Jet substructure

Laís Schunk

IPhT - Saclay

GDR QCD November 8, 2016

- LHC plays a major role in particle physics today and it may be the key to probe beyond Standard Model theories.
- Unprecedented situation: production of heavy particles (W, Z and Higgs boson, top quark) with high momentum ($p_T \gg m$).

- LHC plays a major role in particle physics today and it may be the key to probe beyond Standard Model theories.
- Unprecedented situation: production of heavy particles (W, Z and Higgs boson, top quark) with high momentum $(p_T \gg m)$.
 - ightarrow boosted regime ightarrow substructure techniques

- LHC plays a major role in particle physics today and it may be the key to probe beyond Standard Model theories.
- Unprecedented situation: production of heavy particles (W, Z and Higgs boson, top quark) with high momentum $(p_T \gg m)$.
 - ightarrow boosted regime ightarrow substructure techniques
- Applications to top/boson reconstruction, measures in pp and heavy ions collisions.

- LHC plays a major role in particle physics today and it may be the key to probe beyond Standard Model theories.
- Unprecedented situation: production of heavy particles (W, Z and Higgs boson, top quark) with high momentum $(p_T \gg m)$.
 - ightarrow boosted regime ightarrow substructure techniques
- Applications to top/boson reconstruction, measures in pp and heavy ions collisions.
 - → concentrate on EW bosons in this talk

Boosted heavy particles

Boosted Z, W, H

- Boosted particles $(p_T \gg m)$:
 - ightarrowdecay in collimated final states ($heta \sim m/p_{
 m T}$)
 - \rightarrow clustered in a single jet.

Boosted heavy particles

Boosted Z, W, H

Standard QCD jet

- Boosted particles $(p_T \gg m)$:
 - ightarrowdecay in collimated final states ($heta \sim m/p_{
 m T}$)
 - \rightarrow clustered in a single jet.

3 / 16

Laís Schunk Jet substructure November 8, 2016

Boosted heavy particles

Boosted Z, W, H

Standard QCD jet

Background

- Boosted particles $(p_T \gg m)$:
 - ightarrowdecay in collimated final states ($heta \sim m/p_{T}$)
 - \rightarrow clustered in a single jet.
- How to discriminate between QCD jets and Z/W/H jets?

3 / 16

Jet Substructure

- Use jet substructure techniques
 - → look at dynamics inside the jet;
- Different techniques are available:
 - Shapes constrain soft gluon radiation, signal is colorless and has different radiation pattern than QCD jets; e.g. Energy correlation, N-subjettiness.
 - Taggers find hard prongs in the jets, usually signal has 2 symmetric prongs and QCD background has only 1; e.g. modified Mass Drop, SoftDrop.

Jet substructure

QCD background

W boson signal

- Background has a more "diffuse" radiation pattern;
- 1 prong vs. 2 prong structure.

5 / 16

Example: N-subjettiness

• Measures radiation around 2 (pre-determined) axis.

J. Thaler, K. V. Tilburg (2010)

$$\tau_{21} = \tau_2/\tau_1,$$

$$\tau_N = \frac{1}{p_{t,jet}R^{\beta}} \sum_{i \in jet} p_{t,i} \min_{a_i...a_N} (\theta_{ia_1}^{\beta}, ..., \theta_{ia_N}^{\beta}).$$

Removes soft and large-angle radiation;

J. M. Butterworth, A. R. Davison, M. Rubin and G. P. Salam (2008)

M. Dasgupta, A. Fregoso, S. Marzani, G. P. Salam (2013)

- Removes soft and large-angle radiation;
 J. M. Butterworth, A. R. Davison, M. Rubin and G. P. Salam (2008)
 M. Dasgupta, A. Fregoso, S. Marzani, G. P. Salam (2013)
- **1** Break jet into two $j \rightarrow j_1 + j_2$; [using C/A algorithm]
- ② Check condition $\min(p_{T,1}, p_{T2})/(p_{T,1} + p_{T,2}) > z_{cut};$

- Removes soft and large-angle radiation;
 J. M. Butterworth, A. R. Davison, M. Rubin and G. P. Salam (2008)
 M. Dasgupta, A. Fregoso, S. Marzani, G. P. Salam (2013)
- ① Break jet into two $j \rightarrow j_1 + j_2$; [using C/A algorithm]
- ② Check condition $\min(p_{T,1}, p_{T2})/(p_{T,1} + p_{T,2}) > z_{cut};$
- If fails, removes the subjet with lower p_T.

- Removes soft and large-angle radiation;
 J. M. Butterworth, A. R. Davison, M. Rubin and G. P. Salam (2008)
 M. Dasgupta, A. Fregoso, S. Marzani, G. P. Salam (2013)
- Break jet into two $j \rightarrow j_1 + j_2$; [using C/A algorithm]
- ② Check condition $\min(p_{T,1}, p_{T2})/(p_{T,1} + p_{T,2}) > z_{cut};$
- If fails, removes the subjet with lower p_T.
- If passes, stop recursion;

7 / 16

Laís Schunk Jet substructure November 8, 2016

Signal and background for a 115 GeV SM Higgs.

8 / 16

Application: Splitting function in pp and PbPb collisions

- Jet substructure techniques used in CMS and ATLAS analyses;
 CMS collaboration (2016) [CMS PAS HIN-16-006]
- Momentum shearing between 2 leading subjets:

$$z_g = \min(p_{T,1}, p_{T2})/(p_{T,1} + p_{T,2});$$

ullet z_g distribution measures the *splitting function*.

A case for analytical approach

- Monte Carlo generators are powerful tools;
- But we can loose understanding of physics.

Some recent developments

- Jet substructure from first principles:
 - Understand why some methods are more performant than others;
 - Use insight to develop new methods;
 - Find optimal parameters;
 - Provide precise calculations with genuine theoretical incertitudes.

Examples:

```
\begin{tabular}{ll} Improved N-subjettiness : combination of shapes and taggers \\ &\rightarrow increase \ performance. \end{tabular}
```

Mass distribution with mMDT: matched precision calculation.

11 / 16

Laís Schunk Jet substructure November 8, 2016

Usual: measure mMDT mass + a cut on

$$\frac{\tau_2(\mathsf{mMDT})}{\tau_1(\mathsf{mMDT})}$$
 or $\frac{\tau_2(\mathsf{plain})}{\tau_1(\mathsf{plain})}$

Usual: measure mMDT mass + a cut on

$$\frac{ au_2(\mathsf{mMDT})}{ au_1(\mathsf{mMDT})}$$
 or $\frac{ au_2(\mathsf{plain})}{ au_1(\mathsf{plain})}$

ullet Our proposal : measure mMDT mass + a cut on

$$\frac{\tau_2(\mathsf{SD})}{\tau_1(\mathsf{mMDT})}$$

Usual: measure mMDT mass + a cut on

$$\frac{\tau_2(\mathsf{mMDT})}{\tau_1(\mathsf{mMDT})}$$
 or $\frac{\tau_2(\mathsf{plain})}{\tau_1(\mathsf{plain})}$

ullet Our proposal : measure mMDT mass + a cut on

$$\frac{\tau_2(\mathsf{SD})}{\tau_1(\mathsf{mMDT})}$$

- Performance gain;
- Limited sensitivity to model-dependent non-perturbative effects;
- Calculable from first principles;

12 / 16

• Comparison to Monte Carlo generator.

G. P. Salam, G. Soyez, L. S. (in progress)

Reaching higher precisions

• For boosted jets $p_T \gg m \rightarrow \rho \equiv m/(p_T R) \ll 1$ \rightarrow log enhacements $\alpha_s^n \log^{2n}(1/\rho)$

Needs to be resummed at all orders.

- For mMDT it becomes $[\alpha_s f(z_{cut}) \log(1/\rho)]^n$ at leading-log;
- Compare with experiment \rightarrow needs a matching procedure:

$$\underbrace{N^k L L}_{\text{small } \rho} + \underbrace{N^m L O}_{\text{large } \rho}$$

Small $\rho \rightarrow \text{resummation}$ Large $\rho \rightarrow \text{fixed-order (exact)}$

November 8, 2016

14 / 16

Reaching higher precisions

- ullet NLL + NLO for $z_{
 m cut} \ll 1$ (for $p_{
 m t,jet}$) C. Frye, A. J. Larkoski, M. D. Schwartz, K. Yan (2016)
- LL + NLO for all $z_{\rm cut}$ (for $p_{\rm t,jet}$ and $p_{\rm t,mMDT}$) S. Marzani, G. Soyez, L. S. (in progress)
- ullet Comparison to CMS : complications from $p_{t,\mathrm{mMDT}}$ (ill-defined at fixed order);
- Various interesting QCD structures emerging.

Laís Schunk Jet substructure

15 / 16

Conclusion

- Jet substructure has many applications in particle physics today;
- Analytical studies:
 - Development of new tools;
 - 2 Comparison with experiments (uncertainties);
- Increasing role as LHC reaches higher energy scales.

Backup slides

Application: Splitting function in pp and PbPb collisions

Comparison to MC simulations.

Application: Splitting function in pp and PbPb collisions

Comparison to MC simulations.

Lund diagrams

• Lund diagram : graphical representation of the results in $z\theta$ (transverse momentum) vs. $1/\theta^2$ (emission angle) coordinates.

Lund diagrams

• Lund diagram : graphical representation of the results in $z\theta$ (transverse momentum) vs. $1/\theta^2$ (emission angle) coordinates.

$$\left. rac{
ho}{\sigma} rac{d\sigma}{d
ho}
ight|_{<
u} = R_{ au}' \exp(R_{ au})$$
 $R_{ au}(z_1) \sim rac{lpha_s C_R}{2\pi} \log \left(rac{1}{
ho au}
ight)^2$

$$\left. rac{
ho}{\sigma} rac{d\sigma}{d
ho}
ight|_{< v} = R'_{ ext{mMDT}} \exp(R_{ ext{mMDT}})$$
 $R_{ au}(z_1) \sim rac{lpha_s C_R}{2\pi} \log\left(rac{1}{
ho au}
ight) \log\left(rac{1}{z_{ ext{cut}}}
ight)$

4□ > 4□ > 4 = > 4 = > = 90

$$\tau_{21} = \frac{\tau_2(SD)}{\tau_1(\textit{mMDT})}$$

$$\left. \frac{
ho}{\sigma} \frac{d\sigma}{d\rho} \right|_{<_{V}} = R'_{\mathsf{mMDT}} \exp(-R_{\mathsf{SD}})$$

