SIGMA: A new detector for yray spectroscopy & imaging

Dr Laura Harkness-Brennan PSEGE workshop 2016 UNIVERSITY OF LIVERPOOL

Outline

Opportunity: HPGe array at DESPEC experiment, NuSTAR, FAIR

DESPEC: Implanting short-lived exotic nuclei into AIDA (highly pixellated Si array), observe subsequent decays

Measurements: Half-lives, isomer decays & β -decays measured for 1st time in exotic nuclei

DESPEC challenges: low yields in high background, correlating events for (1) isomeric decay ($t_{1/2}$ 10ns-100ms, 1mHz-1Hz rate) and (2) β -delayed γ -ray emission from exotic ions implanted in AIDA

Project overview

Methods:

- Measure γ -ray interaction energies & positions
- Use gamma-ray tracking to (1) suppress background (100-500Hz) & (2) correlate to β detected in AIDA

Requirements: segmented detector with excellent energy resolution and <1mm³ position resolution, digital acquisition electronics for *pulse shape analysis* and deconvolution of pile-up events

HPGe detectors

- Coaxial and planar detector design
- Compton suppression
- Segmentation: position resolution
- Gamma-ray tracking and PSA

Compton suppression Euroball, Gammasphere

Gamma-ray tracking AGATA, GRETINA

Point-contact inverted coaxial?

Energy resolution

Total energy resolution: electronic Noise, Statistical fluctuations in # of charge carriers and incomplete Charge collection

Point contact detectors

- Low capacitance (~1pF)
- Excellent energy resolution (~0.5keV @ 122keV, 1.7keV @ 1332keV)
- Small contact: Broad Energy Germanium BEGe and SAGe-well detectors
- GERDA and MAJORANA $0v2\beta$, ALBEGA

SAGe well detectors

- SAGe well detector developed for environmental sample measurements
- Sample placed inside the well
- PSA techniques under development to distinguish coincidence summing events – Carl Unsworth
- Long charge collection times ideal for PSA

Development of the SIGMA detector

- Segmented Inverted-coaxial GerMAnium Detector
- Low electronic noise -> excellent energy resolution
- Expected factor of 2-3 improvement in position resolution over AGATA/GRETINA
- Simpler to analyse multiple interactions
- Fewer readout channels
- Reduction in cost and complexity

Development of the SIGMA detector

- 8 longitudinal rings, 2 concentric segments on front face, 8 sectors, 1 core segment, 1 point-like contact
- Digitised signals processed through PSA algorithms

ORNL n-type prototype

- ORNL (David Radford) segmented ntype prototype
- Modelling study: R. J. Cooper et al, NIM A 665 (2012) 25
- Excellent match with experimental signals (ORNL/Berkeley)
- SIGMA of similar design but p-type

ORNL n-type prototype

- Comparisons of drift times for the two detectors underway
- Experimental signal database to be acquired and compared

Jon Wright

ORNL n-type prototype

Building a signal database

Building a signal database

Time (ns)

Build experimental database - 2017

Geant4

- Marc Labiche (Daresbury)
 leading Geant4 modelling of
 SIGMA with AIDA
- SIGMA as a new AGATA ancillary detector
- Simulations will be used to assess the tracking and imaging capabilities for DESPEC

 Benchmark against alternative designs, including planar strip detectors and AGATA detectors

Gamma-ray imaging

 γ -ray interacts at least twice in detector system

Gamma-ray source "hotspot" located in (x,y,z)

SIGMA: Improved isotope identification and localisation Increased efficiency More compact and less electronic signals

Nuclear Decommissioning

Boston, Dormand, National Nuclear Laboratory

- Radiation map of source
- Optical image
- Stereoscopic image "3D"
- Remote response
- High sensitivity and good image quality essential
- 2 semiconductor detectors, which measure position and energy of gamma-ray interactions

No need to raster scan

Position gated spectra

²²Na source 50 mm long x 5mm diam

的复数行为

110

2016

Integrated Monte-Carlo/Geant4 model complete

ORNL prototype detector characterised

Detector delivered

2017

PSA and gamma-ray tracking evaluation

2018

Imaging demonstrated, in-beam tests?

Summary

- DESPEC requires an array for spectroscopy of γ transitions following β , alpha and isomer decay of exotic nuclei in the AIDA implantation detector
- SIGMA detector will use point-like contact technology to provide excellent energy resolution and segmentation/PSA will provide position resolution
- SIGMA detector will be evaluated for future γ -ray tracking and event-byevent correlation with AIDA events, and industrial imaging

University of Liverpool: Laura Harkness-Brennan, Andy Boston, Helen Boston, Dan Judson, Paul Nolan, Robert Page, Carl Unsworth, <u>Jon Wright</u>

STFC Daresbury Laboratory: Marc Labiche, John Simpson

Oak Ridge National Laboratory: David Radford

Thanks to STFC for Project Funding and to Dr Ren Cooper and Heather Crawford at LNBL

Thanks for listening

