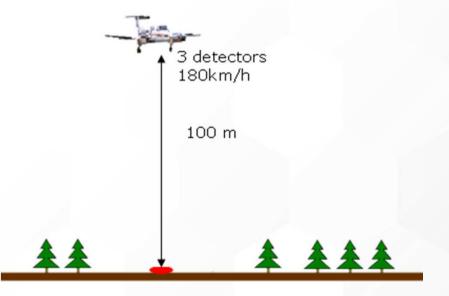
Key expertise and technologies

- Project Management
- Semiconductor Process
- Mechanics, vacuum and cryogenics
- Ultra-low background
- Electronics
- Signal Processing
- Nuclear Measurement (spectroscopy)
 - Alpha, beta, gamma and x-ray spectroscopy is recognised as core competency of CANBERRA
 - For Lingolsheim, particularly large experience with low background, low noise and multichannel spectroscopy
 - In-depth modelling of detectors during design and characterization phases

1st PSeGe Workshop, Orsay, 4 October 2016 p. 13

Recent developments

Overview of some specialty products

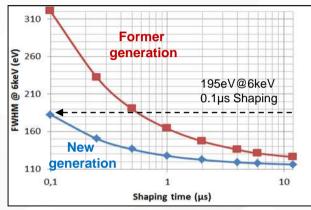

B. PIRARD, Recent HPGe developments at CANBERRA

1st PSeGe Workshop, Orsay, 4 October 2016 p. 14 CANBERRA

Large efficiency spectrometer

- Airborne HPGe spectrometer (2013)
- Rel. efficiency up to 1100% in addback mode
- Electrically cooled (with UPS)
- Turn-key system for real time mapping of radionuclides

Cs137 (4mCi)



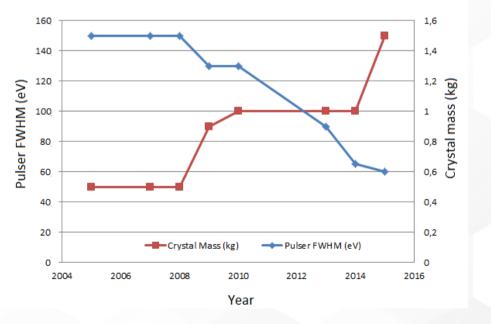
Low-noise x-ray detector

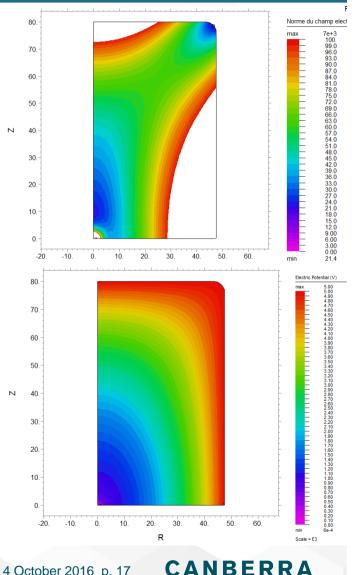
Ongoing development of ultimate low-noise x-ray spectrometer

- Novel ultra low capacitance detector
- New generation analog front-ends
- Low noise and miniaturized contacting methods

Targetted performance:

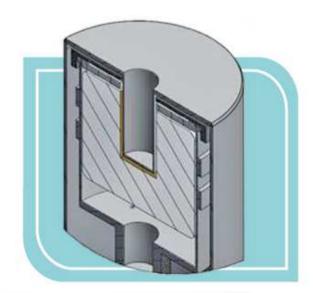
Parameter	Unit	Value
FWHM @ 6 keV 0.1µs	[eV]	160
FWHM @ 6 keV 12µs	[eV]	120
FWHM @ 14 keV 0.1µs	[eV]	200
FWHM @ 60 keV 12µs	[eV]	330
FWHM @ 122 keV 12µs	[eV]	450
Max. ICR	[cps]	2-3Mcps

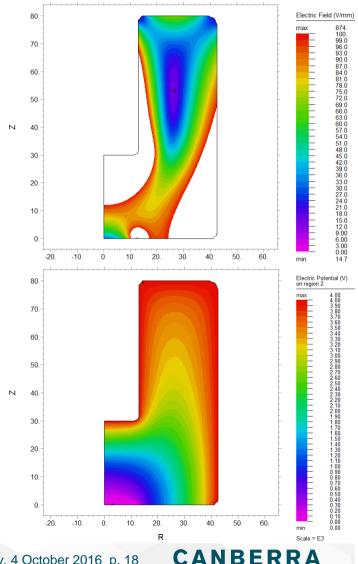

 To be combined with advanced DAQ chains and signal processing techniques



Low noise - low background point contact detector

- Main applications: Dark Matter search and neutrino scattering experiments
- Continuous records in PC detectors volume
 - Current target: 2.4 kg
- Continuous improvement in electronic noise
 - Current target: FWHM < 50 eV @ pulser</p>





SAGe[™] Well detectors

Combination of

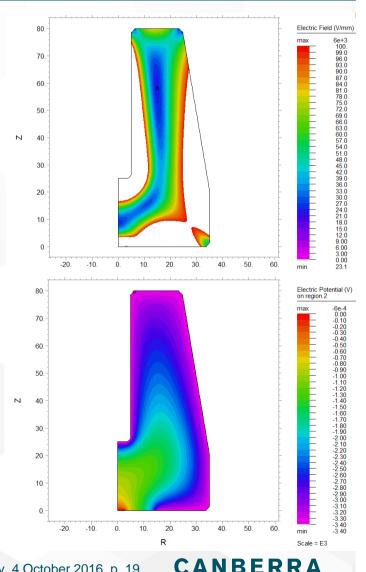
- excellent energy resolution at low and high energies (simillar to Point Contact / BeGe configurations)
- maximum efficiency (similar to well detectors)

Also offers lower depletion voltage with respect to point contact (SAGe) configuration of the same volume

B. PIRARD, Recent HPGe developments at CANBERRA

Inverted (point contact) coaxial detector

Inverted Coaxial detector

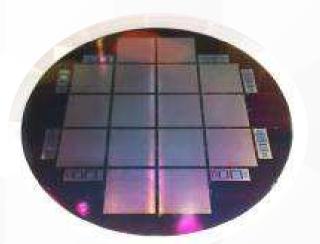

- Long drift time on purpose for improved position resolution
- See R.J. Cooper et al., NIM A 665 (2012) 25

1st segmented prototype (2012)

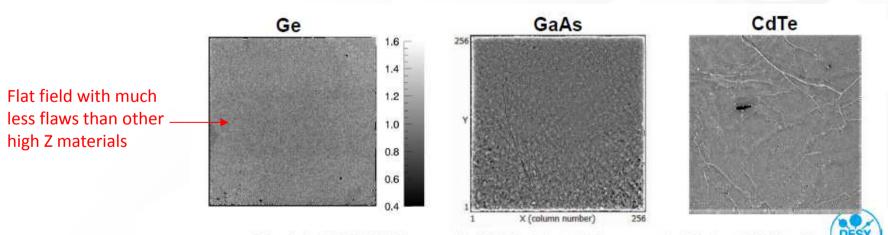
- For ORNL currently tested in Berkeley
- N-type crystal

2st segmented prototype (in indevelopment)

- For Univervisity of Liverpool (SIGMA)
- P-type crystal
- \rightarrow Talk of Laura Harkness in this workshop for details



Fine pixel imagers


Developments of HPGe wafers with micrometric pixels

- Wafers are coupled to user ASICS (e.g. Medipix 3)
- Application: imaging or very high count rates
- Down to 55µm; arrays of chips possible
- Advantage of Germanium
 - High efficiency and stopping power
 - High quality & large diameter wafers available

🗾 Fraunhofer

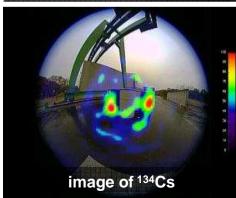
CANBERRA

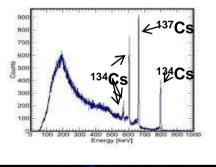
D Pennicard | LAMBDA, High-Z sensors and the HORUS simulation tool | Three-way meeting, APS, August 2013 | Page 28

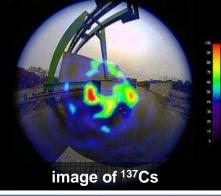
Spectro-imagers (Compton cameras)

 Mid-term industrial challenge: development of 3rd generation radiation imagers, combining high detection efficiency and higresolution spectroscopy

Single electricaly-cooled DSSD for Compton imaging (Si(Li) or HPGe)


Example of industrial application: waste drum imaging in Fukushima




Courtesy of Dr. Motomura (Riken Kobe)

Setup of the imaging experiment

1st PSeGe Workshop, Orsay, 4 October 2016 p. 21

CANBERRA

Recent HPGe developements: trends

- Already good inputs (challenges) collected from previous talks in this workshop
- Energy resolution
 - Still room for noise improvement at low energy (from 100 eV down to a few tens eV):
 - Small detectors with high count rates, mostly for x-ray spectroscopy
 - large PCGe detectors have for Dark Matter experiments
- Count rate
 - For x-ray spectroscopy, detectors, electronics and signal processing suited for more than 1Mcps without resolution degradation
- Position sensitivity
 - Relevance of count rate requirements and sensitivity to trapping ?
 - Need for increased segmentation ?
- Detection efficiency
 - Better match of application needs ?
- Operation
 - Increasing need for electrically cooled detectors, even for scientific applications