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1. Introduction/Motivations

Speci�cally: unconventional resummation of perturbative expansions

Versatile: relevant both at T = 0 or T ̸= 0 (and/or �nite density)

Here, addressing only T = 0 QCD:
previous context: estimate with our approach the order parameter
Fπ(mq = 0)/ΛQCD

MS
:

Fπ ≃ 92.2MeV → Fπ(mq = 0) → Λ
nf =3

MS
→ αMS

S (µ = mZ ).

N3LO: F
mq=0

π /Λ
nf =3

MS
≃ 0.25± .01 → αS(mZ ) ≃ 0.1174± .001± .001

(JLK, A.Neveu, PRD88 (2013))

(compares well with latest (2016) αS lattice and world average values

[PDG2016])

Here: applied to ⟨q̄q⟩ at N3LO (using spectral density of Dirac operator):

⟨q̄q⟩1/3mq=0
(2GeV) ≃ −(0.84± 0.01)ΛMS (JLK, A.Neveu, PRD 92 (2015))



Chiral Symmetry Breaking Order parameters
-Well-known facts:
1. ⟨q̄q⟩1/3, Fπ,... ∼ O(ΛQCD) ≃ 330 MeV
→ large αS at very low scale → invalidates perturbative expansion

2. Fπ, ⟨q̄q⟩,... anyway vanishing in standard perturbation:
e.g. ⟨q̄q⟩pert ∼ m3

q

∑
n,p α

n
s ln

p(mq) → 0 for mq → 0
at any perturbative order (trivial chiral limit)

→ CSB parameters are �intrinsically NON perturbative�

-Optimized perturbation (OPT): basically an (old) trick to circumvent 2.:
gives a nontrivial result for mq → 0, starting from perturbative content.

-Our more recent RG(OPT): reconciles OPT with RG invariance;
+ appears to partly circumvents 1.

⟨q̄q⟩: indirect determination from Gell-Mann Oakes Renner (GMOR)
relation: F 2

πm
2
π = −(mu +md)⟨q̄q⟩+O(m2); (mu,d from lattice or

spectral sum rules).
Or directly in simpli�ed e�ective models (Nambu-Jona-Lasinio,
approximated Schwinger-Dyson Eqs.,...)
or directly, on the lattice (many works, most recent: Engel et al '14)



2. (Variationally) Optimized Perturbation (OPT)

Trick: add and subtract a mass, consider m δ as interaction:

LQCD(g ,m) → LQCD(δ g ,m(1− δ)) (in QCD g ≡ 4παS)

where 0 < δ < 1 interpolates between Lfree and massless Lint ;
e.g. (quark) mass mq → m: arbitrary trial parameter

• Take any standard (renormalized) QCD pert. series, expand in δ after:

mq → m (1− δ); g → δ g
then take δ → 1 (to recover original massless theory):

•BUT a m-dependence remains at any �nite δk -order:
�xed typically by optimization (OPT):
∂
∂m (physical quantity) = 0 for m = m̃opt(g) ̸= 0:

•Exhibits dimensional transmutation: m̃opt ∼ µ e−1/(β0g)

•At T ̸= 0 same basic idea dubbed �screened perturbation� (SPT), or
�hard thermal loop resummation�,...

But does this 'cheap trick' always work? and why?



Expected behaviour (Ideally)

Physical quantity

OPT 1st order

2d order

3rd order etc...

m0

Exact result
(non−perturbative)

O(Λ )

But not quite what happens... (except in simple oscillator model)
Most calculations (e.g T ̸= 0) (very) di�cult beyond �rst order:
→ what about convergence?

Main pb at higher order: OPT: ∂m(...) = 0 has multi-solutions (some
complex!), how to choose right one, if no nonperturbative �insight�?



Simpler model's support + properties

•Convergence proof of this procedure for D = 1 λϕ4 oscillator
(cancels large pert. order factorial divergences!) (Guida et al '95)

particular case of 'order-dependent mapping' (Seznec +Zinn-Justin '79)
(exponentially fast convergence for ground state energy E0 = const.λ1/3;
good to % level at second δ-order)

•In renormalizable Field Theories: applied on V
1−loop
e� , �rst δ-order

equivalent to large N approximation.
Also, produces factorial damping at large pert. orders (JLK, Reynaud '02 )

•Flexible approach: many variants exist, specially at T ̸= 0:
'screened perturbation', 'hard thermal loop', ...

•At T ̸= 0 our recent, RG-compatible approach, sensibly improves the
generically unstable + badly scale-dependent thermal perturbative
expansions (JLK, M.B Pinto, 1507.03508 PRL 116, 1508.02610)



3. RG compatible OPT (≡ RGOPT)

Our main additional ingredient to OPT (JLK, A. Neveu 2010):

Consider a �physical� quantity P(m, g) (i.e. perturbatively RG invariant)
( in present context P(m, g) ≡ m⟨q̄q⟩(m, g)):

in addition to OPT Eq: ∂
∂m

P(k)(m, g , δ = 1)|m≡m̃ ≡ 0,
Require (δ-modi�ed!) series at order δk to satisfy a standard
(perturbative) Renormalization Group (RG) equation:

RG
(
P(k)(m, g , δ = 1)

)
= 0

with standard RG operator (g ≡ 4παS for QCD):

RG ≡ µ
d

d µ
= µ

∂

∂µ
+ β(g)

∂

∂g
− γm(g)m

∂

∂m

β(g) ≡ −2b0g
2 − 2b1g

3 + · · · , γm(g) ≡ γ0g + γ1g
2 + · · ·

→ Additional nontrivial constraint (even if started from RG invariant
standard perturbation)



RG compatible OPT (RGOPT)

→ Combined with OPT, RG Eq. reduces to massless form:[
µ

∂

∂µ
+ β(g)

∂

∂g

]
P(k)(m, g , δ = 1) = 0

Note: using OPT AND RG completely �x m ≡ m̃ and g ≡ g̃ .

But ΛMS(g) satis�es by def.:
[µ ∂

∂µ + β(g) ∂
∂g ] ΛMS ≡ 0 consistently at a given pert. order for β(g).

Thus equivalent to:

∂

∂m

(
Pk(m, g , δ = 1)

ΛMS(g)

)
= 0 ;

∂

∂ g

(
Pk(m, g , δ = 1)

ΛMS(g)

)
= 0 for m̃, g̃

Sort of �virtual� (variational) �xed point (but with β(g) ̸= 0!)
Optimal m̃, g̃ = 4πα̃S unphysical: �nal (physical) result from P(m̃, g̃)

It reproduces at �rst order exact nonperturbative results in simpler
models [e.g. Gross-Neveu model]



OPT + RG = RGOPT main new features

•Previous works: embarrassing a priori freedom in interpolating form:
why not m → m (1− δ)a , with arbitrary a?
Most previous works: linear case a = 1 invoked for simplicity
but (we have shown) a = 1 generally spoils RG invariance!

•OPT,RG Eqs: many solutions (often complex) at increasing δk -orders

→ Our approach restores RG, + forces OPT, RG sol. to match standard
perturbation (e.g. Asymptotic Freedom for QCD): αS → 0, µ → ∞:
g̃ = 4πα̃S ∼ 1

2b0 ln
µ
m̃
+ · · ·

→ At arbitrary order, AF-compatible RG + OPT branch, often unique,
only appear for a critical universal exponent a:

m → m (1− δ)
γ0
2b0 (e.g. γ0

2b0
(QCD, nf = 3) = 4

9
)

→ Goes beyond simple �add and subtract mass� trick
+ Removes spurious solutions incompatible with AF
− But, does not always avoid complex solutions
(if such (perturbative artifacts) occur, they are possibly cured by
renormalization scheme change [JLK, Neveu '13])



Digression: pre-QCD guidance: Gross-Neveu model

•D = 2 O(2N) GN model shares many properties with QCD (asymptotic
freedom, (discrete) chiral sym., mass gap,..)

LGN = Ψ̄i ̸∂Ψ+ g0
2N

(
∑N

1
Ψ̄Ψ)2 (massless)

Standard mass-gap (massless, large N approx.):

work out Ve� (σ ∼ ⟨Ψ̄Ψ⟩) ∼ σ2

2g
+ Tr ln(i /∂ − σ);

∂Ve�
∂σ = 0: → σ ≡ M = µe−

2π
g ≡ ΛMS

•Mass gap also known exactly for any N:

Mexact(N)

ΛMS

=
(4e)

1
2N−2

Γ[1− 1

2N−2
]

(From D = 2 integrability: Bethe Ansatz) Forgacs et al '91



Massive (large N) GN model

M(m, g) ≡ m(1+ g ln M
µ )−1: Resummed mass (g/(2π) → g)

= m(1− g ln m
µ + g2(ln m

µ + ln2 m
µ ) + · · · ) (pert. re-expanded)

• Only fully resummed M(m, g) gives right result, upon:

-identifying Λ ≡ µe−1/g ; → M(m, g) = m
g ln

M
Λ

≡ m̂
ln

M
Λ

;

-taking reciprocal: m̂ = M ln M
Λ → M(m̂ → 0) ∼ m̂

m̂/Λ+O(m̂2) = Λ

never seen in standard perturbation: Mpert(m → 0) → 0!

•Now (RG)OPT gives M = Λ at �rst (and any) δ-order!
(at any order, OPT sol.: ln m̃

µ = − 1

g̃
, RG sol.: g̃ = 1 )

•At δ2-order (2-loop), RGOPT ∼ 1− 2% from Mexact(anyN)

•Not speci�c to GN model: generalize to any model:
RG, OPT solutions at �rst (and all) orders:
ln m̃

µ = − γ0
2b0

; g̃ = 1

γ0
correctly resums pure RG LL, NLL,... (as far as

b0, γ0 dependence concerned).



4. Perturbative QCD quark condensate

Chiral symmetry breaking order parameter:
SU(nf )L × SU(nf )R → SU(nf )L+R , nf massless quarks. (nf = 2, 3)

Perturbative result known to 3 loops (Chetyrkin et al '94; Chetyrkin
+Maier, private comm.)

x x x

x x

m ⟨q̄q⟩(m, g)MS = 3 m4

2π2

[
1

2
− Lm + g

π2 (L
2
m − 5

6
Lm + 5

12
)

+( g
16π2 )

2[f30(nf )L
3
m + f31(nf )L

2
m + f32(nf )Lm + f33(nf )]

]
(Lm ≡ ln m

µ )

NB: �nite part (after mass + coupling renormalization) not separately
RG-inv: (i.e. m⟨q̄q⟩ mixes with m4 1 operator: related to vacuum
energy anomalous dimension)



First attempt: direct RGOPT of m⟨q̄q⟩?
In principle one may apply RGOPT directly on the (RG-invariant)
expression m⟨q̄q⟩(m, g):

�rst order (one-loop): no nontrivial common OPT +RG solution...

Higher RGOPT orders (2- and 3-loops): right order of magnitude, but
ambiguous: plagued by large, unphysical, imaginary parts
→ no conclusive stability/convergence trend (appears slow at best)

Problems traced to strong sensitivity to (vacuum energy) anomalous
dimensions, related to original quadratic divergences of the condensate:

with a cuto� the (dominant) one-loop quadratic divergence has correct
(negative) sign (pillar of the success of Nambu-Jona-Lasinio model!)
but sign �ips in dimensional regularization + MS

Yet important to keep bene�ts of MS: high order true QCD perturbative
calculations available: crucial for stability/convergence check.

→ Like with any other variational methods, sensible to start from a
suitable quantity to optimize: here the spectral density of the Dirac
operator, intimately related to ⟨q̄q⟩.



4. ⟨q̄q⟩ and Spectral density ρ(λ)

Euclidean Dirac operator:
i /D un(x) = λn un(x); /D ≡ /∂ + g /A ;
NB i /D (γ5un(x)) = −λn (γ5un(x))

On a lattice: ρ(λ) ≡ 1

V
⟨
∑

n δ(λ− λ
[A]
n )⟩A

V → ∞: spectrum becomes dense, and

⟨q̄q⟩ ≡ 1

V
Tr 1

m+ /D
→ ⟨q̄q⟩V→∞(m) ≡ −2m

∫∞
0

dλ ρ(λ)
λ2+m2

ρ(λ): spectral density of the (euclidean) Dirac operator.

Banks-Casher relation (1980): ⟨q̄q⟩(m → 0) ≡ −πρ(0)
(using e.g. limm→0

1

m−iλ = i PV ( 1λ ) + πδ(λ))

'Washes out' large λ problems (e.g. quadratic UV divergences)

Conversely: −ρ(λ) = 1

2π (⟨q̄q⟩(iλ+ ϵ)− ⟨q̄q⟩(iλ− ϵ)) |ϵ→0

i.e. ρ(λ) determined by discontinuities of ⟨q̄q⟩(m) across imaginary axis.

Perturbative expansion: → ln(m → iλ) discontinuities
→ no contributions from divergence and non-log terms (like anom. dim.)



Adapting OPT and RG Eqs. to spectral density
• Perturbative logarithmic discontinuities simply from

lnn
(
m

µ

)
→ 1

2iπ

[(
ln

|λ|
µ

+ i
π

2

)n

−
(
ln

|λ|
µ

− i
π

2

)n]
(1)

i .e. ln
(
m
µ

)
→ 1/2; ln2

(
m
µ

)
→ ln |λ|

µ ; ln3
(
m
µ

)
→ 3

2
ln2 |λ|

µ − π2

8
; · · ·

• Modi�ed perturbation: intuitively λ plays the role of m, so:

ρpert(λ, g) → ρopt(λ(1− δ)
4
3

γ0
2b0 , δg) ; expand in δ ; δ → 1 (2)

• OPT Eq.: ∂

∂λ
ρopt(g , λ) = 0 for λ = λ̃opt(g) ̸= 0 (3)

• Using ∂
∂m

m
λ2+m2 = − ∂

∂λ
λ

λ2+m2 , one �nds ρ(λ) obeys RG eq.:[
µ

∂

∂µ
+ β(g)

∂

∂g
− γm(g)λ

∂

∂λ
− γm(g)

]
ρ(g , λ) = 0 (4)

→ well-de�ned RGOPT recipe: -⟨q̄q⟩pert(m, g) → ρpert(λ, g) from (1);

-perform (2); -solve (3), (4) for optimal λ̃, g̃ ;
then ρ(λ̃, g̃) ≃ ρ(0) ≡ −⟨q̄q⟩(mq = 0)/π.



RG and OPT solutions

NB ⟨q̄q⟩pert exactly known at present up to 3-loop α2

S order.
But 1) RG properties determine next (4-loop) α3

S lnp(m/µ) coe�cients,
2) by def. non-logarithmic terms do not contribute to spectral density
ρpert(λ): → we obtain ρpert(λ) exactly to 4-loop!
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RG 4-loop solutions

Optimized solutions

S

Ln ( λ /µ)

α

RGOPT solution

Asymptotically free branches



5. RGOPT 2,3,4-loop results for ⟨q̄q⟩ (nf = 2, 3)

Real, unique AF-compatible solutions are obtained:
nf = 2:

δk , RG order ln λ̃
µ α̃S

−⟨q̄q⟩1/3

Λ̄2
(µ̃) µ̃

Λ̄2

−⟨q̄q⟩1/3RGI

Λ̄2
δ, RG 2-loop −0.45 0.480 0.822 2.8 0.821
δ2, RG 3-loop −0.703 0.430 0.794 3.104 0.783
δ3, RG 4-loop −0.820 0.391 0.796 3.446 0.773

nf = 3:

δk order ln λ̃
µ α̃S

−⟨q̄q⟩1/3

Λ̄3
(µ̃) µ̃

Λ̄3

−⟨q̄q⟩1/3RGI

Λ̄3
δ, RG 2-loop −0.56 0.474 0.799 3.06 0.789
δ2, RG 3-loop −0.788 0.444 0.780 3.273 0.766
δ3, RG 4-loop −0.958 0.400 0.773 3.700 0.744

NB: ⟨q̄q⟩RGI = ⟨q̄q⟩(µ) (2b0 g)
γ0
2b0

(
1+ ( γ1

2b0
− γ0 b1

2b20
) g + · · ·

)
• stability/convergence exhibited;
• already realistic at �rst nontrivial (2-loop) order



Evolution to (standard) reference scale µ = 2 GeV

⟨q̄q⟩(µ′ = 2GeV ) = ⟨q̄q⟩(µ̃) exp[
∫ g(2GeV )

g(µ̃)
dg

γm(g)
β(g) ]

(equivalently extract from ⟨q̄q⟩RGI with αS(2GeV) ≃ 0.305± 0.004)
(NB for nf = 3 account for αS(µ ∼ mc) threshold e�ects)

−⟨q̄q⟩1/3nf =2
(2GeV) = (0.833(4−loop) − 0.845(3−loop))Λ̄2

−⟨q̄q⟩1/3nf =3
(2GeV) = (0.814(4−loop) − 0.838(3−loop))Λ̄3

•Discrepancy between 3- and 4-loop results de�ne our 'intrinsical'
(RGOPT) theoretical error, ∼ 1− 2%



Comparison with other nonperturbative results
nf = 2: using most precise Λ̄2 lattice result: Λ̄2 = 331± 21
(quark potential, Karbstein et al '14):

−⟨q̄q⟩1/3nf =2
(2GeV ) ≃ 278± 2(rgopt)± 18(Λ̄2)MeV

•compares rather well (within uncertainties) with latest:
-lattice (Engel et al '14, from spectral density):

−⟨q̄q⟩1/3nf =2
(µ = 2GeV) = 261± 6± 8 MeV

-spectral sum rules (latest, Narison '14): −⟨ūu⟩1/3 ∼ 276± 7 MeV
(but sum rules indirect: determine mu,d , then use GMOR relation
F 2
πm

2
π = −(mu +md)⟨q̄q⟩)

•nf = 3: using 2016 worl average (PDG):
ᾱS(mZ ) = 0.118± 0.0013 → Λ̄wa

3
≃ 330± 20MeV :

−⟨q̄q⟩1/3nf =3
(2GeV , Λ̄wa

3
) ≃ 273± 4(rgopt)± 16(Λ̄3)MeV

Alternatively we also obtain parameter-free RG-invariant results:

−⟨q̄q⟩1/3RGI,nf =2

F
= 3.25± 0.02+0.35

−0.24;
−⟨q̄q⟩1/3RGI,nf =3

F0
= 3.04± 0.04+0.14

−0.07,

⟨q̄q⟩1/3RGI,nf =3

⟨q̄q⟩1/3RGI,nf =2

≃ (0.97± 0.01) Λ̄3
Λ̄2

≃ (0.94± 0.01± 0.12) F0
F



Conclusion, prospects
•OPT gives a simple procedure to resum perturbative expansions, using
only perturbative information.

•Our RGOPT version includes 2 major di�erences w.r.t. most previous
similar approaches:

1) OPT+ RG minimizations �x optimized m̃ and g̃ = 4πα̃S
2) Requiring AF-compatible solutions uniquely �xes the basic
interpolation m → m(1− δ)γ0/(2b0): discards spurious solutions and
accelerates convergence.

•Application to spectral density: πρ(λ = 0) ≡ −⟨q̄q⟩m→0 :

•Intrinsical RGOPT theoretical error (3-4 loop): <∼ 2%

•We �nd a moderate reduction of nf = 3 |⟨q̄q⟩| w.r.t. nf = 2

•�nal accuracy only limited due to not so precise Λ̄2 (mostly), Λ̄3

•Prospects: T = 0: extend our approach to calculate other order
parameters of chiral sym. breaking (coe�cients of chiral PT typically), or
at T ̸= 0: applications to Quark Gluon Plasma (works in progress)


