Double-parton scattering (and more) in heavy-ion collisions

Cynthia Hadjidakis IPN Orsay

GDR-QCD, Orsay, September 30th 2016

- Multi-parton interaction in p-p collisions: single-parton scattering (SPS) vs doubleparton scattering (DPS)
- Multi-parton interaction and more in heavy-ion collisions: SPS, DPS and doublenucleon scattering (DNS)
- LHC expected yields in Run2 for pair production of hard probes in p-Pb and Pb-Pb collisions

At high energy in p-p collisions: probability of multiple-parton scattering is expected to increase, particularly in the case of double hard production:

SPS:

• single-parton scattering from a single hadron-hadron collision

DPS:

- double-parton scattering from a single hadron-hadron collision
- provide inputs on correlation between pairs of partons in the proton
- hand-pocket formula considering the two parton interactions are independent

$$\sigma^{P_1+P_2} = \frac{m}{2\sigma_{\text{eff}}}\sigma^{P_1}\sigma^{P_2}$$

with m = 1/2, 1, 2 symmetry factor depending on the process

 σ_{eff} :

- parametrizes the effective spatial area of the parton-parton interactions
- universal (process and energy-independent)

Q

Disentangling SPS vs DPS via rapidity and angular dependence

 \rightarrow cross-sections 10 times larger than SPS models and DPS supported by rapidity and angular dependence

Disentangling SPS vs DPS via rapidity and angular dependence

 \rightarrow cross-sections 10 times larger than SPS models and DPS supported by rapidity and angular dependence

Disentangling SPS vs DPS via rapidity and angular dependence

 \rightarrow cross-sections 10 times larger than SPS models and DPS supported by rapidity and angular dependence

Double hard production in heavy-ion collisions

Experimental results so far:

Double J/ ψ production observed first at CERN/SPS by NA3 collaboration in π -Pt and p-Pt *PLB 114 (1982) 457, PLB 158 (1985) 85*

In p-A collisions, double hard production are expected to be enhanced by nuclear scaling

Strikman and Treleani PRL88(2002)031801 d'Enterria and Snigirev, PLB 718 (2013) 1395

Nuclear scaling in heavy-ion collisions

Hard probes

- Hard scattering in pp collisions described by pQCD calculations using universal non-perturbative functions such as (n)PDF and Fragmentation Function
- Produced in the initial hard partonic collisions in the early stage of the collisions ($\tau \approx 1/m$)
- In p-A and A-A, production of hard probes can be modified by initial (shadowing, gluon saturation, multiple interaction with the initial state, ...) or final-state effects (energy loss, multiple scattering with the formed medium, ...)

Nuclear modification factor

In A-A (p-A), without interaction with the partonic/hadronic matter and initial state effects, hard processes are expected to be a superposition of independent nucleon-nucleon collisions and the cross section in A-A (p-A) scales with A² (A)

$$R_{AB} = \frac{1}{A B} \frac{d\sigma^{AB}/dp_T dy}{d\sigma^{pp}/dp_T dy}$$

- $R_{AB} = 1$: no modification
- $R_{AB} > 1$: enhancement
- $R_{AB} < 1$: suppression

References

- pp collisions: test of production models and reference for A-A and p-A collisions

Selected R_{AB} measurements for single production

- A-scaling is observed for D meson production in p-Pb collisions at $\sqrt{s_{NN}} = 5$ TeV at mid-rapidity and $p_T > 2$ GeV/c
- Inclusive J/ ψ production in p-Pb and Pb-Pb collisions: nuclear effects in p-Pb at $\sqrt{s_{NN}} = 5$ TeV and Pb-Pb at $\sqrt{s_{NN}} = 2.76$ and 5 TeV
- What about nuclear scaling for DPS in p-A and A-A collisions?

Scalings of double hard cross-section in p-A wrt p-p collisions depends on the production mechanism:

(a) SPS (as in p-p)

(b) DPS: colliding partons belong to the same pair of nucleons (as in p-p)

(c) DPS: two partons of one nucleon collide with two partons from different nucleons: unique to pA

Scalings of double hard cross-section in p-A wrt p-p collisions depends on the production mechanism:

-SPS: nuclear scaling = A (if no nuclear effect, as for single hard production) -DPS: nuclear scaling in p-A collisions higher than A

For Pb nucleus, enhancement of double hard production from DPS by ~600 in *d'Enterria and Snigirev, PLB 718 (2013) 1395* : relative contribution of (b) and (c) from Glauber nuclear thickness function

- Enhancement of DPS in p-A wrt p-p by $A^{1.5}/\sqrt{10}$ in *Strikman and Treleani PRL88(2002)031801* (~950 for Pb nucleus)

- DPS is enhanced wrt to SPS in p-A collisions thanks to (c)!

Nuclear modification factor for hard pair production in p-A collisions

One defines the relative DPS contributions in p-p collisions:

$$\mathcal{F} = \frac{\mathrm{DPS}}{\mathrm{DPS} + \mathrm{SPS}} \qquad \qquad \mathcal{F} = \mathbf{0} \quad \rightarrow \text{only SPS} \\ \mathcal{F} = \mathbf{1} \quad \rightarrow \text{only DPS}$$

Nuclear modification factor for hard pair production in p-A collisions

One defines the relative DPS contributions in p-p collisions:

$$\mathcal{F} = \frac{\text{DPS}}{\text{DPS} + \text{SPS}} \qquad \qquad \mathcal{F} = \mathbf{0} \quad \rightarrow \text{only SPS} \\ \mathcal{F} = \mathbf{1} \quad \rightarrow \text{only DPS}$$

Nuclear modification factor in proton-nucleus assuming:

-factorization of nuclear effects

-scaling of SPS and DPS according to Strikman and Treleani PRL88(2002)031801

$$\mathbf{R}_{\mathbf{p}\mathbf{A}}^{P_1+P_2} = \frac{\sigma_{\mathbf{p}\mathbf{A}}^{P_1+P_2}}{\mathbf{A}\sigma_{\mathbf{p}\mathbf{p}}^{P_1+P_2}} \longrightarrow \mathbf{R}_{\mathbf{p}\mathbf{A}}^{P_1+P_2} = \mathbf{R}_{\mathbf{p}\mathbf{A}}^{P_1} \times \mathbf{R}_{\mathbf{p}\mathbf{A}}^{P_2} \times \left[(1-\mathcal{F}) + \sqrt{\frac{\mathbf{A}}{10}}\mathcal{F} \right]$$

- –Measurements of R_{pA} of double hard processes give hints on the DPS relative contributions in p-p collisions
- -If $\mathcal{F} = 1$ and hard probe production is not affected by nuclear effects, hard pair R_{pA} can be as high as ~ 4

Multi-parton and nucleon scattering in A-A

In A-A collisions, nuclear scalings depend also on the production mechanism. On top of SPS and DPS, there are also double nucleon scatterings (DNS)

- SPS: nuclear scaling = A² (if no nuclear effect, as for single hard cross-section)
- DPS and DNS (unique to A-A) nuclear scaling higher than A^2

- (a) DPS: colliding partons belong to the same pair of nucleons (as in p-p)
- (b) DPS: two partons of one nucleon collide with two partons from different nucleons (as in p-A)

000000000

0

(c) DNS: colliding partons belong to different nucleons

Multi-parton and nucleon scattering in A-A

In A-A collisions, nuclear scalings depend also on the production mechanism. On top of SPS and DPS, there are also double nucleon scatterings (DNS)

- SPS: nuclear scaling = A² (if no nuclear effect, as for single hard cross-section)
- DPS and DNS (unique to A-A) nuclear scaling higher than A^2

Relative DPS+DNS contributions are (a)1:(b)4:(c)200 in Pb-Pb d'Enterria and Snigirev, PLB 727 (2013) 157

- Geometric factor in heavy-ion collisions: enhancement of double-hard production in A-A wrt p-p by $A^{3.3}/5$. For Pb nuclei, enhancement by 9e6.
- DNS clearly dominates the yield in A-A collisions!
- -Nuclear modification factor for hard pair production: $R_{AA}^{P_1+P_2} = R_{AA}^{P_1} \times R_{AA}^{P_2} \times \left[\frac{A^{1.3}}{5}\right]$
- If hard probe production is not affected by nuclear effects, hard pairs R_{AA} can be as high as ~200

Expected rates of double hard production at the LHC

Focus on forward rapidities (ALICE and LHCb) at the LHC on:

- J/ ψ pair production
- J/ ψ + μ (p_{T, µ}> 4 GeV/c) as a probe of J/ ψ + open heavy flavour in ALICE
- J/ ψ +D in LHCb

See also *d'Enterria and Snigirev, PLB 718 (2013) 1395* for $J/\psi(Y)+J/\psi$, $J/\psi(Y)+Y$, $J/\psi(Y)+W$, $J/\psi(Y)+Z$ in ALICE, ATLAS and CMS

Expected delivered luminosity in Run 2:

- p-p collisions at $\sqrt{s} = 13$ TeV with $\mathscr{L}_{ALICE} = 40/pb$ and $\mathscr{L}_{LHCb} = 10/fb$
- p-Pb (Pb-p) collisions at $\sqrt{s_{NN}} = 8$ TeV with $\mathscr{L}_{ALICE} = \mathscr{L}_{LHCb} = 10/nb$
- Pb-Pb collisions at $\sqrt{s_{NN}} = 5$ TeV with $\mathscr{L}_{ALICE} = 1/nb$

J/ψ pair production: nuclear modification factor

p-Pb collisions

$$\begin{split} & \mathrm{R}_{\mathrm{pPb}}(\mathrm{J}/\psi) \sim 0.7 \text{ at } \mathrm{y}_{\mathrm{cms}} > 0 \\ & \mathrm{R}_{\mathrm{pA}}^{P_1 + P_2} = \mathrm{R}_{\mathrm{pA}}^{P_1} \times \mathrm{R}_{\mathrm{pA}}^{P_2} \times \left[(1 - \mathcal{F}) + \sqrt{\frac{A}{10}} \mathcal{F} \right] \\ & \mathcal{F} = 0, 1/2, 1 \quad \rightarrow \mathrm{R}_{\mathrm{pPb}}(\mathrm{J}/\psi + \mathrm{J}/\psi) \sim 0.5, 1, 2 \end{split}$$

 \rightarrow nuclear modification factor increases with the DPS relative contribution in p-p collisions

Pb-Pb collisions

 $R_{PbPb}\left(J/\psi\right)\sim0.6$

$$\mathbf{R}_{AA}^{P_1+P_2} = \mathbf{R}_{AA}^{P_1} \times \mathbf{R}_{AA}^{P_2} \times \left[\frac{A^{1.3}}{5}\right] \longrightarrow \mathbf{R}_{PbPb} \left(J/\psi + J/\psi\right) \sim 75$$

 \rightarrow very large R_{AA}: DNS only in AA (not p-p...)

J/ψ pair production rates

J/ ψ pair production at 7 TeV in LHCb for 2 < y < 4.5: σ = 5.1 ± 0.1 ± 0.1 nb *PLB 707 (2012) 52*

Simple assumptions based on DPS hand-pocket formula are used to estimate the cross-section in different rapidity and energy domains in p-p, as well as previous R_{pA}/R_{AA} for cross-sections in pA/AA

$$N_{{
m J}/\psi{
m J}/\psi} = \left(BR_{{
m J}/\psi
ightarrow\mu\mu}
ight)^2 \sigma_{{
m J}/\psi{
m J}/\psi} L_{int} A \epsilon$$

ALICE (2.5 < y < 4): *A* $\varepsilon \sim 0.05$ *arXiv:1506.08804* LHCb (2 < y < 4.5): *A* $\varepsilon \sim 0.23$ *PLB 707 (2012) 52*

J/ψ pair yield in Run 2	p-p@13 TeV	p-Pb@8 TeV	Pb-Pb@5 TeV
ALICE (2.5 <y<4)< td=""><td>50 (2=40/pb)</td><td><10 (2=10/nb)</td><td>500 (2=1/nb)</td></y<4)<>	50 (2 =40/pb)	<10 (2 =10/nb)	500 (2 =1/nb)
LHCb (2 <y<4.5)< td=""><td>107k (2=10/fb)</td><td><10,20,30 (2=10/nb)</td><td></td></y<4.5)<>	107k (2 =10/fb)	<10,20,30 (2 =10/nb)	

-p-p: high statistical sample in LHCb, statistically limited in ALICE
-p-Pb: possibility to sum-up p-Pb and Pb-p to search for signals
-Pb-Pb: seems feasible depending on uncorrelated background

$J/\psi + \mu$ production

Since luminosities are limited in p(Pb)-Pb in Run2, try out J/ ψ + μ as a probe of J/ ψ +open heavy flavour in ALICE

Only high- $p_T \mu$ ($p_{T, \mu} > 4 \text{ GeV/c}$) are considered (large hadronic background at lower $p_{T,\mu}$)

LHCb results on J/ ψ +open charm support DPS contribution with $\sigma_{eff} \sim 14$ mb

Yields calculated using DPS formula and linear dependence on \sqrt{s} for single muon production:

$$\frac{\mathrm{d}\sigma^{\mathrm{J}/\psi+\mu}}{\mathrm{d}p_{\mathrm{T}}}\Big|_{p_{\mathrm{T}}^{\mu}=4 \text{ GeV}/c} = \frac{1}{\sigma_{\mathrm{eff}}} \times \sigma^{\mathrm{J}/\psi} \times \frac{\mathrm{d}\sigma^{\mu}}{\mathrm{d}p_{\mathrm{T}}}\Big|_{p_{\mathrm{T}}^{\mu}=4 \text{ GeV}/c}$$

with $\sigma_{\mathrm{eff}}=14 \text{ mb}$

$D^0\overline{D}^0$ н LHCb $D^0D^ D^0 D_c^ D^0 \bar{\Lambda}_c^ D^+D^ D^+D_s^ D^+\bar{\Lambda}_c^ D^0D^0$ Hel D^0D^+ $D^0 D_s^+$ D^+D^+ $D^+D_s^+$ $D^+\Lambda_c^+$ $J/\psi D^0$ $J/\psi D^+$ $J/\psi D_s^+$ $J/\psi \Lambda_c^+$ 10^{2} 10 1 $\mathcal{R}_{C_1C_2}$ [mb]

JHEP06 (2012) 141 Addendum

$J/\psi + \mu$ production: nuclear modification factor

p-Pb collisions

$$\begin{split} & R_{pPb}(\mu) = 1 \\ & R_{pA}^{P_1 + P_2} = R_{pA}^{P_1} \times R_{pA}^{P_2} \times \left[(1 - \mathcal{F}) + \sqrt{\frac{A}{10}} \mathcal{F} \right] \\ & \mathcal{F} = 0, 1/2, 1 \quad \rightarrow R_{pPb} (J/\psi + \mu) = 0.7, 1.9, 3.2 \end{split}$$

Pb-Pb collisions

$$\begin{aligned} \mathrm{R}_{\mathrm{PbPb}}\left(\mu\right) &\sim 0.35 \\ \mathrm{R}_{\mathrm{AA}}^{P_{1}+P_{2}} &= \mathrm{R}_{\mathrm{AA}}^{P_{1}} \times \mathrm{R}_{\mathrm{AA}}^{P_{2}} \times \left[\frac{A^{1.3}}{5}\right] \\ &\rightarrow \mathrm{R}_{\mathrm{PbPb}}\left(J/\psi+\mu\right) = 45 \end{aligned}$$

$J/\psi + \mu$ production rates

 $N_{{
m J}/\psi\mu}=BR_{{
m J}/\psi
ightarrow\mu\mu}\,\sigma_{{
m J}/\psi\mu}\,L_{\it int}\,A\,\epsilon$

ALICE: $A \varepsilon \sim 0.15 \ge 0.9 = 0.13$

dN _{J/ψ+μ} /dp⊤	p-p@13 TeV	p-Pb@8 TeV	Pb-Pb@5 TeV
(p _{T, µ} = 4GeV/c)			
ALICE	270 (2 =40/pb)	<10,15,20 (2 =10/nb)	2700 (2 = 1/nb)
(2.5 < y < 4)			

- p-p and p-Pb studies statistically limited in ALICE: decreasing the p_T muon threshold $(4\rightarrow 2 \text{ GeV/c})$ leads to an increase of cross-section by a factor 10, resulting however to a larger background contribution
- Pb-Pb: feasible

J/ ψ +D production rates

N _{J/ψ+D}	p-Pb@8 TeV	
(p _{T, D} > 3 GeV/c)		
LHCb	20,54,90 (2 =10/nb)	
(2 < y < 4)		

 \rightarrow Same luminosity expected in Pb-p Statistically limited for I/W + D but fought

 \rightarrow Statistically limited for J/ ψ + D but feasible

Conclusion

- Production of pairs of hard probes is enhanced by nuclear scaling in heavy-ion collisions.
- In p-A collisions, nuclear scaling is different from the one in single-hard production and depends on the relative contribution of single and double-parton scattering in p-p collisions. Nuclear modification factor of double-hard process can be as large as ~4.
- In A-A collisions, double-nucleon scattering dominates the yield and nuclear modification factor of double-hard process can be as large as ~200.
- Simple assumptions allow one to calculate the expected yields at forward rapidity for J/ ψ pair, J/ ψ + μ (p_T>4 GeV/c) and J/ ψ +D production at LHC in Run 2:
 - J/ ψ pair production can be nicely studied in p-p@13TeV with LHCb and with limited statistics in Pb-Pb@5TeV with ALICE in Run 2
 - J/ ψ + μ (p_T>4 GeV/c) production can be used as a probe of J/ ψ +open heavy flavour with reasonable statistics in p-p@13TeV and Pb-Pb@5TeV with ALICE
 - J/ ψ +D is a promising probe in p-Pb@8TeV with LHCb

J/ ψ pair production at forward-y vs \sqrt{s}

Inputs:

- J/ ψ pair production at 7 TeV in LHCb for 2 < y < 4.5: σ = 5.1 ± 0.1 ± 0.1 nb plb707(2012)52
- Assumptions based on the DPS hand-pocket formula:
 - 1. energy dependence $\propto [\sigma_{J/\psi}(s)]^2$
 - 2. rapidity dependence $\propto [\sigma_{J/\psi}(y)]^2$
- inclusive J/ ψ for 2.5 < y < 4 (from ALICE+LHCb data)
- prompt J/ ψ for 2 < y < 4.5 (from LHCb data and \sqrt{s} = 5 TeV obtained from a linear fit of existing data)

Inclusive J/ ψ pair: beauty contribution

In Run 2 in ALICE/forward-y: no forward tracker before the absorber to select/remove non-prompt J/ ψ (planned for Run 3)

Simple estimation of beauty contribution @13 TeV in LHCb, JHEP1510(2015)172 $\sigma_{4\pi}(pp \rightarrow bb) = 515\pm2\pm53 \ \mu b$ BR $(b \rightarrow J/\psi) = (1.16\pm0.10)\%$ $\sigma_{4\pi}(pp \rightarrow bb \rightarrow J/\psi \ J/\psi) = (BR_{b \rightarrow J/\psi})^2 \times \sigma_{4\pi}(pp \rightarrow bb) = 70 \ nb$ bb from 4π to 2 < y < 4.5 => 30%: $\sigma(pp \rightarrow bb \rightarrow J/\psi \ J/\psi, 2 < y_{bb} < 4.5) \sim 14 \ nb$

 $(bb \rightarrow J/\psi J/\psi)$ same order of magnitude than (prompt $J/\psi J/\psi) \rightarrow$ it will dilute $R_{AA}(J/\psi+J/\psi)$

J/ ψ + μ production at forward-y vs \sqrt{s}

Assumption for \sqrt{s} -dependence: single muon production increases linearly with \sqrt{s}

