Evolution and factorization in high-energy $Q C D$ beyond leading order

Edmond Iancu
 IPhT Saclay \& CNRS

w/ J.D. Madrigal, A.H. Mueller, G.Soyez, and D.N. Triantafyllopoulos

Introduction

- pQCD at high-energy, or 'small-x', is complicated by non-linear effects associated with the high gluon densities
- gluon saturation, multiple scattering
- resummations: Wilson lines, Color Glass Condensate
- non-linear evolution equations: BK, B-JIMWLK
- Realistic phenomenology requires (at least) NLO accuracy
- The CGC formalism has recently been promoted to NLO
- inclusion of running coupling corrections in BK
(Kovchegov and Weigert, 2016; Balitsky, 2016)
- NLO versions for the BK and B-JIMWLK equations
(Balitsky and Chirilli, 2008, 2013; Kovner, Lublinsky, and Mulian, 2013)
- NLO impact factor for particle production in $p A$ collisions
(Chirilli, Xiao, and Yuan, 2012; Mueller and Munier, 2012)
- But the NLO approximations turned out to be disappointing
- "Negative growth" of the dipole scattering amplitude

Lappi, Mäntysaari, arXiv:1502.02400

- Hardly a surprise
- similar problems for NLO BFKL
- large transverse logarithms
- collinear resummations
- Mellin representation
(Salam, Ciafaloni, Colferai, Stasto, 98-03; Altarelli, Ball, Forte, 00-03)
- "Negative growth" of the dipole scattering amplitude

Lappi, Mäntysaari, arXiv:1601.06598

- Hardly a surprise
- similar problems for NLO BFKL
- large transverse logarithms
- collinear resummations
- Mellin representation
(Salam, Ciafaloni, Colferai, Stasto, 98-03; Altarelli, Ball, Forte, 00-03)
- Collinear improvement for NLO BK (transverse coordinates) (E.I., J. Madrigal, A. Mueller, G. Soyez, and D. Triantafyllopoulos, 2015)
- Evolution becomes stable with promising phenomenology
- excellents fits to DIS (lancu et al, 2015; Albacete, 2015)
- Single inclusive hadron production at forward rapidities
- Very good agreement at low p_{\perp}

BRAHMS $\eta=2.2,3.2$

- Is this a real problem ?
- "small-x resummations do not apply at large p_{\perp} "
- but $p_{\perp} \sim Q_{s}$ is not that large !
- and the turn-over is dramatic
- Are the 2 problems related ?
- transverse logs are ubiquitous

Stasto, Xiao, and Zaslavsky, arXiv:1307.4057

- A fresh look at the NLO calculation of the cross-section (E.I., A. Mueller and D. Triantafyllopoulos, arXiv:1608.05293)

Quark production at forward rapidity

- A quark initially collinear with the proton acquires a transverse momentum p_{\perp} via multiple scattering off the dense nucleus

$$
\begin{aligned}
\eta & =\frac{1}{2} \ln \frac{p^{+}}{p^{-}} \\
x_{p} & =\frac{p_{\perp}}{\sqrt{s}} \mathrm{e}^{\eta} \\
X_{g} & =\frac{p_{\perp}}{\sqrt{s}} \mathrm{e}^{-\eta}
\end{aligned}
$$

- η : quark rapidity in the COM frame
- x_{p} : longitudinal fraction of the quark in the proton
- X_{g} : longitudinal fraction of the gluon in the target
- $\eta>1$: 'forward rapidity' $\Longrightarrow X_{g} \ll x_{p}$ ('dense-dilute')
- RHIC: $p_{\perp}=2 \mathrm{GeV}, \eta=3 \Longrightarrow x_{p}=0.2 \& X_{g}=5 \times 10^{-4}$

Wilson lines

- Multiple scattering can be resummed in the eikonal approximation

Amplitude: $\quad \mathcal{M}_{i j}\left(\boldsymbol{k}_{\perp}\right) \equiv \int \mathrm{d}^{2} \boldsymbol{x}_{\perp} \mathrm{e}^{-i \boldsymbol{x}_{\perp} \cdot \boldsymbol{k}_{\perp}} V_{i j}\left(\boldsymbol{x}_{\perp}\right)$
Wilson line: $\quad V\left(\boldsymbol{x}_{\perp}\right)=\mathrm{P} \exp \left\{\mathrm{i} g \int \mathrm{~d} x^{+} A_{a}^{-}\left(x^{+}, \boldsymbol{x}_{\perp}\right) t^{a}\right\}$

- A_{a}^{-}: color field representing small- x gluons in the nucleus

Wilson lines

- Multiple scattering can be resummed in the eikonal approximation

Amplitude: $\quad \mathcal{M}_{i j}\left(\boldsymbol{k}_{\perp}\right) \equiv \int \mathrm{d}^{2} \boldsymbol{x}_{\perp} \mathrm{e}^{-i \boldsymbol{x}_{\perp} \cdot \boldsymbol{k}_{\perp}} V_{i j}\left(\boldsymbol{x}_{\perp}\right)$
Cross-section: $\left.\left.\quad \frac{\mathrm{d} \sigma}{\mathrm{d} y \mathrm{~d}^{2} \boldsymbol{k}_{\perp}} \simeq x_{p} q\left(x_{p}, Q^{2}\right) \frac{1}{N_{c}}\left\langle\sum_{i j}\right| \mathcal{M}_{i j}\left(\boldsymbol{k}_{\perp}\right)\right|^{2}\right\rangle_{X_{g}}$

- Average over the color fields A^{-}in the target (CGC)

Dipole picture

- Equivalently: the elastic S-matrix for a $q \bar{q}$ color dipole

- N.B. : The Fourier transform of the dipole S-matrix plays the role of the unintegrated gluon distribution in the nucleus.

Dipole picture

- Equivalently: the elastic S-matrix for a $q \bar{q}$ color dipole

- This dipole picture is preserved by the high-energy evolution up to NLO (Kovchegov and Tuchin, 2002; Mueller and Munier, 2012)

High-energy evolution

- Probability $\sim \alpha_{s} \ln \frac{1}{x}$ to radiate a soft gluon with $x \equiv \frac{p^{+}}{k_{0}^{+}} \ll 1$

- The gluon is not measured, but its emission modifies the cross-section for the production of the quark

High-energy evolution

- Probability $\sim \alpha_{s} \ln \frac{1}{x}$ to radiate a soft gluon with $x \equiv \frac{p^{+}}{k_{0}^{+}} \ll 1$

- Dipole picture: the gluon is emitted and reabsorbed within the dipole
- Evolution equation for the dipole S-matrix $S_{x y}(Y)$ with $Y \equiv \ln (1 / x)$

$$
\frac{\partial S_{\boldsymbol{x} \boldsymbol{y}}}{\partial Y}=\frac{\bar{\alpha}_{s}}{2 \pi} \int \mathrm{~d}^{2} \boldsymbol{z} \frac{(\boldsymbol{x}-\boldsymbol{y})^{2}}{(\boldsymbol{x}-\boldsymbol{z})^{2}(\boldsymbol{y}-\boldsymbol{z})^{2}}\left[S_{\boldsymbol{x} \boldsymbol{z}} S_{\boldsymbol{z} \boldsymbol{y}}-S_{\boldsymbol{x} \boldsymbol{y}}\right]
$$

- dipole kernel: probability for the dipole to split (Al Mueller, 1990)
- large- N_{c} approximation to the Balitsky-JIMWLK hierarchy
- Non-linear equation for the scattering amplitude $T_{x y} \equiv 1-S_{x y}$

$$
\frac{\partial T_{\boldsymbol{x} \boldsymbol{y}}}{\partial Y}=\frac{\bar{\alpha}_{s}}{2 \pi} \int \mathrm{~d}^{2} \boldsymbol{z} \frac{(\boldsymbol{x}-\boldsymbol{y})^{2}}{(\boldsymbol{x}-\boldsymbol{z})^{2}(\boldsymbol{y}-\boldsymbol{z})^{2}}\left[T_{\boldsymbol{x} \boldsymbol{z}}+T_{\boldsymbol{z} \boldsymbol{y}}-T_{\boldsymbol{x} \boldsymbol{y}}-T_{\boldsymbol{x} \boldsymbol{z}} T_{\boldsymbol{z} \boldsymbol{y}}\right]
$$

- $T_{\boldsymbol{x} \boldsymbol{y}}(Y)=T(r, Y)$ with $r=|\boldsymbol{x}-\boldsymbol{y}|$ (dipole size)
- weak scattering (dilute target): $T(r, Y) \ll 1 \Rightarrow \mathrm{BFKL}$ equation
- the BFKL solution increases exponentially with Y
- non-linear term enforces unitarity bound: $T(r, Y) \leq 1$
- saturation momentum $Q_{s}(Y): T(r, Y)=0.5$ when $r=1 / Q_{s}(Y)$
- The BK solution $T(r, Y)$:
- a front which interpolates between weak scattering at $r \ll 1 / Q_{s}(Y)$ and the 'black disk' limit at $r \gtrsim 1 / Q_{s}(Y)$
- $T(r, Y)$ as a function of $\rho \equiv \ln \left(1 / r^{2}\right)$ with increasing Y

- color transparency at large ρ (small r): $T \propto r^{2}=\mathrm{e}^{-\rho}$
- unitarization at small ρ (large r) : $T=1$ (black disk)
- saturation exponent: $\lambda_{s} \equiv \frac{\mathrm{~d} \ln Q_{s}^{2}}{\mathrm{~d} Y} \simeq 1$: way too large
- $T(r, Y)$ as a function of $\rho \equiv \ln \left(1 / r^{2}\right)$ with increasing Y

- color transparency at large ρ (small r): $T \propto r^{2}=\mathrm{e}^{-\rho}$
- unitarization at small ρ (large r) : $T=1$ (black disk)
- saturation exponent: $\lambda_{\text {HERA }}=0.2 \div 0.3$

Beyond leading order

- LO approximation: any number $n \geq 0$ of soft emissions $\Longrightarrow\left(\alpha_{s} Y\right)^{n}$

- NLO corrections to the evolution: 2 soft gluons, with similar values of x

- NLO correction to impact factor: the first gluon is hard

BK equation at NLO Balitsky, Chirilli (arXiv:0710.4330)

- "Reasonably simple" ($=$ it fits into one slide)
- Note however: $N_{f}=0$, large N_{c}, tiny fonts

$$
\begin{aligned}
& \frac{\partial S_{\boldsymbol{x} \boldsymbol{y}}}{\partial Y}=\frac{\bar{\alpha}_{s}}{2 \pi} \int \mathrm{~d}^{2} \boldsymbol{z} \frac{(\boldsymbol{x}-\boldsymbol{y})^{2}}{(\boldsymbol{x}-\boldsymbol{z})^{2}(\boldsymbol{y}-\boldsymbol{z})^{2}}\left(S_{\boldsymbol{x} \boldsymbol{z}} S_{\boldsymbol{z} \boldsymbol{y}}-S_{\boldsymbol{x} \boldsymbol{y}}\right)\{1+ \\
& +\bar{\alpha}_{S}\left[\bar{b} \ln (\boldsymbol{x}-\boldsymbol{y})^{2} \mu^{2}-\bar{b} \frac{(\boldsymbol{x}-\boldsymbol{z})^{2}-(\boldsymbol{y}-\boldsymbol{z})^{2}}{(\boldsymbol{x}-\boldsymbol{y})^{2}} \ln \frac{(\boldsymbol{x}-\boldsymbol{z})^{2}}{(\boldsymbol{y}-\boldsymbol{z})^{2}}\right. \\
& \left.\left.+\frac{67}{36}-\frac{\pi^{2}}{12}-\frac{1}{2} \ln \frac{(\boldsymbol{x}-\boldsymbol{z})^{2}}{(\boldsymbol{x}-\boldsymbol{y})^{2}} \ln \frac{(\boldsymbol{y}-\boldsymbol{z})^{2}}{(\boldsymbol{x}-\boldsymbol{y})^{2}}\right]\right\} \\
& +\frac{\bar{\alpha}_{s}^{2}}{8 \pi^{2}} \int \frac{\mathrm{~d}^{2} \boldsymbol{u} \mathrm{~d}^{2} \boldsymbol{z}}{(\boldsymbol{u}-\boldsymbol{z})^{4}}\left(S_{\boldsymbol{x} \boldsymbol{u}} S_{\boldsymbol{u} \boldsymbol{z}} S_{\boldsymbol{z} \boldsymbol{y}}-S_{\boldsymbol{x} \boldsymbol{u}} S_{\boldsymbol{u} \boldsymbol{y}}\right) \\
& \left\{-2+\frac{(\boldsymbol{x}-\boldsymbol{u})^{2}(\boldsymbol{y}-\boldsymbol{z})^{2}+(\boldsymbol{x}-\boldsymbol{z})^{2}(\boldsymbol{y}-\boldsymbol{u})^{2}-4(\boldsymbol{x}-\boldsymbol{y})^{2}(\boldsymbol{u}-\boldsymbol{z})^{2}}{(\boldsymbol{x}-\boldsymbol{u})^{2}(\boldsymbol{y}-\boldsymbol{z})^{2}-(\boldsymbol{x}-\boldsymbol{z})^{2}(\boldsymbol{y}-\boldsymbol{u})^{2}} \ln \frac{(\boldsymbol{x}-\boldsymbol{u})^{2}(\boldsymbol{y}-\boldsymbol{z})^{2}}{(\boldsymbol{x}-\boldsymbol{z})^{2}(\boldsymbol{y}-\boldsymbol{u})^{2}}\right. \\
& \left.+\frac{(\boldsymbol{x}-\boldsymbol{y})^{2}(\boldsymbol{u}-\boldsymbol{z})^{2}}{(\boldsymbol{x}-\boldsymbol{u})^{2}(\boldsymbol{y}-\boldsymbol{z})^{2}}\left[1+\frac{(\boldsymbol{x}-\boldsymbol{y})^{2}(\boldsymbol{u}-\boldsymbol{z})^{2}}{(\boldsymbol{x}-\boldsymbol{u})^{2}(\boldsymbol{y}-\boldsymbol{z})^{2}-(\boldsymbol{x}-\boldsymbol{z})^{2}(\boldsymbol{y}-\boldsymbol{u})^{2}}\right] \ln \frac{(\boldsymbol{x}-\boldsymbol{u})^{2}(\boldsymbol{y}-\boldsymbol{z})^{2}}{(\boldsymbol{x}-\boldsymbol{z})^{2}(\boldsymbol{y}-\boldsymbol{u})^{2}}\right\}
\end{aligned}
$$

Deconstructing NLO BK

$$
\begin{aligned}
& \frac{\partial S_{x y}}{\partial Y}=\frac{\bar{\alpha}_{s}}{2 \pi} \int \mathrm{~d}^{2} z \frac{(x-y)^{2}}{(x-z)^{2}(y-z)^{2}}\left(S_{x z} S_{z y}-S_{x y}\right)\{1+ \\
& +\bar{\alpha}_{s}\left[\bar{b} \ln (\boldsymbol{x}-\boldsymbol{y})^{2} \mu^{2}-\bar{b} \frac{(\boldsymbol{x}-\boldsymbol{z})^{2}-(\boldsymbol{y}-\boldsymbol{z})^{2}}{(\boldsymbol{x}-\boldsymbol{y})^{2}} \ln \frac{(\boldsymbol{x}-\boldsymbol{z})^{2}}{(\boldsymbol{y}-\boldsymbol{z})^{2}}\right. \\
& \left.\left.+\frac{67}{36}-\frac{\pi^{2}}{12}-\frac{1}{2} \ln \frac{(x-z)^{2}}{(x-y)^{2}} \ln \frac{(y-z)^{2}}{(x-y)^{2}}\right]\right\} \\
& +\frac{\bar{\alpha}_{s}^{2}}{8 \pi^{2}} \int \frac{\mathrm{~d}^{2} \boldsymbol{u} \mathrm{~d}^{2} \boldsymbol{z}}{(\boldsymbol{u}-\boldsymbol{z})^{4}}\left(S_{\boldsymbol{x} \boldsymbol{u}} S_{\boldsymbol{u} \boldsymbol{z}} S_{\boldsymbol{z} \boldsymbol{y}}-S_{\boldsymbol{x} \boldsymbol{u}} S_{\boldsymbol{u} \boldsymbol{y}}\right) \\
& \left\{-2+\frac{(\boldsymbol{x}-\boldsymbol{u})^{2}(\boldsymbol{y}-\boldsymbol{z})^{2}+(\boldsymbol{x}-\boldsymbol{z})^{2}(\boldsymbol{y}-\boldsymbol{u})^{2}-4(\boldsymbol{x}-\boldsymbol{y})^{2}(\boldsymbol{u}-\boldsymbol{z})^{2}}{(\boldsymbol{x}-\boldsymbol{u})^{2}(\boldsymbol{y}-\boldsymbol{z})^{2}-(\boldsymbol{x}-\boldsymbol{z})^{2}(\boldsymbol{y}-\boldsymbol{u})^{2}} \ln \frac{(\boldsymbol{x}-\boldsymbol{u})^{2}(\boldsymbol{y}-\boldsymbol{z})^{2}}{(\boldsymbol{x}-\boldsymbol{z})^{2}(\boldsymbol{y}-\boldsymbol{u})^{2}}\right. \\
& \left.+\frac{(\boldsymbol{x}-\boldsymbol{y})^{2}(\boldsymbol{u}-\boldsymbol{z})^{2}}{(\boldsymbol{x}-\boldsymbol{u})^{2}(\boldsymbol{y}-\boldsymbol{z})^{2}}\left[1+\frac{(\boldsymbol{x}-\boldsymbol{y})^{2}(\boldsymbol{u}-\boldsymbol{z})^{2}}{(\boldsymbol{x}-\boldsymbol{u})^{2}(\boldsymbol{y}-\boldsymbol{z})^{2}-(\boldsymbol{x}-\boldsymbol{z})^{2}(\boldsymbol{y}-\boldsymbol{u})^{2}}\right] \ln \frac{(\boldsymbol{x}-\boldsymbol{u})^{2}(\boldsymbol{y}-\boldsymbol{z})^{2}}{(\boldsymbol{x}-\boldsymbol{z})^{2}(\boldsymbol{y}-\boldsymbol{u})^{2}}\right\}
\end{aligned}
$$

- green : leading-order (LO) terms
- violet : one-loop running coupling corrections
- red : NLO term enhanced by a double collinear logarithm
- blue : NLO term enhanced by a single logarithm

Deconstructing NLO BK

$$
\begin{aligned}
\frac{\partial S_{\boldsymbol{x} \boldsymbol{y}}}{\partial Y}= & \frac{\bar{\alpha}_{s}}{2 \pi} \int \mathrm{~d}^{2} \boldsymbol{z} \frac{(\boldsymbol{x}-\boldsymbol{y})^{2}}{(\boldsymbol{x}-\boldsymbol{z})^{2}(\boldsymbol{y}-\boldsymbol{z})^{2}}\left(S_{\boldsymbol{x} \boldsymbol{z}} S_{\boldsymbol{z} y}-S_{\boldsymbol{x} y}\right)\{1+ \\
& +\bar{\alpha}_{s}\left[\bar{b} \ln (\boldsymbol{x}-\boldsymbol{y})^{2} \mu^{2}-\bar{b} \frac{(\boldsymbol{x}-\boldsymbol{z})^{2}-(\boldsymbol{y}-\boldsymbol{z})^{2}}{(\boldsymbol{x}-\boldsymbol{y})^{2}} \ln \frac{(\boldsymbol{x}-\boldsymbol{z})^{2}}{(\boldsymbol{y}-\boldsymbol{z})^{2}}\right.
\end{aligned} \quad \begin{aligned}
& \left.\left.\quad+\frac{67}{36}-\frac{\pi^{2}}{12}-\frac{1}{2} \ln \frac{(\boldsymbol{x}-\boldsymbol{z})^{2}}{(\boldsymbol{x}-\boldsymbol{y})^{2}} \ln \frac{(\boldsymbol{y}-\boldsymbol{z})^{2}}{(\boldsymbol{x}-\boldsymbol{y})^{2}}\right]\right\} \\
& +\frac{\bar{\alpha}_{s}^{2}}{8 \pi^{2}} \int \frac{\mathrm{~d}^{2} \boldsymbol{u} \mathrm{~d}^{2} \boldsymbol{z}}{(\boldsymbol{u}-\boldsymbol{z})^{4}}\left(S_{\boldsymbol{x} \boldsymbol{u}} S_{\boldsymbol{u} \boldsymbol{z}} S_{\boldsymbol{z} \boldsymbol{y}}-S_{\boldsymbol{x} \boldsymbol{u}} S_{\boldsymbol{u} \boldsymbol{y})}\right. \\
& \\
& \\
& \quad\left\{-2+\frac{(\boldsymbol{x}-\boldsymbol{u})^{2}(\boldsymbol{y}-\boldsymbol{z})^{2}+(\boldsymbol{x}-\boldsymbol{z})^{2}(\boldsymbol{y}-\boldsymbol{u})^{2}-4(\boldsymbol{x}-\boldsymbol{y})^{2}(\boldsymbol{u}-\boldsymbol{z})^{2}}{(\boldsymbol{x}-\boldsymbol{u})^{2}(\boldsymbol{y}-\boldsymbol{z})^{2}-(\boldsymbol{x}-\boldsymbol{z})^{2}(\boldsymbol{y}-\boldsymbol{u})^{2}} \ln \frac{(\boldsymbol{x}-\boldsymbol{u})^{2}(\boldsymbol{y}-\boldsymbol{z})^{2}}{(\boldsymbol{x}-\boldsymbol{z})^{2}(\boldsymbol{y}-\boldsymbol{u})^{2}}\right. \\
& \\
& \\
& \left.+\frac{(\boldsymbol{x}-\boldsymbol{y})^{2}(\boldsymbol{u}-\boldsymbol{z})^{2}}{(\boldsymbol{x}-\boldsymbol{u})^{2}(\boldsymbol{y}-\boldsymbol{z})^{2}}\left[1+\frac{(\boldsymbol{x}-\boldsymbol{y})^{2}(\boldsymbol{u}-\boldsymbol{z})^{2}}{(\boldsymbol{x}-\boldsymbol{u})^{2}(\boldsymbol{y}-\boldsymbol{z})^{2}-(\boldsymbol{x}-\boldsymbol{z})^{2}(\boldsymbol{y}-\boldsymbol{u})^{2}}\right] \ln \frac{(\boldsymbol{x}-\boldsymbol{u})^{2}(\boldsymbol{y}-\boldsymbol{z})^{2}}{(\boldsymbol{x}-\boldsymbol{z})^{2}(\boldsymbol{y}-\boldsymbol{u})^{2}}\right\}
\end{aligned}
$$

- green : leading-order (LO) terms
- violet : one-loop running coupling corrections
- double logs : kinematical origin - time ordering
- single logs : dynamical origin - DGLAP evolution

Unstable numerical solution

- Keep the double logarithm alone: very large daughter dipoles

$$
-\frac{1}{2} \ln \frac{(\boldsymbol{x}-\boldsymbol{z})^{2}}{(\boldsymbol{x}-\boldsymbol{y})^{2}} \ln \frac{(\boldsymbol{y}-\boldsymbol{z})^{2}}{(\boldsymbol{x}-\boldsymbol{y})^{2}} \simeq-\frac{1}{2} \ln ^{2} \frac{(\boldsymbol{x}-\boldsymbol{z})^{2}}{r^{2}} \quad \text { if } \quad|\boldsymbol{z}-\boldsymbol{x}| \simeq|\boldsymbol{z}-\boldsymbol{y}| \gg r
$$

- LO approximation implicitly assumes that lifetimes are strongly ordered

$$
\Delta t_{p} \sim p^{+} u_{\perp}^{2} \gg \Delta t_{k} \sim k^{+} z_{\perp}^{2}
$$

- lifetime of a gluon fluctuation

$$
\Delta t_{p} \simeq \frac{2 p^{+}}{p_{\perp}^{2}} \sim p^{+} u_{\perp}^{2}
$$

- satisfied by the LO kinematics

$$
p^{+} \gg k^{+} \text {and } u_{\perp}^{2} \sim z_{\perp}^{2}
$$

- violated when z_{\perp} is large enough
- Integrate out the harder gluon $\left(p^{+}, u_{\perp}\right)$ to double-log accuracy:

$$
\mathrm{LO}: \quad \bar{\alpha}_{s} \int_{k^{+}}^{q^{+}} \frac{\mathrm{d} p^{+}}{p^{+}} \int_{r^{2}}^{z^{2}} \frac{\mathrm{~d} u^{2}}{u^{2}}=\bar{\alpha}_{s} Y \ln \frac{z^{2}}{r^{2}}
$$

- LO approximation implicitly assumes that lifetimes are strongly ordered

$$
\Delta t_{p} \sim p^{+} u_{\perp}^{2} \gg \Delta t_{k} \sim k^{+} z_{\perp}^{2}
$$

- lifetime of a gluon fluctuation

$$
\Delta t_{p} \simeq \frac{2 p^{+}}{p_{\perp}^{2}} \sim p^{+} u_{\perp}^{2}
$$

- satisfied by the LO kinematics

$$
p^{+} \gg k^{+} \text {and } u_{\perp}^{2} \sim z_{\perp}^{2}
$$

- violated when z_{\perp} is large enough
- Integrate out the harder gluon $\left(p^{+}, u_{\perp}\right)$ to double-log accuracy:

NLO : $\quad \bar{\alpha}_{s} \int_{k^{+}}^{q^{+}} \frac{\mathrm{d} p^{+}}{p^{+}} \int_{r^{2}}^{z^{2}} \frac{\mathrm{~d} u^{2}}{u^{2}} \Theta\left(p^{+} u^{2}-k^{+} z^{2}\right)=\bar{\alpha}_{s} Y \ln \frac{z^{2}}{r^{2}}-\frac{\bar{\alpha}_{s}}{2} \ln ^{2} \frac{z^{2}}{r^{2}}$

Resummation of double logs in BK

- The double collinear logs can be resummed to all orders:
- by enforcing time-ordering within the BK equation (non-local in Y) Ciafaloni (88), Andersson et al (96), ... G. Beuf (14)
- by modifying the BK kernel to all orders (local in Y) E.I., Madrigal, Mueller, Soyez, and Triantafyllopoulos (15)

$$
\frac{\partial S_{\boldsymbol{x} \boldsymbol{y}}}{\partial Y}=\bar{\alpha}_{s} \int \frac{\mathrm{~d}^{2} \boldsymbol{z}}{2 \pi} \frac{(\boldsymbol{x}-\boldsymbol{y})^{2}}{(\boldsymbol{x}-\boldsymbol{z})^{2}(\boldsymbol{z}-\boldsymbol{y})^{2}} \mathcal{K}_{\mathrm{DLA}}(\rho(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}))\left(S_{\boldsymbol{x} \boldsymbol{z}} S_{\boldsymbol{z} \boldsymbol{y}}-S_{\boldsymbol{x} \boldsymbol{y}}\right)
$$

- $\mathcal{K}_{\text {DLA }}(\rho)$ resums powers of $\bar{\alpha}_{s} \rho^{2}$ to all orders:

$$
\begin{gathered}
\mathcal{K}_{\mathrm{DLA}}(\rho) \equiv \frac{\mathrm{J}_{1}\left(2 \sqrt{\bar{\alpha}_{s} \rho^{2}}\right)}{\sqrt{\bar{\alpha}_{s} \rho^{2}}}=1-\frac{\bar{\alpha}_{s} \rho^{2}}{2}+\frac{\left(\bar{\alpha}_{s} \rho^{2}\right)^{2}}{12}+\cdots \\
\rho^{2}(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}) \equiv \ln \frac{(\boldsymbol{x}-\boldsymbol{z})^{2}}{(\boldsymbol{x}-\boldsymbol{y})^{2}} \ln \frac{(\boldsymbol{y}-\boldsymbol{z})^{2}}{(\boldsymbol{x}-\boldsymbol{y})^{2}}
\end{gathered}
$$

Extending to single-logs \& running coupling

- The NLO equation with all the transverse logs

$$
\frac{\mathrm{d} T(r)}{\mathrm{d} Y}=\bar{\alpha}_{s} \int \mathrm{~d} z^{2} \frac{r^{2}}{z^{4}}\left\{1-\bar{\alpha}_{s}\left(\frac{1}{2} \ln ^{2} \frac{z^{2}}{r^{2}}+\frac{11}{12} \ln \frac{z^{2}}{r^{2}}-\bar{b} \ln r^{2} \mu^{2}\right)\right\} T(z)
$$

- the double-logarithm is already included within $\mathcal{K}_{\text {DLA }}(\rho)$
- the collinear single-log is part of the DGLAP anomalous dimension
- the running coupling log is resummed by replacing $\bar{\alpha}_{s} \rightarrow \bar{\alpha}_{s}\left(r_{\text {min }}\right)$

$$
\begin{aligned}
& \frac{\partial S_{\boldsymbol{x} \boldsymbol{y}}}{\partial Y}=\int \frac{\mathrm{d}^{2} \boldsymbol{z}}{2 \pi} \bar{\alpha}_{s}\left(r_{\min }\right) \frac{(\boldsymbol{x}-\boldsymbol{y})^{2}}{(\boldsymbol{x}-\boldsymbol{z})^{2}(\boldsymbol{z}-\boldsymbol{y})^{2}}\left[\frac{r^{2}}{z_{<}^{2}}\right]^{ \pm A_{1} \bar{\alpha}_{s}} \mathcal{K}_{\mathrm{DLA}}(\rho(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z})) \\
& \times\left(S_{\boldsymbol{x} \boldsymbol{z}} S_{\boldsymbol{z} \boldsymbol{y}}-S_{\boldsymbol{x} \boldsymbol{y}}\right)
\end{aligned}
$$

$$
A_{1} \equiv \frac{11}{12}, \quad z_{<}^{2} \equiv \min \left\{(\boldsymbol{x}-\boldsymbol{z})^{2},(\boldsymbol{y}-\boldsymbol{z})^{2}\right\}
$$

- The resummation stabilizes and slows down the evolution

DLA resum, $\bar{\alpha}_{s}=0.25$

- left: pure NLO
- right: double collinear logs resummed to all orders

Saturation exponent $\lambda_{s} \equiv \mathrm{~d} \ln Q_{s}^{2} / \mathrm{d} Y$

- Fixed coupling
- LO: $\lambda_{s} \simeq 4.88 \bar{\alpha}_{s} \simeq 1$
- resummed DL: $\lambda_{s} \simeq 0.5$
- DL + SL: $\lambda_{s} \simeq 0.4$

- Running coupling
- LO: $\lambda_{s}=0.25 \div 0.30$
- DL + SL: $\lambda_{s} \simeq 0.2$
- better convergence

Particle production in $p A$ collisions

- Recall: the NLO correction to impact factor

- The first gluon emission must be computed with exact kinematics (beyond the eikonal approximation)
- The effect of one gluon emission: $\mathrm{LO}+\mathrm{NLO}$

Deconstructing the NLO approximation

(E.I., A. Mueller and D. Triantafyllopoulos, arXiv:1608.05293)

- Completing the evolution:

\mathcal{S} (solution to $\mathcal{B K}$ equation)

$\mathcal{N L O}$ correction to impact factor

$$
\mathcal{N}=\mathcal{S}\left(\boldsymbol{k}, X_{g}\right)+\bar{\alpha}_{s} \int_{X_{g}}^{1} \frac{\mathrm{~d} x}{x}[\mathcal{K}(x)-\mathcal{K}(0)] \mathcal{S}(\boldsymbol{k}, X(x))
$$

- This is in principle the same as

tree - level
impact factor + evolution

Deconstructing the NLO approximation

(E.I., A. Mueller and D. Triantafyllopoulos, arXiv:1608.05293)

- Completing the evolution:

\mathcal{S} (solution to $\mathcal{B K}$ equation)

$\mathcal{N L O}$ correction to impact factor

$$
\mathcal{N}=\mathcal{S}\left(\boldsymbol{k}, X_{g}\right)+\bar{\alpha}_{s} \int_{X_{g}}^{1} \frac{\mathrm{~d} x}{x}[\mathcal{K}(x)-\mathcal{K}(0)] \mathcal{S}(\boldsymbol{k}, X(x))
$$

- This is in principle the same as ... but only in principle

tree - level
impact factor + evolution

The fine-tuning problem

- One adds and subtracts the LO evolution (the dominant contribution!)

\mathcal{S} (solution to $\mathcal{B K}$ equation)

$\mathcal{N L O}$ correction to impact factor

$$
\mathcal{N}=\mathcal{S}\left(\boldsymbol{k}, X_{g}\right)+\bar{\alpha}_{s} \int_{X_{g}}^{1} \frac{\mathrm{~d} x}{x}[\mathcal{K}(x)-\mathcal{K}(0)] \mathcal{S}(\boldsymbol{k}, X(x))
$$

- The 'added' and 'subtracted' pieces are treated differently
- the 'added' piece is used to reconstruct the solution to BK

$$
\mathcal{S}\left(\boldsymbol{k}, X_{g}\right)=\mathcal{S}_{0}(\boldsymbol{k})+\bar{\alpha}_{s} \int_{X_{g}}^{1} \frac{\mathrm{~d} x}{x} \mathcal{K}(0) \mathcal{S}(\boldsymbol{k}, X(x))
$$

- the 'subtracted' piece is used to isolate the NLO impact factor

Why is this a problem ?

- Any approximation/numerical error in the solution to the BK equation may lead to a mismatch between the 'added' piece and the 'subtracted' one
- A widely used 'approximation' (toy model): the GBW saturation model

$$
\mathcal{S}_{\mathrm{GBW}}(\boldsymbol{k}, X) \propto \mathrm{e}^{-\frac{k_{1}^{2}}{Q_{s}^{2}}}
$$

- the 'added' piece is exponentially suppressed at $k_{\perp} \gg Q_{s}$
- the 'subtracted' piece develops a power-law tail $\propto 1 / k_{\perp}^{4}$

$$
\mathcal{N}=\mathcal{S}_{\mathrm{GBW}}\left(\boldsymbol{k}, X_{g}\right)+\bar{\alpha}_{s} \int_{X_{g}}^{1} \frac{\mathrm{~d} x}{x}[\mathcal{K}(x)-\mathcal{K}(0)] \mathcal{S}_{\mathrm{GBW}}(\boldsymbol{k}, X(x))
$$

- one gluon emission in pQCD always has a power-like tail !
- the overall result becomes negative at sufficiently large k_{\perp}

CXY factorization + GBW model for \mathcal{S}

(Ducloué, Lappi, and Zhu, arXiv:1604.00225)

- This behavior is indeed visible in the numerical results
- Rapidity factorization scale $x_{0} \equiv 1-\xi_{f}$
- Decreasing x_{0} pushes the problem to higher k_{\perp}
- strongly dependent upon the precise implementation of x_{0}

A new factorization scheme

(E.I., A. Mueller and D. Triantafyllopoulos, arXiv:1608.05293)

- Back to basics: undo the 'rapidity' subtraction

$$
\mathcal{N}=\mathcal{S}_{0}(\boldsymbol{k})+\bar{\alpha}_{s} \int_{X_{g}}^{1} \frac{\mathrm{~d} x}{x} \mathcal{K}(x) \mathcal{S}(\boldsymbol{k}, X(x))
$$

tree-level
impact factor + evolution

- LO evolution mixed up with NLO corrections to impact factor
- not a strict perturbative expansion: it goes beyond NLO
- respects the skeleton structure of the perturbative expansion
- Second term guaranteed to be positive definite
- with $\mathcal{K}(x) \rightarrow \mathcal{K}(0)$: the r.h.s. of the LO BK equation

Restoring full NLO evolution

(E.I., A. Mueller and D. Triantafyllopoulos, arXiv:1608.05293)

- Recall: the NLO BK evolution also involves 2-loop graphs

- $\mathcal{K}_{2}(0)$: NLO correction to the BK kernel with collinear improvement
- Complicated in practice \ldots but one can start with $\mathcal{S} \approx \mathcal{S}_{\text {reBK }}$ and $\mathcal{K}_{2}=0$

Fitting the HERA data

(E.I., Madrigal, Mueller, Soyez, and Triantafyllopoulos, arXiv:1507.03651)

- Numerical solutions to the collinearly-improved BK equation using initial conditions (at $x_{0}=0.01$) which involve 4 free parameters
- a similar strategy as for the DGLAP fits
- Combined analysis by ZEUS and H1 (2009): small error bars
- Bjorken' $x \leq 0.01$
- $Q^{2}<Q_{\max }^{2}$ with $Q_{\max }^{2}=50 \div 400 \mathrm{GeV}^{2}$
- 3 light quarks + charm quark, all treated on the same footing
- good quality fits for $m_{u, d, s}=0 \div 140 \mathrm{MeV}$ and $m_{c}=1.3$ or 1.4 GeV
- χ^{2} per point around 1.1-1.2
- Very discriminatory: the fits favor
- initial condition: MV model with running coupling
- smallest-dipole prescription for the running

- Saturation line $Q_{s}^{2}(x)$ superposed over the data points
- saturation exponent: $\lambda_{s}=0.20 \div 0.24$

