Bottom quark dijet momentum imbalance in PbPb collisions with CMS GDR QCD 2016 Stas Lisniak for CMS collaboration

2016/11/08

Physics Analysis Summary: <u>http://cds.cern.ch/record/2202805</u>

What we already know

PRL 113. 132301

250

|η| < 2

200

150

b-jet p_T (GeV/c)

Dijet momentum imbalance

- anti-k_T Particle Flow R=0.4 jets
- UE subtraction with iterative noise/ pedestal subtraction technique
- Dijet selection:

• Dijet imbalance

 $x_{J} = p_{T,2} / p_{T,1}$

- Dijets are not *perfectly* balanced even in QCD
- +detector resolution effects
- b-dijets are the same with the requirement that both jets are b-tagged

Jets in pp and PbPb

Combinatorial background subtraction

- Combinatorial background is subtracted with Δφ sideband
- This introduces inefficiency for subleading jets

Combinatorial background correction

- Derived from the spectrum of the background jets
- After correction unbiased dijet imbalance

• e.g. 40 GeV jets in most central bin are lost 50% of the time, so we correct x2

b-tagging

- we define b-jet as a jet which has b-hadron in the vicinity of jet axis
- b-tagging ≠ b-hadron reconstruction
- there are two ways to perform identification of b-hadrons:
 - weak decay into leptons
 - b-hadron lifetime results in a displaced vertex
- The tagging of b-jets **in this analysis** is performed with identification of secondary vertex and displacement of tracks in the jet

b-tagging in PbPb collisions @ 5 TeV

- We use CSV¹ discriminator to identify b dijets
- Working point is selected to obtain 90% pure sample
- *Relative* tagging efficiency corrections are applied in centrality, p_T, η
- 10% contamination as systematics

¹JINST 8 (2013) P04013

Heavy flavor production

b

° LECE

Flavor Creation

gluon fusion or $q\overline{q}$ annihilation

Flavor Excitation

sea $b\overline{b}$ pair is excited by gluon or light quark

Gluon Splitting

gluon splits into bb

b-jets in pp and Pythia

Pythia6 has poor description of

b dijet imbalance

 b dijets from Flavor Excitation (FEX) are more imbalanced than from Flavor Creation (FCR)

Flavor process reweighting

- The two highest pT jets are b-tagged and back-to-back ($|\Delta \phi_{1,2}| > 2\pi/3$)
- The first and third highest pT jets are b-tagged and back-to-back ($|\Delta \phi_{1,3}| > 2\pi/3$)
- The first and third highest pT jets are b-tagged and nearby ($|\Delta \phi_{1,3}| < \pi/3$)

Category	FCR	FEX	GSP
Δφ _{1,2} >2π/3	57%	26%	17%
Δφ _{1,3} >2π/3	11%	62%	27%
Δφ _{1,3} <π/3	0%	17%	83%

Category	MC	Data
Δφ _{1,2} >2π/3	46%	56%
Δφ _{1,3} >2π/3	49%	37%
Δφ _{1,3} <π/3	5%	7%

Flavor process reweighting

- Result: FCR fraction in analysis selection 50% \rightarrow 70%
- Pythia overestimates the FEX contribution to back-to-back topologies.
- After reweighting same data/Pythia agreement as for inclusive jets
- Similar conclusion in CDF PRD71 (2005) 092001

Stas Lisniak

Systematic uncertainties

Source	pp	30-100%	10-30%	0-10%
Combinatorial subtraction	-	0.001	0.006	0.014
Subleading jet finding	-	0.002	0.004	0.004
Energy scale	0.001	0.006	0.010	0.013
Jet resolution	0.007	0.008	0.010	0.012
total	0.007	0.010	0.016	0.023

Absolute systematic uncertainties on $\langle xJ\rangle$ for **inclusive dijets**

Source	pp	30-100%	10-30%	0-10%
Combinatorial subtraction	-	0.008	0.008	0.008
Subleading jet finding	-	0.002	0.004	0.004
Tagging efficiency	0.002	0.003	0.003	0.009
Signal mistagging	0.002	0.004	0.006	0.006
Jet energy scale	0.001	0.006	0.010	0.013
Jet resolution	0.007	0.008	0.010	0.012
total	0.008	0.014	0.018	0.023

Absolute systematic uncertainties on (xJ) for **b dijets**

Inclusive and b dijet imbalance @ 5 TeV

pp results have been smeared according to the jet resolution in PbPb in order to make data-based reference

Results summary

- The increase of imbalance of inclusive dijets from pp to central PbPb collisions has been confirmed @ 5 TeV
- The imbalance of b dijets has been observed for the first time

Stas Lisniak

- Dijet measurement is improved with better treatment of combinatorial background
- b dijet imbalance x_J is described well in pp after flavor process reweighting
- The imbalance of b dijets is measured for the first time
- We observe the imbalance of b dijets on the same level as for non-identified jets

• Back up

process reweighting $\Delta \phi$

Δφ 0-10%

b-jet / inclusive jets

