Des Particules au Cosmos Introduction à la Physique des Astroparticules

Pierre Brun

Irfu – CEA Saclay

Plan des cours 2 et 3

Pierre Brun¹ (Irfu, CEA Saclay)

1	Les	3 messagers cosmiques 1						
	1.1	1 Particules cosmiques au niveau du sol						
	1.2	es messagers cosmiques 1 Particules cosmiques au niveau du sol 2 Cascades atmosphériques 3 Particules cosmiques au sommet de l'atmosphère 3 1.3.1 Composante chargée 1.3.2 4 Provenance et horizons 1.4.1 Particules chargées 1.4.2 Horizons						
	1.3	3 Particules cosmiques au sommet de l'atmosphère						
		1.3.1 Composante chargée	3					
		1.3.2 Composante neutre	4					
	1.4	Provenance et horizons						
		1.4.1 Particules chargées	4					
		1.4.2 Horizons	7					
	1.5	Les sources de particules cosmiques de haute énergie	11					
		1.5.1 Mécanisme d'accélération de Fermi	11					
		1.5.2 Observation en gamma des sources de rayons cosmiques	13					
	1.6	Exemples de méthodes expérimentales au sol et dans l'espace	14					
		1.6.1 Le télescope spatial Fermi	14					
		1.6.2 L'observatoire Pierre Auger	15					

Plan des cours 2 et 3

2	Exemples de physique au delà du Modèle Standard en Astroparticules						
	2.1	Matièr	e noire non-baryonique	17			
		2.1.1	Introduction	17			
		2.1.2	Etablissement de la densité relique dans l'Univers primordial	18			
		2.1.3	Extensions du Modèle Standard	20			
		2.1.4	Recherches expérimentales de WIMPs	24			
	2.2	Recher	ches de brisures de l'invariance de Lorentz	27			
		2.2.1	Modification du seuil GZK	27			
		2.2.2	Anomalies temporelles en astronomie gamma	28			
A	Not	es sur	l'équation de Klein-Gordon	30			

1.1 Particules cosmiques au niveau du sol

1.2 Une expérience simple d'astroparticules : observation des muons au niveau du sol et dilatation relativiste du temps

1.3 Cascades atmosphériques

1.4 Particules cosmiques au sommet de l'atmosphère

1.4.1 Composante chargée

1.4.2 Composante neutre

1.5 Provenance et horizons

1.5.1 Particules chargées

$$\frac{\partial}{\partial z} V_c \psi(\vec{x}, E) - K \Delta \psi(\vec{x}, E) + \frac{\partial}{\partial E} \left(b(E) \psi(\vec{x}, E) - K_{\text{réac}} \frac{\partial \psi(\vec{x}, E)}{\partial E} \right) = \mathcal{Q}(\vec{x}, E)$$

Exemple pour les électrons:

$$E_{emis} = 1 \text{ TeV}$$

 $\lambda \simeq 6.5 \text{ kpc} \sqrt{\left(\frac{E_{det.}}{1 \text{ GeV}}\right)^{-0.3} - 0.12}$

Le cas des particules chargées d'énergie extrême

1.5.2 Horizons pour les particules observées sur Terre Toile de fond : les rayonnements cosmologiques

$$A + \gamma_{fond} \to \dots$$

Energie dans le centre de masse : $\sqrt{s} = \sqrt{(P_A + P_\gamma)^2}$

$$P^2 = E^2 - \vec{p}^2$$

$$s = E_A^2 + E_\gamma^2 + 2E_A E_\gamma - \vec{p_A}^2 - \vec{p_\gamma}^2 - 2 \vec{p_A} \cdot \vec{p_\gamma}$$
$$s = m_A^2 + 2E_\gamma (E_A - p_A \cos \theta)$$
$$\searrow E_A \gg m_A$$

$$s = m_A^2 + 2E_\gamma E_A(1 - \cos\theta)$$

$$p^+ + \gamma_{\text{fond}} \rightarrow p^+ + e^+ + e^-$$

$$\sqrt{s} > m_p c^2 + 2m_e c^2$$

$$E_p^{\text{seuil}} = \frac{2 m_e (m_e + m_p) c^4}{E_{\gamma, \text{fond}} (1 - \cos \theta)}$$

$$Energy (eV)$$

$$10^{-0} + 10^{-1} +$$

Energie de seuil pour le p⁺

$$E_{\rm COB} = 10 \text{ eV}$$
 $5 \times 10^{15} \text{ eV}$

 $E_{\rm CIB} = 0.1 \text{ eV} \qquad 5 \times 10^{13} \text{ eV}$

$$E_{\rm CMB} = 10^{-3} \, {\rm eV} \qquad 5 \times 10^{17} \, {\rm eV}$$

$$p^{+} + \gamma_{\text{fond}} \rightarrow \Delta^{+} \rightarrow p^{+} + \pi^{0} \text{ou } n + \pi^{+}$$

$$\sqrt{s} = m_{\Delta}c^{2}$$

$$E_{p}^{\text{seuil}} = \frac{m_{\Delta}^{2}c^{4} - m_{p}^{2}c^{4}}{2E_{\gamma,\text{fond}}(1 - \cos\theta)}$$

$$E_{\rm COB} = 10 \text{ eV}$$
 $1.6 \times 10^{16} \text{ eV}$

 $E_{\rm CIB} = 0.1 \text{ eV}$ $1.6 \times 10^{18} \text{ eV}$

$$E_{\rm CMB} = 10^{-3} \, {\rm eV} \, 1.6 \times 10^{20} \, {\rm eV}$$

Coupure GZK

$$\gamma + \gamma_{\text{fond}} \to e^+ + e^-$$

$$\sqrt{s} > 2m_e c^2$$

$$E_{\gamma} > \frac{2 m_e^2 c^4}{E_{\gamma,\text{fond}} (1 - \cos \theta)}$$

 $\phi_{\rm obs} = \phi_{\rm source} \times \exp(-\tau)$

-> neutrinos!

1.6 Les sources de particules cosmiques de haute énergie

1.6.1 Mécanisme d'accélération de Fermi

Critère L x B

1.7 Exemples de méthodes expérimentales au sol et dans l'espace

1.7.2 L'observatoire Pierre Auger

3000 km² Dcuves = 1.5 km

1.7.1 Le télescope spatial Fermi

Pulsar du Crabe et sa nébuleuse

Radio Fermi > 100 MeV

Fermi 300 MeV – 1 GeV pulsée Fermi 300 MeV – 1 GeV Non pulsée

HESS > 300 GeV

Des Particules au Cosmos Introduction à la Physique des Astroparticules

Pierre Brun

Irfu – CEA Saclay

Plan des cours 2 et 3

2 Exemples de physique au delà du Modèle Standard en Astroparticules				
	2.1	Matiè	re noire non-baryonique	17
		2.1.1	Introduction	17
		2.1.2	Etablissement de la densité relique dans l'Univers primordial	18
		2.1.3	Extensions du Modèle Standard	20
		2.1.4	Recherches expérimentales de WIMPs	24
2.2 Recherches de brisures de l'invariance de Lorentz		Reche	rches de brisures de l'invariance de Lorentz	27
		2.2.1	Modification du seuil GZK	27
		2.2.2	Anomalies temporelles en astronomie gamma	28
Α	Not	es sur	l'équation de Klein-Gordon	30

Polycopié disponible à

irfu.cea.fr/pisp/pierre.brun/astroparticules.pdf

2.1 Matière noire non-baryonique

2.1.1 Introduction

84% de la masse de l'univers est de nature inconnue

Indices à toutes les échelles

- CMB : oscillations de densité
- Amas de galaxies: champs de vitesse
- Galaxies : courbes de rotation
- Satellites de la Voie Lactée

2.1.3 Extensions du modèle standard Échelle de Planck

Le problème de la hiérarchie des échelles

$$M_{\text{Planck}} = \sqrt{\frac{\hbar c}{\mathcal{G}}} = 1.22 \times 10^{19} \text{ GeV/c}^2$$

$$E_{EW} \simeq 100 \, \text{GeV}$$

$$\left(\frac{1}{k^2 - m^2}\right)$$

$$\propto \frac{1}{k^2 - m^2} + \frac{1}{k^2 - m^2} \xi \frac{1}{k^2 - m^2}$$

$$+\frac{1}{k^2-m^2}\xi\frac{1}{k^2-m^2}+\frac{1}{k^2-m^2}\xi\frac{1}{k^2-m^2}\xi\frac{1}{k^2-m^2}+\dots$$

$$=\frac{1}{k^2 - m^2} \sum_{n=0}^{\infty} \left(\xi \frac{1}{k^2 - m^2}\right)^2$$
$$=\frac{1}{k^2 - m^2} \frac{1}{1 - \xi \frac{1}{k^2 - m^2}} = \frac{1}{k^2 - m^2 + \xi}$$

$$\left(\frac{1}{k^2 - m^2}\right)_{\text{effectif}} = \frac{1}{k^2 - m^2 + \xi}$$

....
$$\xi \sim \int_0^{\Lambda} d^4 k f(k)$$

Spin 1: $\xi \propto \ln \Lambda$ Spin 0: $\xi \propto \Lambda^2$

- Ajustement très fin des paramètres MS
- Le boson de Higgs n'est pas scalaire/élémentaire
- Nouvelles particules/interactions au ~TeV
- Échelle M_{planck} non fondamentale

Supersymétrie : symétrie boson-fermion

$$\delta m_b^2 = -\delta m_f^2$$

Nouvelles particules dont potentiellement la matière noire

Petites dimensions supplémentaires

$ds^{2} = \eta_{\mu\nu} \ dx^{\mu} \ dx^{\nu} + h_{ij}(y) \ dy^{i} \ dy^{j}$

$M_{\rm Planck}^2 = V_{\delta} M_D^{2+\delta}$

$$\partial_t^2 \psi - \partial_x^2 \psi + m^2 \psi = 0$$

$$\psi(x, t) = \psi_0 \exp\left(-i(Et - px)\right)$$

$$\Rightarrow E^2 - \vec{p}^2 = m^2$$

Exemple : Une petite dimension supplémentaire sur un cercle de rayon R

$$\partial_t^2 \psi - \partial_x^2 \psi - \frac{\partial^2 \psi}{\partial \epsilon^2} + m^2 \psi = 0$$

$$\psi(x,t) = \psi_0 e^{-i(Et-px)} \times \exp\left(i\frac{2\pi n}{R}\epsilon\right)$$

$$E^2 - \vec{p}^2 - \left(\frac{2\pi n}{R}\right)^2 = m^2$$
$$E^2 - \vec{p}^2 = m^2 + \left(\frac{2\pi n}{R}\right)^2$$

Dimensions supplémentaires

2.1.2 Etablissement de la densité relique dans l'Univers primordial

Densité de particules de matière noire

• Dans le plasma primordial, l'équilibre s'établit par

$$\chi + \bar{\chi} \rightleftharpoons A + \bar{A}$$

• A haute température (petit temps)

$$n_{\chi}^{\mathrm{eq}} \propto n_{\gamma} \propto T^4$$

• Puis l'expansion dilue tout

$$\chi + \bar{\chi} \rightleftharpoons A + \bar{A} \qquad n_{\chi}^{\text{eq}} \propto (m_{\chi}T)^{3/2} \times \exp\left(-\frac{m_{\chi}c^2}{kT}\right)$$

Départ de l'équilibre thermodynamique $\frac{\mathrm{d}n_{\chi}}{\mathrm{d}t} = -3 H n_{\chi} - \langle \sigma v \rangle \left\{ (n_{\chi})^2 - (n_{\chi}^{\mathrm{eq}})^2 \right\}$

2.1.4 Recherches expérimentales de WIMPs

2.2 Recherches de brisures de l'invariance de Lorentz

$$E^2 - p^2 c^2 = m_0^2 c^4 \rightarrow E^2 - p^2 c^2 = m_0^2 c^4 + \xi f(p^2)$$

2.2.1 Modification du seuil GZK

$$E_p > \frac{m_\Delta^2 c^4 - m_p^2 c^4}{4E_\gamma}$$

2.2.2 Anomalies temporelles en astronomie gamma

$$E^2 - p^2 c^2 = \pm p^2 c^2 \times \frac{pc}{\Lambda}$$

$$v = c \times \left(1 \pm \frac{3}{2} \frac{E}{\Lambda}\right)$$
 $\Delta t \propto \frac{\Delta E}{\Lambda} \times \frac{1}{H_0} \int_0^{z_s} dz \frac{1+z}{\sqrt{\Omega_m (1+z)^3 + \Omega_\Lambda}}$

$$\begin{pmatrix} E - i\partial_z - i\frac{\tau}{2z} & \Delta_{\rm B} \\ \Delta_{\rm B} & E - i\partial_z + \Delta_{\rm a} \end{pmatrix} \begin{pmatrix} A \\ a \end{pmatrix} = 0$$

