Séminaire au Laboratoire Leprince Ringuet – 17 octobre 2016 Ecole Polytechnique - Palaiseau

Acoustique & tectonique active sous-marine

Jean-Yves Royer A. Deschamps †, H. Piété, V. Ballu *, P. Sakic ^d *

CNRS & Université de Brest

(*) CNRS & Univ La Rochelle

90% des frontières de plaques actives sont sous-marines

Carte de sismicité mondiale 2000-2010

90% des frontières de plaques actives sont sous-marines

3 types: divergentes, convergentes, en coulissement

Comment accéder à la dynamique des frontières de plaque actives ?

- 70% de la planète sont recouverts par les océans : superficie 361 Mkm², profondeur moyenne ~4000m
- Les observatoires permanents sont restreints aux terres émergées: réseaux sismologiques, stations GPS ...
- La tranche d'eau est un obstacle majeur pour leur observation
- Pour la franchir et s'en affranchir:
 l'acoustique active et passive

Comment accéder à la dynamique des frontières de plaque actives ?

- Approches par acoustique active
 - Sondeurs bathymétriques
 - Télémétrie sous-marine
 - Positionnement absolu fond de mer
- Approche par acoustique passive
 - Réseaux hydroacoustiques

Acoustique active: les sonars

Acoustique active: les sonars

Une résolution croissante

Sondeurs monofaisceau + altimétrie satellitale

-1500

-3000

-3500

-3750

-4000

-4250

-4500

-4750

-5000

Sondeur multifaisceaux depuis la surface

Sondeur multifaisceaux proche du fond

Autonomous Underwater Vehicle Aster-X

- high-resolution bathymetry (2 m cells)
- magnetism, nephelometry...
- operated 70 m above the seafloor
- speed: 3 knt
- 14 dives of 8h
- 612 km of lines
- 112h of dive
- coverage: 122 km²

Carte structurale & chronologie relative

Apport de la micro-bathymétrie

- Identification des structures (répartition, géométrie)
- Quantification des failles et des fissures
- Identification des coulées de laves (et datation)
- Chronologie relative entre fracturation et volcanisme
- Localisation de l'activité hydrothermale

Une échelle de travail presque analogue à celle du géologue de terrain !

Eruption volcanique récente

Mis à l'eau en 2005 pour une récupération en 2006

www.whoi.edu

Mesure de déformations

- Levés diachroniques d'un champ de dunes (chenal du Four)
- Mesure des mouvements :
 - Horizontaux par corrélation
 - Verticaux par différence
- Résolution attendue : ~10 cm à partir de MNT à 1 m

Franzetti et al., 2013

Acoustique active: télémétrie

- Suivi continu de déformations par télémétrie acoustique
 - Mesure de temps de parcours d'un signal entre paires de balises placées de part et d'autre d'une structure active
- Défis :
 - Résolution de qq mm sur des lignes de qq centaines de mètres
 - Balises autonomes et stables sur plusieurs années

- Identifier une faille sous-marine "rapide" et accessible:
 - Partie immergée de la faille nord-anatolienne (~25 mm/an)
 - Faille en décrochement dextre (déplacement horizontal)

- Le segment Istanbul-Siliviri: une lacune sismique depuis 1766 !
 - Faille bloquée => accumulation de contraintes ?
 - Ou glissement asismique ?

- Le segment Istanbul-Siliviri: une lacune sismique depuis 1766 !
 - Faille bloquée => accumulation de contraintes ?
 - Ou glissement asismique ?
 - Mouvement relatif en champ lointain (GPS): 20-25 mm/an

Poids (air/eau): ~200/120 kg

- Modem de communication
 - Bulletin de santé des balises
 - Téléchargement des données
 - *Re-configuration des balises*

- Déploiement fin octobre 2014 par le NO Pourquoi Pas?
 - Campagne MARSITE
 Ifremer/ CEREGE/KOERI/ITU

Déploiement fin octobre
 2014 par le NO Pourquoi Pas?

- Visite des stations après déploiement, avec le ROV Victor
 - Vérification
 - Orientation

2 inclinomètres, balise orientée par rapport au trépied

51

Acoustic stations

Number of stations	4	
Acoustic transponder	Sonardyne AMT (22.5 kHz)	Tremer
Temperature sensor	Valeport	
Pressure sensor	Paroscientific Digiquartz	
Sound-speed sensor	Valeport	
Inclinometer sensors	Jewell	modern
Session parameters		
Session interval	1h	
Wake-up interval as Master	5 min	
Number of samples / session		Contraction Contraction Contraction Contraction
Ranges	3 at 5s interval	
Sound-speed	10 (1 as Master $+ 3*3$ as Slave)	_
Temperature	10 (1 as Master $+ 3*3$ as Slave)	1
Pressure	1	
Attitude (on orthogonal axes)	1 every 24h (24 sessions)	
Number of ranging per baseline		3 twt every hour x 2
Per session	6	
Per day	144	
Expected autonomy	5 years	

- 2 réseaux imbriqués: 4 LGO + 6 GEOMAR
 - 15 lignes de base de 350 à 1700 m de long

• 2 réseaux imbriqués: 4 LGO + 6 GEOMAR

- 15 lignes de base de 350 à 1700 m de long

• 2 réseaux imbriqués: 4 LGO + 6 GEOMAR

- 15 lignes de base de 350 à 1700 m de long

• 2 réseaux imbriqués: 4 LGO + 6 GEOMAR

- 15 lignes de base de 350 à 1700 m de long

500m

28°32'E

0

• 2 visites depuis déploiement:

- Avril 2015 (NO Poseidon)
- Avril 2016 (NO Poseidon)

28°31'E

28°31'E

POS497 Geodesy

G7 F3

40°52.2' N

40°52.0' N

- Données des inclinomètres :
 - Balises stables sur le fond (res. 0.06°)
 - Discontinuité liée à l'interrogation des balises

- Mesures de température et de célérité du son :
 - Pulses récurrents d'eau froide de fond (-0.02°C)
 - Dérive des capteurs (T & C_{son})
 - Discontinuités dans les mesures de célérité (C_{son})

- Temps de vol (aller simple):
 - Dispersion < 0.005 ms</p>
 - Temps aller & retour cohérents
 - Effet des pulses d'eau froide de fond

- Analyse des données :
 - Recalcul des célérités à partir de T, P et salinité
 - Prise en compte d'une dérive (T, P) inconnue
 - Elimination des pulses

$$\tau = d / c \qquad \tau_{\text{theo},i,A \to B} = \frac{1}{2} \left(d_{0,A \to B} + \varphi_{A \leftrightarrow B} t_i \right) \cdot \left(\frac{1}{c'_{A,i} + k_A \cdot t_i} + \frac{1}{c'_{B,i} + k_B \cdot t_i} \right)$$

with

- $\tau_{\text{theo},i,A \rightarrow B}$ the theoretical one-way traveltime (s) from transponder A to transponder B at epoch i,
 - $d_{0,A \rightarrow B}$ the initial baseline length (m) between transponders A and B at the reference epoch,
 - $\varphi_{A\leftrightarrow B}$ the (constant) deformation rate (m/yr) of the baseline length between transponders A and B,
 - t_i the epoch (year) of the ping relative to the reference,
 - k_A , k_B the coefficients of the sound speed linear drift (m/s/yr) for transponders A and B, respectively, and
 - $\dot{c}_{A,i}, \dot{c}_{B,i}$ the computed sound speed (m/s) at transponders A and B at epoch *i*.

- Résultats (6 premiers mois) :
 - Variations significatives de longueurs des lignes de base
 - Mais incohérentes (directions et taux incohérents)
 - Même en imposant des conditions : signal < bruit

- Résultats (6 premiers mois) :
 - Pas de mouvement significatif de la faille NA
 - Faille bloquée ou quasi bloquée !!
- Modélisation directe :
 - Faille est-ouest passant au milieu du réseau
 - Vitesse imposée entre ±20 mm/an => φ_{AB} imposés
 - Dérive maximum permise : $\kappa_{station}$ < 2.6 10⁻⁴ m/s/an
 - Choix de 3 critères : $\Sigma(\tau_{\text{theo}}^2 \tau_{\text{obs}}^2)$, $\Sigma(\varphi_{\text{theo}}^2 \varphi_{\text{obs}}^2)$, κ_{max}

$$\tau_{\text{theo},i,A\to B} = \frac{1}{2} \left(d_{0,A\to B} + \varphi_{A\leftrightarrow B} t_i \right) \cdot \left(\frac{1}{c'_{A,i} + k_A \cdot t_i} + \frac{1}{c'_{B,i} + k_B \cdot t_i} \right)$$

Sakic et al., GRL 2016

- Modélisation directe :
 - Vitesse imposée de ±20 mm/an => φ_{AB} imposés
 - Dérive maximum permise : κ < 2.6 10⁻⁴ m/s/an

- Conclusion (temporaire) :
 - Segment Silivri-Istanbul bloqué ou quasi bloqué
 - Si en mouvement, pas plus de 6 mm/an
 - => déficit de mouvement entre 12 et 19 mm/an
 - Nécessité de séries temporelles plus longues
 - Mais 18 mois semblent donner les mêmes résultats
 - Mise en place d'un capteur indépendant de T, P, S pour mieux contraindre la célérité

Projet soutenu par :

Sakic et al., GRL 2016

Acoustique active: positionnement absolu

- Mesure de la position absolue d'un point sur le fond :
 - Positionnement par acoustique d'un réseau de balises sur le fond
 - Positionnement simultané par GPS du navire
 - Combinaison des mesures pour positionner le barycentre des balises fond de mer dans un référentiel terrestre: méthode dite « GPS/A »
- Défis :
 - Balises autonomes et stables sur plusieurs années
 - Correction des mouvements du navire, tant pour le positionnement acoustique que GPS
 - Réunir le même dispositif de mesure d'une année à l'autre

• Site et stations sur le fond

• Dispositif d'acquisition

- Résolution après triangulation individuelle
 - Horizontale: 1-3 cm
 - Verticale: 8-12 cm
- En cours:

Beacon

BoxIn

Before

Calculated

- Recalcul des positions GPS
- Inversion globale

 Les séismes de subduction se produisent suivant des cycles

 Les séismes de subduction se produisent suivant des cycles
 Déformation co-sismique

Animation "A_2_subductionlandjumpsislandarc.mp4" disponible sur www.iris.edu/educate

Application à la subduction des Antilles

Conclusion

- L'acoustique sous-marine
 - Un outil prometteur pour accéder à la « tectonique active » sous-marine dans un objectif de compréhension des processus et d'évaluation du risque
 - Mais difficile à mettre en œuvre, en raison
 - De la vitesse lente des plaques (cm/an) => mesures pluri-annuelles
 - D'une logistique coûteuse de déploiement & d'accès aux données
 - Des aléas associés à toute opération fond de mer de longue durée
 - Pour un résultat imprévisible ...

