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Nucleon structure and distributions
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DVCS and GPDs

p p’

ξx+ ξx-

k
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, t)ξ (x,H
~

H, 

, t)ξ (x,E
~

E, 

Q2 = −q2 = −(k − k ′)2.

xB = Q2

2p·q
x longitudinal momentum fraction
carried by the active quark.

ξ ∼ xB
2−xB the longitudinal momentum

transfer.

t = (p − p′)2 squared momentum
transfer to the nucleon.

The GPDs enter the DVCS amplitude through a complex integral. This
integral is called a Compton form factor (CFF).

H(ξ, t) =

∫ 1

−1
H(x , ξ, t)

(
1

ξ − x − iε
− 1

ξ + x − iε

)
dx .
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Photon electroproduction and GPDs

Experimentally we measure the cross section of the process ep → epγ.

d4σ(λ,±e)

dQ2dxBdtdφ
=

d2σ0
dQ2dxB

2π

e6
×
[∣∣∣TBH ∣∣∣2 +

∣∣∣TDVCS ∣∣∣2 ∓ I

]
,

with λ the helicity of the electron.

The Bethe-Heitler is known since it is QED process + Form factors from
elastic scattering experiments.
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A parameterization of cross section

We can partially unfold the contributions,
studying the φ-dependence.

|TBH |2 =
e6
∑2

n=0 c
BH
n cos(nφ)

x2Bty
2(1 + ε2)2P1(φ)P2(φ)

← KNOWN!

∣∣∣TDVCS ∣∣∣2 =
e6

y2Q2

{
cDVCS0 +

2∑
n=1

[
cDVCSn cos(nφ) + λsDVCS1 sin(nφ)

]}

I =
e6

xBy3P1(φ)P2(φ)t

{
cI0 +

3∑
n=1

[
cIn cos(nφ) + λsIn sin(nφ)

]}
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A parameterization of cross section

The CFFs are encapsulated in cn and sn, o�ering a parameterization of the
cross section. In the leading twist approximation for unpolarized target:

cDVCS0 ∝ CDVCS(F,F∗) = 4(1− xB)HH∗ + · · · (1)

cI1 ∝ Re CI(F) = F1 ReH + ξ(F1 + F2) ReH̃ − t

4M2
F2 ReE ,

sI1 ∝ Im CI(F) = F1 ImH + ξ(F1 + F2) ImH̃ − t

4M2
F2 ImE ,

By studying the φ-dependence of the observables, we can extract the CFFs.
A lot of data have been collected in di�erent kinematical regions (H1,
ZEUS, Hermes, CLAS).

Mueller D., Belitsky A.V., Phys.Rev.D.82 (2010)
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A �t global to disentangle all the CFFs

Kumericki and Muller performed a global �t of CFFs at leading-twist and
leading-order (KM10a).

∆σLU ∝ sinφ × Im
{
F1 H + ξ(F1 + F2) H̃ − t

4M2
F2 E

}
, (2)

∆σUL ∝ sinφ × Im
{
F1 H̃ + ξ(F1 + F2)

(
H +

xB
2
E
)
− t

4M2
F2 Ẽ

}
,

the imaginary part of CFFs are given by beam or target spin
asymmetries.

the real parts are built using dispersion relations with the imaginary
parts.

In january 2015, this �t was able to reproduce all the observables. Let's
challenge it with high statistical precision DVCS data provided by Hall A
(two experiments: 2004 and 2010).
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The experimental setup

We want to study ep → epγ:

The accelerator provided:

80% longitudinally polarized electron beam on a 15 cm-long LH2 target,

with a maximal beam current of 200 µA (I<4 µA),

up to 6 GeV (now 12 GeV).
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The experimental setup

We want to study ep → epγ:

In the Hall A,

The scattered electron is detected by a
High Resolution Spectrometer (HRS):
We measure accurately xB and Q2.

The photon is detected by an
electromagnetic calorimeter:
The 4-momenta of the scattered
electron and the photon gives t and φ.
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NM2

X<M
2
cut

= Nep→epγ + Nacc + Nπ0−1γ + NSIDIS

NSIDIS cannot be subtracted and
we need to cut low enough in
missing mass to have:

NSIDIS << Nep→eγp

The fraction of exclusive events
lost with the cut is corrected
through the Monte-Carlo
simulation.
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Here are the results from 2004!
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Here are the results from 2004!
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A lot of new DVCS data from 2004 Hall A experiment
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Where do the kinematical power corrections come from?

Belitsky, Muller and Ji decomposed the DVCS amplitude in helicity amplitude,
using the lab frame as reference frame. In the BMJ formalism, the cross section is
parametrized by a set of CFFs:

Fµν ∈
{
Hµν ,Eµν , H̃µν , Ẽµν

}
(3)

where µ (ν) is the helicity of the virtual (real) photon. Therefore we can
distinguish three cases:

F++ are the helicity-conserved CFFs. They are the regular leading-twist
CFFs which describes diagram for which virtual and real photon have the
same helicity.

F0+ are the longitudinal-to-transverse helicity �ip CFFs. They are twist-3
CFFs related to the contribution of the longitudinal polarization of the
virtual photon.

F−+ are the transverse-to-transverse helicity �ip CFFs. At leading-order,
these CFFs are twist-4. But at NLO order, these CFFs involves the twist-2
gluon transversity GPDs.
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Where do the kinematical power corrections come from?

In the BMP formalism, the reference frame is taken such as both photons have
purely longitudinal momentum. This choice makes easier the inclusion of
kinematically suppressed terms (in t/Q2 or M2/Q2). In the BMP formalism, the
cross section is parametrized by a set of CFFs:

Fµν ∈
{
Hµν ,Eµν , H̃µν , Ẽµν

}
(4)

where µ (ν) is the helicity of the virtual (real) photon. Therefore we can
distinguish three cases:

F++ are the helicity-conserved CFFs. They are twist-2 CFFs.

F0+ are the longitudinal-to-transverse helicity �ip CFFs. They are twist-3
CFFs.

F−+ are the transverse-to-transverse helicity �ip CFFs. At LO, these CFFs
are twist-4. At NLO, these CFFs involves the gluon transversity GPDs.
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BMP... BMJ... which di�erence?

But let's stay at leading-order. The BMP CFFs are not the same as the BMJ
CFFs. The BMP CFFs are more complex terms. As an example, H++, we have:

H++ = T0 ⊗ H , (5)

H++ = T0 ⊗ H + −t
Q2

[
1

2
T0 − T1 − 2ξDξT2

]
⊗ H + 2t

Q2 ξ
2∂ξT2 ⊗ (H + E ) . (6)

We can go from BMP to BMJ CFFs by making the following replacement:

F++ = F++ + χ
2

[F++ + F−+]− χ0F0+ , (7)

F−+ = F−+ + χ
2

[F++ + F−+]− χ0F0+ , (8)

F0+ = −(1 + χ)F0+ + χ0 [F++ + F−+] , (9)

with: χ0 ∝
√
t ′/Q and χ ∝ t ′/Q2. The leading-twist assumption gives di�erent

results between BMP and BMJ.
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Di�erences in the LT-LO assumption: BMJ

Assuming leading-twist and LO in BMJ, we have F−+ = 0 and F0+ = 0. It is
important when regarding the DVCS amplitude. We have:

c
VCS
0,unp = 2

2− 2y + y
2 + ε2

2
y
2

1+ ε2
C
VCS
unp (F±+,F

∗
±+) + 8

1− y − ε2

4
y
2

1+ ε2
C
VCS
unp (F0+,F

∗
0+) ,

(10){
c
VCS
1,unp

s
VCS
1,unp

}
=

4
√
2
√

1− y − ε2

4
y2

1+ ε2

{
2− y

−λy
√
1+ ε2

}{
<e
=m

}
C
VCS
unp

(
F0+

∣∣F∗
++,F

∗
−+

)
,(11)

c
VCS
2,unp = 8

1− y − ε2

4
y
2

1+ ε2
<eCVCSunp (F−+,F

∗
++) . (12)

which reduces to:

cVCS
0,unp = 2

2− 2y + y2 + ε2

2
y2

1 + ε2
CVCSunp (F++,F

∗
++) (13)

The DVCS amplitude is φ-independent with a single beam-energy dependence.
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Di�erences in the LT-LO assumption: BMP

Assuming leading-twist and LO in BMP, we have F−+ = 0 and F0+ = 0.

F++ =
(
1 + χ

2

)
F++ , (14)

F−+ = χ
2
F++ , (15)

F0+ = χ0F++ , (16)

It is important when looking at the DVCS amplitude.

c
VCS
0,unp = 2

2− 2y + y
2 + ε2

2
y
2

1+ ε2
C
VCS
unp (F±+,F

∗
±+) + 8

1− y − ε2

4
y
2

1+ ε2
C
VCS
unp (F0+,F

∗
0+) ,

(17){
c
VCS
1,unp

s
VCS
1,unp

}
=

4
√
2
√

1− y − ε2

4
y2

1+ ε2

{
2− y

−λy
√
1+ ε2

}{
<e
=m

}
C
VCS
unp

(
F0+

∣∣F∗
++,F

∗
−+

)
,(18)

c
VCS
2,unp = 8

1− y − ε2

4
y
2

1+ ε2
<eCVCSunp (F−+,F

∗
++) . (19)

The DVCS amplitude is no longer φ-independent with multiple beam-energy
dependences.
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Troubles for Rosenbluth separations in Hall A in 2010

If one wants to separate interference from DVCS2 contributions by changing the
beam energy, he will also change the polarization of the virtual photon.

And considering the size of the corrections, we cannot neglect them to do a clean
work... especially for Je�erson Lab kinematics!
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Since the kinematical power corrections are �helicity-dependent�, it is crucial to
take them into account to do the separation.
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A Rosenbluth separation in Hall A in 2010?

In 2010, a new DVCS experiment in Hall A which aimed at separating the
interference from the DVCS2 contributions:

Setting E (GeV) Q2 (GeV2) xB W (GeV)
2010-Kin1 (3.355 ; 5.55) 1.5 0.36 1.9
2010-Kin2 (4.455 ; 5.55) 1.75 0.36 2
2010-Kin3 (4.455 ; 5.55) 2 0.36 2.1

Since the data analysis is almost identical to the one for 2004, I am skipping it.
Let's do the simplest test for LT/LO approach: we �t the real and imaginary
parts of H++E++H̃++Ẽ++:

simultaneously on unpolarized and polarized cross sections,

simultaneously on the two beam energies,

simultaneously for the three Q2-values (but I neglect the Q-evolution),

on one t-bin.
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LT/LO approach: H++, E++, H̃++, Ẽ++
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LT/LO approach: H++, E++, H̃++, Ẽ++
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LT/LO approach: H++, E++, H̃++, Ẽ++
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Some twist-3??: H++, H̃++, H0+, H̃0+
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Some twist-3??: H++, H̃++, H0+, H̃0+
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Some twist-3??: H++, H̃++, H0+, H̃0+
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What about gluons at NLO: H++, H̃++, H−+, H̃−+
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What about gluons at NLO: H++, H̃++, H−+, H̃−+
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What about gluons at NLO: H++, H̃++, H−+, H̃−+
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Conclusion

Kinematical power corrections must be taken into account to do a clean
extraction of GPDs and tomography of the nucleon.

LT-LO 0+ -+

χ2/Ndf 461/208 245/208 244/208

It seems that there is higher-twist and/or Next-to-Leading order
contributions in the JLab-6GeV data. Rosenbluth separation: Investigate
the helicity structure of the DVCS!

What next? A fantastic DVCS program at 12 GeV (see Daria's talk)

DVCS experiment in Hall A will soon be �nished.
Rosenbluth separation in CLAS12 (6.6, 8.8 and 11 GeV).
Rosenbluth separation in Hall C.
EIC? Let's see what happens in the next 5 years.

All together, the three halls will give us a precise idea of the GPDs in the
valence region.
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Thank you!
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The experimental setup

We want to study ep → epγ:

Hall A Hadron Detector

m-drive/martz/graphics/3dart/halla/newfolder/elecarm.ai  jm  8/11/00

DAQ

Electronics Pion Rejector

VDC Gas Cherenkov

S2

Front FPP

Chambers

Rear FPP

Chambers

Carbon

Analyzer

VDC support frame
Aerogel Cherenkov

S0

S1

The High Resolution spectrometer detects and characterizes the scattered
electron:
δp
p
' 2.10−4 and solid angle ' 6 msr.

It allows an accurate measurement of Q2 and xB .

Scintillators and �erenkov detector were part of the trigger.
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NM2

X<M
2
cut

= Nep→epγ + Nacc + Nπ0−1γ + NSIDIS

[noframenumbering]

Accidentals are time-independent.

Estimated by studying events outside of
the coincidence window.

Accidentals are mostly located around
φ = 0◦. We require a missing mass
higher than 0.5 GeV2 to reduce the
statistical uncertainty from the
subtraction.
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NM2

X<M
2
cut

= Nep→epγ + Nacc + Nπ0−1γ + NSIDIS

Pion rest  frame Laboratory f rame

Direction of the boost

Direction of the boost

The kinetic energy of the π0 is shared
between the two photons depending on
their direction with respect to the π0

momentum.

We just need to evaluate the phase
space of decay contributing to the
contamination.

Principle: For each detected π0,
generate a large number of decays to
estimate the contamination.

Detect the two photons.

Detect only one of the two
photons.

Considered as exclusive photon
events.
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NM2

X<M
2
cut

= Nep→epγ + Nacc + Nπ0−1γ + NSIDIS

Pion rest  frame Laboratory f rame

Direction of the boost

Direction of the boost

The kinetic energy of the π0 is shared
between the two photons depending on
their direction with respect to the π0

momentum.

We just need to evaluate the phase
space of decay contributing to the
contamination.

Advantage: No need for a
parameterization of π0 cross
section.

Drawback: Depends on the ability
to detect the 2 photons.

M. Defurne (CEA Saclay - IRFU/SPhN) GPDs through DVCS November 10th 2016 30 / 30



The calorimeter resolution: A crucial e�ect

The events of a speci�c t and φ bins are located in a speci�c area of the
calorimeter.

Figure: Left: φ-distribution of the events as a function of the photon position in
the calorimeter. Right: t-distribution of the events as a function of the photon
position in the calorimeter.
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The calorimeter resolution: A crucial e�ect

From one edge of the calorimeter to the other, the energy resolution is not
the same (φ = 0◦ in red et φ = 180◦ in blue).

)2(GeVXγe→ep
2M
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µ (GeV2) σ (GeV2)

Beam-side (red) 0.964 0.213

180◦-side (blue) 0.902 0.144

sum (red+blue) 0.914 0.167

Table: Mean value µ and standard deviation σ of
a gaussian �tted on the squared missing mass
distributions.

Assuming a uniform resolution and calibration, we would have induced a
-15% shift of the cross section at 0◦ and +5% at 180◦.
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The calorimeter resolution: A crucial e�ect

I have developed a
calibration/smearing/�t method
for the Monte-Carlo calorimeter
qx
qy
qz
E

 7−→ gaus(µ, σ)×


qx
qy
qz
E

 ,

which reproduces locally the
resolution.
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