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1. Introduction/Motivations

Specifically: unconventional resummation of perturbative expansions

Versatile: relevant both at T =0 or T # 0 (and/or finite density)

Here, addressing only T =0 QCD:

previous context: estimate with our approach the order parameter
Fr(mg = 0)/AEP:

Fr ~ 92.2MeV — Fr(mg = 0) — AJ =3 ¥ (= mz).

N3LO: :’-_7?"’:0//\";'7’_‘_‘:3 ~0.25+ .01 — as(mz) ~ 0.1174 £+ .001 £ .001
(JLK, A.Neveu, PRDS8 (2013))

(compares well with latest (2016) s lattice and world average values
[PDG2016])

Here: applied to (gq) at N3LO (using spectral density of Dirac operator):
(Gq)23 (2GeV) ~ —(0.84 £ 0.01)Ags  (JLK, A.Neveu, PRD 92 (2015))

mg=0



Chiral Symmetry Breaking Order parameters

-Well-known facts:
1. (Gq)Y/3, Fr.... ~ O(Agep) =~ 330 MeV
— large as at very low scale — invalidates perturbative expansion

2. Fr, (gq),... anyway vanishing in standard perturbation:
eg (Gq)pert ~ m} >, alln®(mg) — 0 for my — 0
at any perturbative order (trivial chiral limit)

— CSB parameters are “intrinsically NON perturbative”

-Optimized perturbation (OPT): basically an (old) trick to circumvent 2.:
gives a nontrivial result for my — 0, starting from perturbative content.

-Our more recent RG(OPT): reconciles OPT with RG invariance;
+ appears to partly circumvents 1.

(gq): indirect determination from Gell-Mann Oakes Renner (GMOR)
relation: F2m2 = —(m, + m4){(Gq) + O(m?); (my 4 from lattice or
spectral sum rules).

Or directly in simplified effective models (Nambu-Jona-Lasinio,
approximated Schwinger-Dyson Egs.,...)

or directly, on the lattice (many works, most recent: Engel et al '14)



. (Variationally) Optimized Perturbation (OPT)

Trick: add and subtract a mass, consider mJ as interaction:

Lqco(g,m) = Locp(dg, m(1 —4)) (in QCD g = 4mas)

where 0 < 6 < 1 interpolates between Lee and massless Lip:;
e.g. (quark) mass my — m: arbitrary trial parameter

e Take any standard (renormalized) QCD pert. series, expand in 0 after:
mg—m(l—-90); g—dg
then take 6 — 1 (to recover original massless theory):

eBUT a m-dependence remains at any finite §%-order:
fixed typically by optimization (OPT):

2 (physical quantity) = 0 for m = ep(g) # 0
eExhibits dimensional transmutation: gy, ~ 1 e~/ (Po8)

oAt T # 0 same basic idea dubbed “screened perturbation” (SPT), or
“hard thermal loop resummation”,...

But does this 'cheap trick’ always work? and why?



Expected behaviour (Ideally)

Physical quantity

Exact result
2d order (non—perturbative)

/

3rd order  ©fC--

OPT 1st order

o(A)

But not quite what happens... (except in simple oscillator model)
Most calculations (e.g T # 0) (very) difficult beyond first order:
— what about convergence?

Main pb at higher order: OPT: 9,,(...) = 0 has multi-solutions (some
complex!), how to choose right one, if no nonperturbative “insight™?



Simpler model’s support + properties

eConvergence proof of this procedure for D = 1 \¢* oscillator
(cancels large pert. order factorial divergences!) (Guida et al '95)

particular case of 'order-dependent mapping' (Seznec +Zinn-Justin '79)
(exponentially fast convergence for ground state energy Ey = const.\/3;
good to % level at second d-order)

eln renormalizable Field Theories: applied on Velfr_lo"p, first 5-order
equivalent to large N approximation.
Also, produces factorial damping at large pert. orders ik, reynaud ‘02 )

oFlexible approach: many variants exist, specially at T # 0:
'screened perturbation’, 'hard thermal loop’, ...

oAt T £ 0 our recent, RG-compatible approach, sensibly improves the
generically unstable + badly scale-dependent thermal perturbative

expansions (JLK, M.B Pinto, 1507.03508 PRL 116, 1508.02610)



3. RG compatible OPT (= RGOPT)

Our main additional ingredient to OPT (JLK, A. Neveu 2010):

Consider a “physical" quantity P(m, g) (i.e. perturbatively RG invariant)
(in present context P(m, g) = m(gq)(m, g)):

in addition to OPT Eq: 52 P )(m, g,6 = 1)| = =0,
Require (d-modified!) series at order 6% to satisfy a standard
(perturbative) Renormalization Group (RG) equation:

RG (P(k)(m,g,(5 = 1)) =0

with standard RG operator (g = 4mwas for QCD):

40 P 0
RG:/LTN—H@+B(g)@_7m(g)m%
B(g) = —2bog? —2b1g% + -+, Ym(g) =08 + M8&* + -

— Additional nontrivial constraint (even if started from RG invariant
standard perturbation)



RG compatible OPT (RGOPT)

— Combined with OPT, RG Eq. reduces to massless form:

{ §+5( ) g] PO (m, g, 6 =1) =0

Note: using OPT AND RG completely fix m = /m and g = &.

But Aws(g) satisfies by def.:
[,u% + B(g)%] Aas = 0 consistently at a given pert. order for 5(g).

Thus equivalent to:

a(’W): . 3(Pk(mga5=1)
Om Nvis(g) " g Nas(g)

Sort of "virtual” (variational) fixed point (but with 5(g) # 0!)
Optimal /m, g = 4wés unphysical: final (physical) result from P(m, &)

):Oforfn,g

It reproduces at first order exact nonperturbative results in simpler
models [e.g. Gross-Neveu model]



OPT 4+ RG = RGOPT main new features

ePrevious works: embarrassing a priori freedom in interpolating form:
why not m — m (1 —§)?, with arbitrary a?

Most previous works: linear case a = 1 invoked for simplicity

but (we have shown) a = 1 generally spoils RG invariance!

eOPT,RG Egs: many solutions (often complex) at increasing d%-orders

— Our approach restores RG, + forces OPT, RG sol. to match standard
perturbation (e.g. Asymptotic Freedom for QCD): as — 0, p — oc:
g:zm@stJr...

— At arbitrary order, AF-compatible RG + OPT branch, often unique,
only appear for a critical universal exponent a:

m—)m(1—5)2”o (e.g. 72(QCD,nf=3) = 2)

— Goes beyond simple “add and subtract mass” trick

-+ Removes spurious solutions incompatible with AF

— But, does not always avoid complex solutions

(if such (perturbative artifacts) occur, they are possibly cured by
renormalization scheme change [JLK, Neveu '13])



Digression: pre-QCD guidance: Gross-Neveu model

oD =2 O(2N) GN model shares many properties with QCD (asymptotic
freedom, (discrete) chiral sym., mass gap,..)

Loy = Vi JU + £V UW)? (massless)
Standard mass-gap (massless, large N approx.):

work out Veg (o ~ (WW)) ~ % + Trin(i @ — o);

Wer — —>0’EM=/,L€727WE/\W

eMass gap also known exactly for any N:

Mexact(N) _ (4e)70=
N ML — 571

(From D = 2 integrability: Bethe Ansatz) Forgacs et al '91



Massive (large N) GN model

M(m, g) = m(1 +gIn )71 Resummed mass (g/(27) — g)
=m(l—ghn (In +In? 2)+-++) (pert. re-expanded)

e Only fully resummed M(m, g) gives right result, upon:

“identifying A = pe~&; — M(m,g) = =2 = 1.

gln & In &
-taking reciprocal: 1= M In ¥ — M(m — 0) ~

m//\+"<79(m2) =A

never seen in standard perturbation: Mpe.(m — 0) — 0!

eNow (RG)OPT gives M = A at first (and any) d-order!
(at any order, OPT sol.: In % = —1 RGsol:g=1)

o

oAt §%-order (2-loop), RGOPT ~ 1 — 2% from Mexac:(anyN)

eNot specific to GN model: generalize to any model:
RG, OPT solutions at first (and all) orders:

In % = —32; &= o correctly resums pure RG LL, NLL,... (as far as

bo, 70 dependence concerned).



4. Perturbative QCD quark condensate

Chiral symmetry breaking order parameter:
SU(nf)L x SU(nf)r — SU(nf) LR, ne massless quarks. (nf = 2,3)

Perturbative result known to 3 loops (Chetyrkin et al '94; Chetyrkin

+Maier, private comm.)
O 0 O
®» ©@

m (Gq)(m, g)ws = 325 [ — Lo+ & (L2 — SLm+ )
+(5&2)2[Fo(ne) L3, + Far(ne) L2, + Fia(ne) L + Fi3(ny)]]

(Lm =1In )

NB: finite part (after mass + coupling renormalization) not separately
RG-inv: (i.e. m{gq) mixes with m* 1 operator: related to vacuum
energy anomalous dimension)



First attempt: direct RGOPT of m(gq)?

In principle one may apply RGOPT directly on the (RG-invariant)
expression m(gq)(m, g):

first order (one-loop): no nontrivial common OPT +RG solution...

Higher RGOPT orders (2- and 3-loops): right order of magnitude, but
ambiguous: plagued by large, unphysical, imaginary parts
— no conclusive stability/convergence trend (appears slow at best)

Problems traced to strong sensitivity to (vacuum energy) anomalous
dimensions, related to original quadratic divergences of the condensate:

with a cutoff the (dominant) one-loop quadratic divergence has correct
(negative) sign (pillar of the success of Nambu-Jona-Lasinio modell)
but sign flips in dimensional regularization + MS

Yet important to keep benefits of MS: high order true QCD perturbative
calculations available: crucial for stability/convergence check.

— Like with any other variational methods, sensible to start from a
suitable quantity to optimize: here the spectral density of the Dirac
operator, intimately related to (gq).



4. (gq) and Spectral density p(A)

Euclidean Dirac operator:
’D Un(X) =\ Un(X); [DEa+gA ;
NB i D (ysun(x)) = —Xn (75Ua(x))

On a lattice: p(A) = L(3>, 0(A — ALA]»A

V — 0o: spectrum becomes dense, and
(@9) = & Trts = (@a)vooo(m) = —2m [ dA22L

p(N): spectral density of the (euclidean) Dirac operator.

Banks-Casher relation (1980): (gq)(m — 0) = —7p(0)
(using e.g. limpo —2~ =i PV(3) 4+ m6(N))

"Washes out’ large A problems (e.g. quadratic UV divergences)

Conversely: —p(A) = 2 (()(iA + ) — (G0 (A — €)) o
i.e. p(A\) determined by discontinuities of (gq)(m) across imaginary axis.

Perturbative expansion: — In(m — i)) discontinuities
— no contributions from divergence and non-log terms (like anom. dim.)



Adapting OPT and RG Egs. to spectral density

e Perturbative logarithmic discontinuities simply from

R R I

ie. In —1/2; In*(= SR (m) 5322
H H Iz 2 H 8
e Modified perturbatlon: intuitively A plays the role of m, so:

4
3

Ppert(X, &) = popt(A(1 —0) :T‘L, 0g); expandind; d -1 (2)

. 0 .
* OPT Eq.: 5Popt(gﬁ)‘) =0for A = Aopt(g) # 0 (3)
e Using %W"’mz = —%ﬁ, one finds p(\) obeys RG eq.:
1o} 0 8
po +BE) 5 —im(g) At —m(g)| g A) =0 (4)
u og

— well-defined RGOPT recipe: —(qq),,e,t( ,8) = ppert(A, g) from (1);
-perform (2); -solve (3), (4) for optimal X &

then p(A, &) ~ p(0) = —(gq)(mq = 0)/m.



RG and OPT solutions

NB (gq) perr exactly known at present up to 3-loop a2 order.

But 1) RG properties determine next (4-loop) a3 In"(m/p) coefficients,
2) by def. non-logarithmic terms do not contribute to spectral density
Ppert(A): — we obtain pper(A) exactly to 4-loop!

Ln(A/W)

— RG4-loop slutions

-~ Optimized solutions

t
RGOPT solution

;“ - Asymptotically free branches



RGOPT 2,3,4-loop results for (gq) (nf = 2,3)

Real, unique AF-compatible solutions are obtained:
ng = 2:

5%, RG ord In 2 A ~@a)? (| A | —(@9ka
, order ns as 2 (i) X e
5, RG 2-loop —0.45 | 0.480 0.822 2.8 0.821
62, RG 3-loop || —0.703 | 0.430 0.794 3.104 | 0.783
63, RG 4-loop || —0.820 | 0.391 0.796 3.446 | 0.773
F=3:
- _ 1 - /= \1/3
5% order In% Qs _<q,-33> = () /‘\L3 <q;\73>RG'
8, RG 2-loop —0.56 | 0.474 0.799 3.06 | 0.789
62, RG 3-loop || —0.788 | 0.444 0.780 3.273 | 0.766
8%, RG 4-loop || —0.958 | 0.400 0.773 3.700 | 0.744

o
NB: (3q)rei = (39)(1) (2bo ) (1+ (5 — B)g + -+
o stability/convergence exhibited;
e already realistic at first nontrivial (2-loop) order



Evolution to (standard) reference scale p =2 GeV

(@a) (' = 2GeV) = (Ga) () exol 507" dg 28]

(equivalently extract from (gq)grcr with as(2GeV) ~ 0.305 £ 0.004)
(NB for ns = 3 account for ais(p ~ m¢) threshold effects)

<qq>n ,Q(QGQV) (O~833(4floop) - 0'84'1'-’(37Ioop))/_\2
<qq>},£33(2GeV) = (0'814(4—Ioop) - 0'8~’-')>8(3—loop))/_\3

eDiscrepancy between 3- and 4-loop results define our 'intrinsical’
(RGOPT) theoretical error, ~ 1 —2%



Comparison with other nonperturbative results

ng = 2: using most precise A, lattice result: A, = 331 £ 21
(quark potential, Karbstein et al '14):

—(39)5/2,(2GeV) ~ 278 & 2(rgopt) + 18(A,) MeV

ecompares rather well (within uncertainties) with latest:
-lattice (Engel et al '14, from spectral density):

—(Gq)3/2 (1 = 2GeV) = 261 £ 6 + 8 MeV
-spectral sum rules (latest, Narison '14): —(zu)/3 ~ 276 +7 MeV
(but sum rules indirect: determine my, 4, then use GMOR relation

FRmZ = —(my + mqg)(qq))

ens = 3: using 2016 worl average (PDG):

as(mz) = 0.118 £ 0.0013 — A%? ~ 330 £+ 20MeV:
7<(_7q>},£3:3(2GeV, A3?) ~ 273 + 4(rgopt) & 16(A3) MeV

Alternatively we also obtain parameter-free RG-invariant results:

~(@)%e —(@9)Roy
RGI,n;—2 0.35. RGl,ng=3 0.14
—— = =325£0.02503) ——f5 " =3.04£0.04707,

(Gq)3 o ~
TR (097 +0.01) {2 ~ (0.94+£001+0.12)

<Elq>RGl,nf:2



Conclusion, prospects

oOPT gives a simple procedure to resum perturbative expansions, using
only perturbative information.

eQur RGOPT version includes 2 major differences w.r.t. most previous
similar approaches:

1) OPT+ RG minimizations fix optimized m and g§ = 4nds

2) Requiring AF-compatible solutions uniquely fixes the basic
interpolation m — m(1 — §)7/(2): discards spurious solutions and
accelerates convergence.

eApplication to spectral density: mp(A =0) = —(qq)m—o :
elntrinsical RGOPT theoretical error (3-4 loop): < 2%

oWe find a moderate reduction of nf = 3 [(gg)| w.rt. np =2

efinal accuracy only limited due to not so precise Ay (mostly), A

eProspects: T = 0: extend our approach to calculate other order
parameters of chiral sym. breaking (coefficients of chiral PT typically), or
at T # 0: applications to Quark Gluon Plasma (works in progress)



