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Transversity of the nucleon using hard processes

What is transversity?

Transverse spin content of the proton:
| ↑〉(x) ∼ | →〉+ | ←〉
| ↓〉(x) ∼ | →〉 − | ←〉

spin along x helicity states

Observables which are sensitive to helicity flip thus give access to
transversity ∆T q(x). Poorly known.

Transversity GPDs are completely unknown experimentally.

For massless (anti)particles, chirality = (-)helicity

Transversity is thus a chiral-odd quantity

Since (in the massless limit) QCD and QED are chiral-even (γµ, γµγ5),
the chiral-odd quantities (1, γ5, [γµ, γν ]) which one wants to measure
should appear in pairs
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Transversity of the nucleon using hard processes: using a two body final

state process?

How to get access to transversity GPDs?

the dominant DA of ρT is of twist 2 and chiral-odd ([γµ, γν ] coupling)

unfortunately γ∗N↑ → ρT N
′ = 0

This cancellation is true at any order : such a process would require a
helicity transfer of 2 from a photon.

lowest order diagrammatic argument:

γα[γµ, γν ]γα → 0

[Diehl, Gousset, Pire], [Collins, Diehl]
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Transversity of the nucleon using hard processes: using a two body final

state process?

Can one circumvent this vanishing?

This vanishing only occurs at twist 2

At twist 3 this process does not vanish [Ahmad, Goldstein, Liuti], [Goloskokov,

Kroll]

However processes involving twist 3 DAs may face problems with
factorization (end-point singularities)
can be made safe in the high-energy kT −factorization approach

[I. Anikin, D. Ivanov, B. Pire, L.Sz., S.Wallon]

One can also consider a 3-body final state process [D. Ivanov, B. Pire, L.Sz.,

O. Teryaev], [R. Enberg, B. Pire, L. Sz.], [M. El Beiyad, B. Pire, M. Segond, L.Sz,

S. Wallon]
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Probing GPDs using ρ meson + photon production

We consider the process γ N → γ ρN ′

Collinear factorization of the amplitude for γ +N → γ + ρ+N ′

at large M2
γρ

TH

π

φ φ
ρ

t′

M2
γρ →

φ

ρ

t′

x+ ξ x− ξ

t (small)

N N ′

M2
γρ

GPD

TH

large angle factorization
à la Brodsky Lepage
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Probing chiral-even GPDs using ρ meson + photon production

Processes with 3 body final states can give access to chiral-even GPDs

TH

φ

ρL
chiral-even twist 2 DA

t′

x+ ξ x− ξ

t (small)

chiral-even twist 2 GPD

N N ′

M2
γρ

GPD
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Probing chiral-odd GPDs using ρ meson + photon production

Processes with 3 body final states can give access to chiral-odd GPDs

TH

φ

ρT
chiral-odd twist 2 DA

t′

x+ ξ x− ξ

t (small)

chiral-odd twist 2 GPD

N N ′

M2
γρ

GPD
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Probing chiral-odd GPDs using ρ meson + photon production

Processes with 3 body final states can give access to chiral-odd GPDs

How did we manage to circumvent the no-go theorem for 2→ 2 processes?

Typical non-zero diagram for a transverse ρ meson

the σ matrices (from DA and GPD sides) do not kill it anymore!
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Master formula based on leading twist 2 factorization

A ∝
∫ 1

−1

dx

∫ 1

0

dz T (x, ξ, z)×H(x, ξ, t)Φρ(z) + · · ·

Both the DA and the GPD can be
either chiral-even or chiral-odd.

At twist 2 the longitudinal ρ DA is
chiral-even and the transverse ρ DA is
chiral-odd.

Hence we will need both chiral-even
and chiral-odd non-perturbative
building blocks and hard parts.

H ρ

GPD

x + ξ x− ξ

q k

p1 p2

zpρ

(1− z)pρ
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Kinematics

Kinematics to handle GPD in a 3-body final state process

use a Sudakov basis :
light-cone vectors p, n with 2 p · n = s

assume the following kinematics:
∆⊥ ≪ p⊥

M2, m2
ρ ≪ M2

γρ

initial state particle momenta:

qµ = nµ, pµ1 = (1 + ξ) pµ + M2

s(1+ξ)
nµ

final state particle momenta:

pµ2 = (1− ξ) pµ +
M2 + ~∆ 2

t

s(1− ξ) n
µ +∆⊥

kµ = αnµ +
(~pt − ~∆t/2)

2

αs
pµ + pµ⊥ −

∆µ
⊥

2
,

pµρ = αρ n
µ +

(~pt + ~∆t/2)
2 +m2

ρ

αρs
pµ−pµ⊥ −

∆µ
⊥

2
,

H ρ

GPD

x + ξ x− ξ

q k

p1 p2

zpρ

(1− z)pρ

∆ ↓
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Non perturbative chiral-even building blocks

Helicity conserving GPDs at twist 2 :
∫

dz−

4π
eixP

+z−〈p2, λ2|ψ̄q

(

−1

2
z−

)

γ+ψ

(

1

2
z−

)

|p1, λ1〉

=
1

2P+
ū(p2, λ2)

[

Hq(x, ξ, t)γ+ +Eq(x, ξ, t)
iσα+∆α

2m

]

u(p1, λ1)

∫

dz−

4π
eixP

+z−〈p2, λ2|ψ̄q

(

−1

2
z−

)

γ+γ5ψ

(

1

2
z−

)

|p1, λ1〉

=
1

2P+
ū(p2, λ2)

[

H̃q(x, ξ, t)γ+γ5 + Ẽq(x, ξ, t)
γ5∆+

2m

]

u(p1, λ1)

We will consider the simplest case when ∆⊥ = 0.

In that case and in the forward limit ξ → 0 only the Hq and H̃q terms
survive.

Helicity conserving (vector) DA at twist 2 : longitudinal polarization

〈0|ū(0)γµu(x)|ρ0(p, s)〉 =
pµ√
2
fρ

∫ 1

0

du e−iup·xφ‖(u)
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Non perturbative chiral-odd building blocks

Helicity flip GPD at twist 2 :

∫

dz−

4π
eixP

+z−〈p2, λ2|ψ̄q

(

−1

2
z−

)

iσ+iψ

(

1

2
z−

)

|p1, λ1〉

=
1

2P+
ū(p2, λ2)

[

Hq
T (x, ξ, t)iσ

+i + H̃q
T (x, ξ, t)

P+∆i −∆+P i

M2
N

+ Eq
T (x, ξ, t)

γ+∆i −∆+γi

2MN

+ Ẽq
T (x, ξ, t)

γ+P i − P+γi

MN

]

u(p1, λ1)

We will consider the simplest case when ∆⊥ = 0.

In that case and in the forward limit ξ → 0 only the Hq
T

term survives.

Transverse ρ DA at twist 2 :

〈0|ū(0)σµνu(x)|ρ0(p, s)〉 = i√
2
(ǫµρp

ν − ǫνρpµ)f⊥
ρ

∫ 1

0

du e−iup·x φ⊥(u)
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Models for DAs

Asymptotical DAs

We take the asymptotic form of the (normalized) DAs:
conformal symmetry, µ2

F → ∞

φ‖(z) = 6z(1− z) ,

φ⊥(z) = 6z(1− z) .
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Model for GPDs: based on the Double Distribution ansatz

Realistic Parametrization of GPDs

GPDs can be represented in terms of Double Distributions [Radyushkin]

based on the Schwinger representation of a toy model for GPDs which has the structure

of a triangle diagram in scalar φ3 theory

Hq(x, ξ, t = 0) =

∫ 1

−1

dβ

∫ 1−|β|

−1+|β|

dα δ(β + ξα− x) fq(β, α)

ansatz for these Double Distributions [Radyushkin]:

chiral-even sector:

fq(β, α, t = 0) = Π(β, α) q(β)Θ(β) −Π(−β, α) q̄(−β) Θ(−β) ,

f̃q(β, α, t = 0) = Π(β, α)∆q(β)Θ(β) + Π(−β, α)∆q̄(−β) Θ(−β) .

chiral-odd sector:

fq
T
(β, α, t = 0) = Π(β, α) δq(β)Θ(β) − Π(−β, α) δq̄(−β) Θ(−β) ,

Π(β, α) = 3
4

(1−β)2−α2

(1−β)3
: profile function

simplistic factorized ansatz for the t-dependence:

Hq(x, ξ, t) = Hq(x, ξ, t = 0)× FH(t)

with FH(t) = C2

(t−C)2
a standard dipole form factor (C = .71 GeV)
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Model for GPDs: based on the Double Distribution ansatz

Sets of used PDFs

q(x) : unpolarized PDF [GRV-98]

∆q(x) polarized PDF [GRSV-2000]

δq(x) : transversity PDF [Anselmino et al.]
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Model for GPDs: based on the Double Distribution ansatz

Typical sets of chiral-even GPDs

ξ = .1 ↔ SγN = 20 GeV
2 and M2

γρ = 3.5 GeV
2

- 1.0 - 0.5 0.0 0.5 1.0

1

2

3

4

5

6

7

x

1

2
Hu(−)(x, ξ)

- 1.0 - 0.5 0.0 0.5 1.0

1

2

3

4

x

1

2
Hd(−)(x, ξ)

- 1.0 - 0.5 0.5 1.0

- 1.5

- 1.0

- 0.5

0.5

1.0

1.5

x

1

2
H̃u(−)(x, ξ)

- 1.0 - 0.5 0.5 1.0

- 0.6

- 0.4

- 0.2

0.2

0.4

0.6

x

1

2
H̃d(−)(x, ξ)

“valence” and “standard”: two GRSV Ansätze for ∆q(x) 16 / 32
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Model for GPDs: based on the Double Distribution ansatz

Typical sets of chiral-odd GPDs

ξ = .1 ↔ SγN = 20 GeV
2 and M2

γρ = 3.5 GeV
2

- 1.0 - 0.5 0.0 0.5 1.0

0.1

0.2

0.3

0.4

0.5

0.6

x

1

2
H

u(−)
T (x, ξ)

- 1.0 - 0.5 0.5 1.0

- 0.4

- 0.3

- 0.2

- 0.1

x

1

2
H

d(−)
T (x, ξ)

“valence” and “standard”: two GRSV Ansätze for ∆q(x)
⇒ two Ansätze for δq(x)
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Computation of the hard part

20 diagrams to compute

The other half can be deduced by q ↔ q̄ (anti)symmetry
Red diagrams cancel in the chiral-odd case
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Final computation

Final computation

A ∝
∫ 1

−1

dx

∫ 1

0

dz T (x, ξ, z) H(x, ξ, t) Φρ(z)

One performs the z integration analytically
using an asymptotic DA ∝ z(1− z)

One then plugs our GPD models into the
formula and performs the integral w.r.t. x
numerically.

Differential cross section:

dσ

dt du′ dM2
γρ

∣

∣

∣

∣

−t=(−t)min

=
|M|2

32S2
γNM

2
γρ(2π)3

.

|M|2 = averaged amplitude squared

Kinematical parameters: S2
γN , M2

γρ and −u′

H ρ

GPD

x + ξ x− ξ

q k

p1 p2

zpρ

(1− z)pρ
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Fully differential cross section

Chiral even cross section

at −t = (−t)min

1 2 3 4 5
0

1

2

3

4

5

−u′ (GeV2)

dσeven

dM2
γρd(−u′)d(−t) (nb ·GeV−6)

1 2 3 4 5
0 .0

0 .1

0 .2

0 .3

0 .4

0 .5

0 .6

0 .7

−u′ (GeV2)

dσeven

dM2
γρd(−u′)d(−t) (nb ·GeV−6)

proton neutron

SγN = 20 GeV2

M2
γρ = 3, 4, 5, 6 GeV2

solid: “valence” model

dotted: “standard” model
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Fully differential cross section

Chiral odd cross section

at −t = (−t)min

1 2 3 4 5
0 .0

0 .5

1 .0

1 .5

2 .0

2 .5

3 .0

3 .5

−u′(GeV2)

dσodd

dM2
γρd(−u′)d(−t) (pb ·GeV−6)

1 .0 1 .5 2 .0 2 .5 3 .0 3 .5 4 .0 4 .5 5 .0
0 .0

0 .5

1 .0

1 .5

2 .0

−u′(GeV2)

dσodd

dM2
γρd(−u′)d(−t) (pb ·GeV−6)

proton neutron
“valence” and “standard” models, “valence“ model only

each of them with ±2σ [S. Melis]

SγN = 20 GeV2

M2
γρ = 3, 4, 5, 6 GeV2

21 / 32



Introduction Access to GPDs through a 3 body final state Non-perturbative ingredients Computation Results Conclusion

Phase space integration

Evolution of the phase space in (−t,−u′) plane

large angle scattering: M2
γρ ∼ −u′ ∼ −t′

in practice: −u′ > 1 GeV2 and −t′ > 1 GeV2 and (−t)min 6 −t 6 .5 GeV2

this ensures large M2
γρ

example: SγN = 20 GeV2

0 .0 0 .1 0 .2 0 .3 0 .4 0 .5
0 .0

0 .2

0 .4

0 .6

0 .8

1 .0

1 .2

−t

−u′

0 .0 0 .1 0 .2 0 .3 0 .4 0 .5
0 .0

0 .2

0 .4

0 .6

0 .8

1 .0

1 .2

1 .4

−t

−u′

0 .0 0 .1 0 .2 0 .3 0 .4 0 .5
0 .0

0 .5

1 .0

1 .5

2 .0

−t

−u′

Mγρ = 2.2 GeV2 M2
γρ = 2.5 GeV2 Mγρ = 3 GeV2

0 .0 0 .1 0 .2 0 .3 0 .4 0 .5
0

1

2

3

4

−t

−u′

0 .0 0 .1 0 .2 0 .3 0 .4 0 .5
0

1

2

3

4

5

6

7

−t

−u′

0 .0 0 .1 0 .2 0 .3 0 .4 0 .5
0

2

4

6

8

−t

−u′

Mγρ = 5 GeV2 Mγρ = 8 GeV2 Mγρ = 9 GeV2
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Single differential cross section

Chiral even cross section

3 4 5 6 7 8 9

0 .05

0 .10

0 .15

0 .20

0 .25

0 .30

M2
γρ (GeV2)

dσeven

dM2
γρ

(nb ·GeV−2)

3 4 5 6 7 8 9

0 .005

0 .010

0 .015

0 .020

0 .025

0 .030

0 .035

M2
γρ (GeV2)

dσeven

dM2
γρ

(nb ·GeV−2)

proton neutron
“valence” scenario

SγN vary in the set 8, 10, 12, 14, 16, 18, 20 GeV2 (from left to right)

23 / 32



Introduction Access to GPDs through a 3 body final state Non-perturbative ingredients Computation Results Conclusion

Single differential cross section

Chiral odd cross section

2 4 6 8 10
0 .00

0 .05

0 .10

0 .15

0 .20

M2
γρ (GeV2)

dσodd

dM2
γρ

(pb ·GeV−2)

SγN = 20GeV2

Various ansätze for the PDFs ∆q used to build the GPD HT :

dotted curves: “standard” scenario

solid curves: “valence” scenario

deep-blue and red curves: central values

light-blue and orange: results with ±2σ.
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Single differential cross section

Chiral odd cross section

3 4 5 6 7 8 9

0 .05

0 .10

0 .15

0 .20

0 .25

0 .30

M2
γρ(GeV2)

dσodd

dM2
γρ

(pb ·GeV−2)

proton, “valence” scenario

SγN vary in the set 8, 10, 12, 14, 16, 18, 20 GeV2 (from left to right)
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Integrated cross-section

Chiral even cross section

5 10 15 20

0 .2

0 .4

0 .6

0 .8

SγN (GeV2)

σeven (nb)

5 10 15 20

0 .02

0 .04

0 .06

0 .08

0 .10

SγN (GeV2)

σeven (nb)

proton neutron

solid red: “valence” scenario

dashed blue: “standard” one
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Integrated cross-section

Chiral odd cross section

5 10 15 20

0 .1

0 .2

0 .3

0 .4

0 .5

0 .6

SγN (GeV2)

σodd (pb)

5 10 15 20

0 .1

0 .2

0 .3

0 .4

SγN (GeV2)

σodd (pb)

proton neutron

solid red: “valence” scenario

dashed blue: “standard” one
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Counting rates for 100 days

example: JLab Hall B

untagged incoming γ ⇒ Weizsäcker-Williams distribution

With an expected luminosity of L = 100 nb−1s−1, for 100 days of run:

Chiral even case : ≃ 6.8 106 ρL .

Chiral odd case : ≃ 7.5 103 ρT
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Effects of an experimental angular restriction for the produced γ?

Angular distribution of the produced γ (chiral-even cross section)

after boosting to the lab frame

0 10 20 30 40
0 .00

0 .02

0 .04

0 .06

0 .08

0 .10

θ

1

σeven

dσeven

dθ

0 5 10 15 20 25 30 35
0 .00

0 .05

0 .10

0 .15

θ

1

σeven

dσeven

dθ

0 5 10 15 20 25 30
0 .00

0 .05

0 .10

0 .15

0 .20

θ

1

σeven

dσeven

dθ

SγN = 10 GeV2 SγN = 15 GeV2 SγN = 20 GeV2

M2
γρ = 3, 4 GeV2 M2

γρ = 3, 4, 5 GeV2 M2
γρ = 3, 4, 5 GeV2

JLab Hall B detector equipped between 5◦ and 35◦

⇒ this is safe!
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Effects of an experimental angular restriction for the produced γ?

Angular distribution of the produced γ (chiral-odd cross section)

after boosting to the lab frame

0 10 20 30 40
0 .00

0 .05

0 .10

0 .15

0 .20

θ

1

σodd

dσodd

dθ

0 10 20 30 40
0 .00

0 .05

0 .10

0 .15

0 .20

0 .25

θ

1

σodd

dσodd

dθ

0 10 20 30 40
0 .00

0 .05

0 .10

0 .15

0 .20

0 .25

0 .30

0 .35

θ

1

σodd

dσodd

dθ

SγN = 10 GeV2 SγN = 15 GeV2 SγN = 20 GeV2

M2
γρ = 3, 4 GeV2 M2

γρ = 3.5, 5, 6.5 GeV2 M2
γρ = 4, 6, 8 GeV2

JLab Hall B detector equipped between 5◦ and 35◦

⇒ this is safe!
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Conclusion

High statistics for the chiral-even component: enough to extract H (H̃?)
and test the universality of GPDs

In this chiral-even sector: analogy with Timelike Compton Scattering, the
γρ pair playing the role of the γ∗.

Strong dominance of the chiral-even component w.r.t. the chiral-odd one:

In principle the separation ρL/ρT can be performed by an angular analysis
of its decay products, but this could be very challenging.
Cuts in θγ might help
Future: study of polarization observables ⇒ sensitive to the interference of
these two amplitudes

The Bethe Heitler component (outgoing γ emitted from the incoming
lepton) is:

zero for the chiral-odd case
suppressed for the chiral-even case

Our result can also be applied to electroproduction (Q2 6= 0) after adding
Bethe-Heitler contributions and interferences.

Possible measurement at JLAB (Hall B, C, D)

A similar study could be performed at COMPASS. EIC, LHC in UPC?
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MERCI POUR VOTRE ATTENTION
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