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Map of parton evolution in QCD

x : parton longitudinal momentum fraction

G k;: parton transverse momentum

Pk = (0,0, P™) P e e Py the distribution of partons
as a function of x and k7 :
QCD linear evolutions: kr > Qs In(1/z) 4

Saturation

DGLAP evolution to larger k; (and a more dilute hadron) Qs(x)

BFKL evolution to smaller x (and denser hadron)

dilute/dense separation characterized by the saturation scale Q(x)
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Map of parton evolution in QCD

x : parton longitudinal momentum fraction

T k;: parton transverse momentum

Pl = (0,0, P™) B oz P kg the distribution of partons
as a function of x and k7 :
QCD linear evolutions: kr > Qs In(1/z) 4

&

Saturation
DGLAP evolution to larger k; (and a more dilute hadron) Qs ()
BFKL evolution to smaller x (and denser hadron)
dilute/dense separation characterized by the saturation scale Q(x) @
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QCD non-linear evolution: kr ~ Qs meaning =z < 1

BFKL
this regime is non-linear yet weakly coupled: «s(Q?) < 1 ]
DaLaP
collinear factorization does not apply when x is too small '
and the hadron has become a dense system of partons 'n(k%//\%cp§
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Forward particle production,
dilute-dense collisions
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Single inclusive hadron production

forward rapidities probe small values of x

kr.y  transverse momentum k, rapidity y > 0

values of x probed in the process:

r1 = M 6y/\/§ xo = M e_y/\/g

Mg = (kr/2)" + mj,



Single inclusive hadron production
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kr.y  transverse momentum k, rapidity y > 0

values of x probed in the process:
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Nuclear modification factor

R, 4 = 1 in the absence of nuclear effects, i.e. if the gluons dN “=h
in the nucleus interact incoherently as in A protons R 1 d*kdy
“ N o dN""™
the suppressed production (R , < 1) was predicted in the d’ kdy

Color Glass Condensate picture, along with the rapidity dependence



Nuclear modification factor

R, 4 = 1 in the absence of nuclear effects, i.e. if the gluons AN =X
in the nucleus interact incoherently as in A protons » 1 d*kdy
dd = pp—hX
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p+Pb

mid-rapidity data
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mid-rapidity data

1.8 p-Pb \s, =5.02 TeV
@ ALICE, NSD, charged particles, Incmsl <03

I N TS N

1.4
; E
1 [EE = G Lk RV UEE st Ay —
le] 4 ]
0.8 3
Saturation (CGC), rcBK-MC 7
0.6 Saturation (CGC), rcBK =
0.4 [ Saturation (CGC), IP-Sat =
1.8 Shadowing, EPS09s (n°) =
1.6 LO pQCD + cold nuclear matter E
1.4 *;
g
2 I E
0.4 . . . . =
s —s,=0.28 E
1.8 Sq =
85 HUING21 5,028
160 ---- DHC, no shad. =
1.4F — DHC, no shad., indep. frag.

nf‘éii;;!‘"#+;vn-

ol b b b ]

8
P, (GeV/c)

good description but not
much non-linear effects

90 12 14 16 18

@ the LHC

« predictions for forward rapidities
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Best way to confirm R,
suppression at the LHC

* isolated photons at forward rapidities
- no isospin effects in p+Pb vs p+p (contrary to d+Au vs p+p at RHIC)

- smallest possible x reach: no mass, no fragmentation
- no cold matter final-state effects (E-loss, ...)

- large EPS09 / CGC difference in
forward rapidity predictions
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Problem: NLO corrections are
not under control at high p+

« importance of NLO at high-p;  Altinoluk and Kovner (2011)

« full NLO calculation  Chirilli, Xiao and Yuan (2012)

e first numerical results Stasto, Xiao and Zaslavsky (2013)
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solution ; lancu et al. see next talk



Particle production
INn dense-dense
(CGC on CGC) collisions




Collision of two CGCs

 the initial condition for the time evolution in heavy-ion collisions,

and high-multiplicity p+p and p+A -/ w0 collision:

J*=0"6(x7)p(x,)+00(x")py(x))
AN > pr~1/g  pa~1/g

A e the distributions of p contain the small-x
L ~ evolution of the nuclear wave functions

o o |Day [p1]17 [ Paplp2]?



Collision of two CGCs

 the initial condition for the time evolution in heavy-ion collisions,

and high-multiplicity p+p and p+A -/ w0 collision:

J" =8 8(x)py(x,) + 0" () (x,)

< o pp~1/g  pa~1]/g
) Nt =
o o the distributions of p contain the small-x
L & evolution of the nuclear wave functions
o o [ Day[p1]]* [ Paplp2]?
these wave functions are mainly non-perturbative, but their evolution is known
— g [af = H""* @[ [af
dIn(1/ x)

« after the collision: the Glasma phase

the gluon field is a complicated function
of the two classical color sources
Lappi and McLerran (2006)




Computing observables

« solve Yang-Mills equations
[Dp, F**1 = J"  —— Aulp1, p2]

this is done numerically (it could be
done analytically in the p+A case) .

S

« express observables in terms of the field

determine O[AM] ,in general a
non-linear function of the sources

examples on next slide : single- and double-inclusive gluon production



Computing observables

« solve Yang-Mills equations
[Dp, F**1 = J"  —— Aulp1, p2]

this is done numerically (it could be
done analytically in the p+A case) .

S

« express observables in terms of the field

determine O[AM] ,in general a
non-linear function of the sources

examples on next slide : single- and double-inclusive gluon production

« perform the CGC averages
(0) = [ Dp1Dpo|ay [1]121®as 0] 2OLA]

rapidity factorization proved recently at

leading-order for (multi-)gluon production Gelis, Lappi and Venugopalan (2008)



Gluon production

strength of the diagrams H H
« two-gluon production A
-4
easily obtained from the single-gluon result 8
g?
dN dN dN
—= A = 5 |A] x —[A
Bypaig A = g3, A 5 (Al ;
Gelis, Lappi and Venugopalan (2008) g
. . g
the exact implementation of the

small-x evolution is still not achieved

strength of the color charge of the projectile
the target is always dense pP1 ~~ 1/9



Gluon production

strength of the diagrams H H
« two-gluon production A
g* -
easily obtained from the single-gluon result -
g?
dN dN dN
— (Al = —1[A — A P
Bpiig N = A < g Al I /» 1;;:%
Gelis, Lappi and Venugopalan (2008) g
. . g
the exact implementation of the p+A A+A
small-x evolution is still not achieved > P,
g 1 g’
strength of the color charge of the projectile
* multi-gluon production the target is always dense p1 ~ 1/g

same conclusion: disconnected diagrams dominate multi-gluon production,
multi-particle correlations can be calculated!
however the following phases cannot be ignored

if the system later becomes a perfect fluid, those initial
QCD momentum correlations will be washed away



The ridge in p+p collisions

* in the absence of flow, the ridge reflect the actual QCD momentum
correlations of the early times, like in p+p collisions:

(c) N>110, pT>0.1GeVlc (d) N>110, 1.OGeVIc<pT<3.OGewc
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no ridge at low p-, ridge with p; ~ Qs
there can’t be much flow



The ridge In p+p collisions

* in the absence of flow, the ridge reflect the actual QCD momentum
correlations of the early times, like in p+p collisions:

(c) N>110, pT>0.1GeVlc (d) N>110, 1.OGeVIc<pT<3.OGewc

ridge with p; ~ Qs

R(ANn,A¢)

et
4 ”/ ’
s Of‘f%

Dumitru, Dusling, Gélis,
Jalilian-Marian, Lappi
and Venugopalan (2011)

no ridge at low p+, ridge with p; ~ Qs N 86 e
there can’t be much flow ’ |

« CGC calculation after Gaussian averaging

additionnal double ridge in the correlation function
compared to standard QCD di-jets

—

such strucutre exists independently of the assumption
Kovner and Lublinsky (2011)




The ridge in A+A collisions

 if in the presence of flow, the initial momentum correlations are lost

inStead, those created by the fluid (a) cvs det=3.1ub'1
behavior reflect the initial spatial PLPE o = 276 TV, 0% oot~ 1
distribution and fluctuations of the

6.4

QCD matter

NOOOD
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d2 Npalr
Nyg dAn dAG

Ui

example with an initial Glasma field -4



The ridge in A+A collisions

 if in the presence of flow, the initial momentum correlations are lost

instead, those created by the fluid () ovs [Lai=atio” |
behavior reflect the initial spatial POPb\[Syy = 2.76 TeV, 0-6% Cemralnyfﬁ,,.A.A:::j"
distribution and fluctuations of the

QCD matter

NOOOD

IR0,
) /'m\ f\‘\‘/\‘\““““‘
4 A

1

d2 Npa|r
Ntrig dATI dA(l)

example with an initial Glasma field -4
a proper treatment of the nuclear geometry and of it’s fluctuation becomes crucial

« bulk observables in heavy-ion collisions reflect the properties of the
initial state as much as those of the hydro evolution of the QGP

QGP properties cannot be precisely extracted from data
without a proper understanding of the initial state



Glasma+hydro approach

« CGC/glasma to describe the pre-hydro spatial fluctuations
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Glasma+hydro approach

CGC/glasma to describe the pre-hydro spatial fluctuations
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Gale, Jeon, Schenke, Tribedy and Venugopalan (2013)

* in A+A, Glauber does a good job as well
but still one should aim for a QCD-based description



The ridge in p+A collisions

CMS pPb \[s, = 5.02 TeV, N/ = 110
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The ridge in p+A collisions

fflin
CMS pPb \[s, =5.02 TeV, N". " > 110
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CGC or CGC+hydro ?

the question is not CGC or hydro, the question is CGC only, or CGC+hydro ?
* in the presence of the flow one still needs to describe the

' ' nature and dynamics of the pre-hydro

fluctuations, and the Glauber model is not
MC-Glauber 1

enough anymore, QCD cannot be ignored

1r IP-Glasma e[
MC-Glauber 1 (smeared 0.4 fm) +®
0.8 MC-Glauber 2 (smeared 0.4 fm)

MC-Glauber (participant centers) -
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CGC or CGC+hydro ?

the question is not CGC or hydro, the question is CGC only, or CGC+hydro ?

* in the presence of the flow one still needs to describe the

' ' nature and dynamics of the pre-hydro

fluctuations, and the Glauber model is not
enough anymore, QCD cannot be ignored
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Bzdak, Schenke, Tribedy and Venugopalan (2013)

« other options to access the QCD momentum correlations ?
e+A collisions, and maybe p+A in the forward region



Conclusions

« dilute-dense p+p and p+A collisions:
- single-inclusive: CGC works well but first NLO results raise questions

- di-hadrons: see last talk today

 dense-dense p+p, p+A and A+A collisions:
- in the absense of final-state hydro flow, small-x high-density QCD
momentum-space correlations are seen, and qualitatively understood

- in the presence of flow, what is relevant is the initial spatial
distributions, and the CGC picture is also necessary and successful

- if flow in p+A at LHC, e+A collisions become the only way to directly
probe the nuclear gluon distribution




