Extending a Generalized Parton Distribution from DGLAP to ERBL
From an Overlap of Light-cone Wave-functions to a Double Distribution

Nabil Chouika

Irfu/SPhN, CEA Saclay - Université Paris-Saclay
GDR QCD 2016, Orsay, 10 novembre 2016

Outline

(1) Introduction to Generalized Parton Distributions

- Definition and properties
(2) Overlap and Double Distribution representations of GPDs
- Overlap of Light-cone wave functions
- Double Distributions
(3) From an Overlap of LCWFs to a Double Distribution
- Inversion of Incomplete Radon Transform
- Results

4 Conclusion

Outline

(1) Introduction to Generalized Parton Distributions

- Definition and properties
(2) Overlap and Double Distribution representations of GPDs
- Overlap of Light-cone wave functions
- Double Distributions
(3) From an Overlap of LCWFs to a Double Distribution
- Inversion of Incomplete Radon Transform
- Results

4 Conclusion

Definition of GPDs

- Quark GPD (twist-2, spin-0 hadron): (Müller et al., 1994; Radyushkin, 1996; Ji, 1997)

$$
\begin{equation*}
H^{q}(x, \xi, t)=\left.\frac{1}{2} \int \frac{\mathrm{~d} z^{-}}{2 \pi} e^{i \times P^{+} z^{-}}\left\langle P+\frac{\Delta}{2}\right| \bar{q}(-z) \gamma^{+} q(z)\left|P-\frac{\Delta}{2}\right\rangle\right|_{z^{+}=0, z_{\perp}=0} \tag{1}
\end{equation*}
$$

with:

$$
t=\Delta^{2}, \quad \xi=-\frac{\Delta^{+}}{2 P^{+}}
$$

Definition of GPDs

- Quark GPD (twist-2, spin-0 hadron): (Müller et al., 1994; Radyushkin, 1996; Ji, 1997)

$$
\begin{equation*}
H^{q}(x, \xi, t)=\left.\frac{1}{2} \int \frac{\mathrm{~d} z^{-}}{2 \pi} e^{i x P^{+} z^{-}}\left\langle P+\frac{\Delta}{2}\right| \bar{q}(-z) \gamma^{+} q(z)\left|P-\frac{\Delta}{2}\right\rangle\right|_{z^{+}=0, z_{\perp}=0} . \tag{1}
\end{equation*}
$$

with:

$$
t=\Delta^{2}, \quad \xi=-\frac{\Delta^{+}}{2 P^{+}}
$$

- Similar matrix element for gluons.

Definition of GPDs

- Quark GPD (twist-2, spin-0 hadron): (Müller et al., 1994; Radyushkin, 1996; Ji, 1997)

$$
\begin{equation*}
H^{q}(x, \xi, t)=\left.\frac{1}{2} \int \frac{\mathrm{~d} z^{-}}{2 \pi} e^{i x P^{+} z^{-}}\left\langle P+\frac{\Delta}{2}\right| \bar{q}(-z) \gamma^{+} q(z)\left|P-\frac{\Delta}{2}\right\rangle\right|_{z^{+}=0, z_{\perp}=0} \tag{1}
\end{equation*}
$$

with:

$$
t=\Delta^{2}, \quad \xi=-\frac{\Delta^{+}}{2 P^{+}}
$$

- Similar matrix element for gluons.
- More GPDs for spin- $\frac{1}{2}$ hadrons.

Definition of GPDs

- Quark GPD (twist-2, spin-0 hadron): (Müller et al., 1994; Radyushkin, 1996; Ji, 1997)

$$
\begin{equation*}
H^{q}(x, \xi, t)=\left.\frac{1}{2} \int \frac{\mathrm{~d} z^{-}}{2 \pi} e^{i x P^{+} z^{-}}\left\langle P+\frac{\Delta}{2}\right| \bar{q}(-z) \gamma^{+} q(z)\left|P-\frac{\Delta}{2}\right\rangle\right|_{z^{+}=0, z_{\perp}=0} \tag{1}
\end{equation*}
$$

with:

$$
t=\Delta^{2}, \quad \xi=-\frac{\Delta^{+}}{2 P^{+}}
$$

- Similar matrix element for gluons.
- More GPDs for spin- $\frac{1}{2}$ hadrons.
- Impact parameter space GPD (at $\xi=0$): (Burkardt, 2000)

$$
\begin{equation*}
q\left(x, \overrightarrow{b_{\perp}}\right)=\int \frac{\mathrm{d}^{2}{\overrightarrow{\Delta_{\perp}}}_{(2 \pi)^{2}} e^{-i \overrightarrow{b_{\perp}} \cdot \overrightarrow{\Delta_{\perp}}} H^{q}\left(x, 0,-{\overrightarrow{\Delta_{\perp}}}^{2}\right) ~ . ~}{} \tag{2}
\end{equation*}
$$

Theoretical constraints on GPDs
Main properties:

- Physical region: $x, \xi \in[-1,1]$.

Theoretical constraints on GPDs

Main properties:

- Physical region: $x, \xi \in[-1,1]$.
- Polynomiality:

$$
\begin{equation*}
\int_{-1}^{1} \mathrm{~d} x x^{m} H(x, \xi, t)=\text { Polynomial in } \xi \tag{3}
\end{equation*}
$$

Theoretical constraints on GPDs

Main properties:

- Physical region: $x, \xi \in[-1,1]$.
- Polynomiality:

$$
\begin{equation*}
\int_{-1}^{1} \mathrm{~d} x x^{m} H(x, \xi, t)=\text { Polynomial in } \xi \tag{3}
\end{equation*}
$$

- From Lorentz invariance.

Theoretical constraints on GPDs

Main properties:

- Physical region: $x, \xi \in[-1,1]$.
- Polynomiality:

$$
\begin{equation*}
\int_{-1}^{1} \mathrm{~d} x x^{m} H(x, \xi, t)=\text { Polynomial in } \xi \tag{3}
\end{equation*}
$$

- From Lorentz invariance.
- Positivity: (Pire et al., 1999)

$$
\begin{equation*}
H^{q}(x, \xi, t) \leq \sqrt{q\left(\frac{x-\xi}{1-\xi}\right) q\left(\frac{x+\xi}{1+\xi}\right)} . \tag{4}
\end{equation*}
$$

Theoretical constraints on GPDs

Main properties:

- Physical region: $x, \xi \in[-1,1]$.
- Polynomiality:

$$
\begin{equation*}
\int_{-1}^{1} \mathrm{~d} x x^{m} H(x, \xi, t)=\text { Polynomial in } \xi \tag{3}
\end{equation*}
$$

- From Lorentz invariance.
- Positivity: (Pire et al., 1999)

$$
\begin{equation*}
H^{q}(x, \xi, t) \leq \sqrt{q\left(\frac{x-\xi}{1-\xi}\right) q\left(\frac{x+\xi}{1+\xi}\right)} . \tag{4}
\end{equation*}
$$

- Cauchy-Schwarz theorem in Hilbert space.

Theoretical constraints on GPDs

Main properties:

- Physical region: $x, \xi \in[-1,1]$.
- Polynomiality:

$$
\begin{equation*}
\int_{-1}^{1} \mathrm{~d} x x^{m} H(x, \xi, t)=\text { Polynomial in } \xi \tag{3}
\end{equation*}
$$

- From Lorentz invariance.
- Positivity: (Pire et al., 1999)

$$
\begin{equation*}
H^{q}(x, \xi, t) \leq \sqrt{q\left(\frac{x-\xi}{1-\xi}\right) q\left(\frac{x+\xi}{1+\xi}\right)} . \tag{4}
\end{equation*}
$$

- Cauchy-Schwarz theorem in Hilbert space.
- Link to PDFs and Form Factors:

$$
\begin{gather*}
\int \mathrm{d} x H^{q}(x, \xi, t)=F_{1}^{q}(t) \quad, \quad \int \mathrm{d} x E^{q}(x, \xi, t)=F_{2}^{q}(t) \tag{5}\\
H^{q}(x, 0,0)=\theta(x) q(x)-\theta(-x) \bar{q}(-x) \tag{6}
\end{gather*}
$$

Outline

(1) Introduction to Generalized Parton Distributions

- Definition and properties
(2) Overlap and Double Distribution representations of GPDs
- Overlap of Light-cone wave functions
- Double Distributions
(3) From an Overlap of LCWFs to a Double Distribution
- Inversion of Incomplete Radon Transform
- Results

4 Conclusion

Overlap of Light-cone wave functions

(Brodsky and Lepage, 1989)

- A given hadronic state is decomposed in a Fock basis:

$$
\begin{equation*}
|H ; P, \lambda\rangle=\sum_{N, \beta} \int[\mathrm{~d} x]_{N}\left[\mathrm{~d}^{2} \mathbf{k}_{\perp}\right]_{N} \Psi_{N, \beta}^{\lambda}\left(x_{1}, \mathbf{k}_{\perp 1}, \ldots\right)\left|N, \beta ; k_{1}, \ldots, k_{N}\right\rangle \tag{7}
\end{equation*}
$$

where the $\Psi_{N, \beta}^{\lambda}$ are the Light-cone wave-functions (LCWF).

Overlap of Light-cone wave functions

(Brodsky and Lepage, 1989)

- A given hadronic state is decomposed in a Fock basis:

$$
\begin{equation*}
|H ; P, \lambda\rangle=\sum_{N, \beta} \int[\mathrm{~d} x]_{N}\left[\mathrm{~d}^{2} \mathbf{k}_{\perp}\right]_{N} \Psi_{N, \beta}^{\lambda}\left(x_{1}, \mathbf{k}_{\perp 1}, \ldots\right)\left|N, \beta ; k_{1}, \ldots, k_{N}\right\rangle \tag{7}
\end{equation*}
$$

where the $\Psi_{N, \beta}^{\lambda}$ are the Light-cone wave-functions (LCWF).

- For example, for the pion:

$$
|\pi\rangle=\sum_{q \bar{q}} \psi_{q \bar{q}}^{\pi}|q \bar{q}\rangle+\sum_{q \bar{q} g} \psi_{q \bar{q} g}^{\pi}|q \bar{q} g\rangle+\ldots
$$

Overlap of Light-cone wave functions

(Brodsky and Lepage, 1989)

- A given hadronic state is decomposed in a Fock basis:

$$
\begin{equation*}
|H ; P, \lambda\rangle=\sum_{N, \beta} \int[\mathrm{~d} x]_{N}\left[\mathrm{~d}^{2} \mathbf{k}_{\perp}\right]_{N} \Psi_{N, \beta}^{\lambda}\left(x_{1}, \mathbf{k}_{\perp 1}, \ldots\right)\left|N, \beta ; k_{1}, \ldots, k_{N}\right\rangle \tag{7}
\end{equation*}
$$

where the $\Psi_{N, \beta}^{\lambda}$ are the Light-cone wave-functions (LCWF).

- For example, for the pion:

$$
|\pi\rangle=\sum_{q \bar{q}} \psi_{q \bar{q}}^{\pi}|q \bar{q}\rangle+\sum_{q \bar{q} g} \psi_{q \bar{q} g}^{\pi}|q \bar{q} g\rangle+\ldots
$$

- GPD as an overlap of LCWFs: (Diehl et al., 2001; Mezrag, 2015)
$H^{q}(x, \xi, t)=\sum_{N, \beta}{\sqrt{1-\xi^{2}}}^{2-N}{\sqrt{1+\xi^{2}}}^{2-N} \int[\mathrm{~d} \bar{x}]_{N}\left[\mathrm{~d}^{2} \overline{\mathbf{k}}_{\perp}\right]_{N} \delta\left(x-\bar{x}_{q}\right) \Psi_{N, \beta}^{*}\left(\Omega_{2}\right) \Psi_{N, \beta}\left(\Omega_{1}\right)$
in the DGLAP region $\xi<x<1$ (pion case).

Overlap of Light-cone wave functions

(Brodsky and Lepage, 1989)

- A given hadronic state is decomposed in a Fock basis:

$$
\begin{equation*}
|H ; P, \lambda\rangle=\sum_{N, \beta} \int[\mathrm{~d} x]_{N}\left[\mathrm{~d}^{2} \mathbf{k}_{\perp}\right]_{N} \Psi_{N, \beta}^{\lambda}\left(x_{1}, \mathbf{k}_{\perp 1}, \ldots\right)\left|N, \beta ; k_{1}, \ldots, k_{N}\right\rangle \tag{7}
\end{equation*}
$$

where the $\Psi_{N, \beta}^{\lambda}$ are the Light-cone wave-functions (LCWF).

- For example, for the pion:

$$
|\pi\rangle=\sum_{q \bar{q}} \psi_{q \bar{q}}^{\pi}|q \bar{q}\rangle+\sum_{q \bar{q} g} \psi_{q \bar{q} g}^{\pi}|q \bar{q} g\rangle+\ldots
$$

- GPD as an overlap of LCWFs: (Diehl et al., 2001; Mezrag, 2015)

$$
\begin{equation*}
H^{q}(x, \xi, t)=\sum_{N, \beta}{\sqrt{1-\xi^{2}}}^{2-N}{\sqrt{1+\xi^{2}}}^{2-N} \int[\mathrm{~d} \bar{x}]_{N}\left[\mathrm{~d}^{2} \overline{\mathbf{k}}_{\perp}\right]_{N} \delta\left(x-\bar{x}_{q}\right) \Psi_{N, \beta}^{*}\left(\Omega_{2}\right) \Psi_{N, \beta}\left(\Omega_{1}\right) \tag{8}
\end{equation*}
$$

in the DGLAP region $\xi<x<1$ (pion case).

- Similar result in ERBL $(-\xi<x<\xi)$, but with N and $N+2 \ldots$

Overlap of Light-cone wave functions

(Brodsky and Lepage, 1989)

- A given hadronic state is decomposed in a Fock basis:

$$
\begin{equation*}
|H ; P, \lambda\rangle=\sum_{N, \beta} \int[\mathrm{~d} x]_{N}\left[\mathrm{~d}^{2} \mathbf{k}_{\perp}\right]_{N} \Psi_{N, \beta}^{\lambda}\left(x_{1}, \mathbf{k}_{\perp 1}, \ldots\right)\left|N, \beta ; k_{1}, \ldots, k_{N}\right\rangle \tag{7}
\end{equation*}
$$

where the $\Psi_{N, \beta}^{\lambda}$ are the Light-cone wave-functions (LCWF).

- For example, for the pion:

$$
|\pi\rangle=\sum_{q \bar{q}} \psi_{q \bar{q}}^{\pi}|q \bar{q}\rangle+\sum_{q \bar{q} g} \psi_{q \bar{q} g}^{\pi}|q \bar{q} g\rangle+\ldots
$$

- GPD as an overlap of LCWFs: (Diehl et al., 2001; Mezrag, 2015)

$$
\begin{equation*}
H^{q}(x, \xi, t)=\sum_{N, \beta}{\sqrt{1-\xi^{2}}}^{2-N}{\sqrt{1+\xi^{2}}}^{2-N} \int[\mathrm{~d} \bar{x}]_{N}\left[\mathrm{~d}^{2} \overline{\mathbf{k}}_{\perp}\right]_{N} \delta\left(x-\bar{x}_{q}\right) \Psi_{N, \beta}^{*}\left(\Omega_{2}\right) \Psi_{N, \beta}\left(\Omega_{1}\right) \tag{8}
\end{equation*}
$$

in the DGLAP region $\xi<x<1$ (pion case).

- Similar result in ERBL $(-\xi<x<\xi)$, but with N and $N+2 \ldots$
- Fock space is a Hilbert space.

Overlap of Light-cone wave functions

(Brodsky and Lepage, 1989)

- A given hadronic state is decomposed in a Fock basis:

$$
\begin{equation*}
|H ; P, \lambda\rangle=\sum_{N, \beta} \int[\mathrm{~d} x]_{N}\left[\mathrm{~d}^{2} \mathbf{k}_{\perp}\right]_{N} \Psi_{N, \beta}^{\lambda}\left(x_{1}, \mathbf{k}_{\perp 1}, \ldots\right)\left|N, \beta ; k_{1}, \ldots, k_{N}\right\rangle \tag{7}
\end{equation*}
$$

where the $\Psi_{N, \beta}^{\lambda}$ are the Light-cone wave-functions (LCWF).

- For example, for the pion:

$$
|\pi\rangle=\sum_{q \bar{q}} \psi_{q \bar{q}}^{\pi}|q \bar{q}\rangle+\sum_{q \bar{q} g} \psi_{q \bar{q} g}^{\pi}|q \bar{q} g\rangle+\ldots
$$

- GPD as an overlap of LCWFs: (Diehl et al., 2001; Mezrag, 2015)

$$
\begin{equation*}
H^{q}(x, \xi, t)=\sum_{N, \beta}{\sqrt{1-\xi^{2}}}^{2-N}{\sqrt{1+\xi^{2}}}^{2-N} \int[\mathrm{~d} \bar{x}]_{N}\left[\mathrm{~d}^{2} \overline{\mathbf{k}}_{\perp}\right]_{N} \delta\left(x-\bar{x}_{q}\right) \Psi_{N, \beta}^{*}\left(\Omega_{2}\right) \Psi_{N, \beta}\left(\Omega_{1}\right) \tag{8}
\end{equation*}
$$

in the DGLAP region $\xi<x<1$ (pion case).

- Similar result in ERBL $(-\xi<x<\xi)$, but with N and $N+2 \ldots$
- Fock space is a Hilbert space.
- Cauchy-Schwarz theorem \Rightarrow Positivity fulfilled!

Overlap of Light-cone wave functions

(Brodsky and Lepage, 1989)

- A given hadronic state is decomposed in a Fock basis:

$$
\begin{equation*}
|H ; P, \lambda\rangle=\sum_{N, \beta} \int[\mathrm{~d} x]_{N}\left[\mathrm{~d}^{2} \mathbf{k}_{\perp}\right]_{N} \Psi_{N, \beta}^{\lambda}\left(x_{1}, \mathbf{k}_{\perp 1}, \ldots\right)\left|N, \beta ; k_{1}, \ldots, k_{N}\right\rangle \tag{7}
\end{equation*}
$$

where the $\Psi_{N, \beta}^{\lambda}$ are the Light-cone wave-functions (LCWF).

- For example, for the pion:

$$
|\pi\rangle=\sum_{q \bar{q}} \psi_{q \bar{q}}^{\pi}|q \bar{q}\rangle+\sum_{q \bar{q} g} \psi_{q \bar{q} g}^{\pi}|q \bar{q} g\rangle+\ldots
$$

- GPD as an overlap of LCWFs: (Diehl et al., 2001; Mezrag, 2015)

$$
\begin{equation*}
H^{q}(x, \xi, t)=\sum_{N, \beta}{\sqrt{1-\xi^{2}}}^{2-N}{\sqrt{1+\xi^{2}}}^{2-N} \int[\mathrm{~d} \bar{x}]_{N}\left[\mathrm{~d}^{2} \overline{\mathbf{k}}_{\perp}\right]_{N} \delta\left(x-\bar{x}_{q}\right) \Psi_{N, \beta}^{*}\left(\Omega_{2}\right) \Psi_{N, \beta}\left(\Omega_{1}\right) \tag{8}
\end{equation*}
$$

in the DGLAP region $\xi<x<1$ (pion case).

- Similar result in ERBL $(-\xi<x<\xi)$, but with N and $N+2 \ldots$
- Fock space is a Hilbert space.
- Cauchy-Schwarz theorem \Rightarrow Positivity fulfilled!
- Polynomiality not manifest...

Double Distributions (DDs)

- DD representation of GPDs:

$$
\begin{equation*}
H^{q}(x, \xi, t)=\int_{\Omega} \mathrm{d} \beta \mathrm{~d} \alpha\left(F^{q}(\beta, \alpha, t)+\xi G^{q}(\beta, \alpha, t)\right) \delta(x-\beta-\alpha \xi) \tag{9}
\end{equation*}
$$

Double Distributions (DDs)

- DD representation of GPDs:

$$
\begin{equation*}
H^{q}(x, \xi, t)=\int_{\Omega} \mathrm{d} \beta \mathrm{~d} \alpha\left(F^{q}(\beta, \alpha, t)+\xi G^{q}(\beta, \alpha, t)\right) \delta(x-\beta-\alpha \xi) \tag{9}
\end{equation*}
$$

- DDs F^{q}, G^{q} are defined on the support $\Omega=\{|\beta|+|\alpha| \leq 1\}$ but are not unique:

Double Distributions (DDs)

- DD representation of GPDs:

$$
\begin{equation*}
H^{q}(x, \xi, t)=\int_{\Omega} \mathrm{d} \beta \mathrm{~d} \alpha\left(F^{q}(\beta, \alpha, t)+\xi G^{q}(\beta, \alpha, t)\right) \delta(x-\beta-\alpha \xi) \tag{9}
\end{equation*}
$$

- DDs F^{q}, G^{q} are defined on the support $\Omega=\{|\beta|+|\alpha| \leq 1\}$ but are not unique:
- A gauge transform leaves the GPD H unchanged.

Double Distributions (DDs)

- DD representation of GPDs:

$$
\begin{equation*}
H^{q}(x, \xi, t)=\int_{\Omega} \mathrm{d} \beta \mathrm{~d} \alpha\left(F^{q}(\beta, \alpha, t)+\xi G^{q}(\beta, \alpha, t)\right) \delta(x-\beta-\alpha \xi) \tag{9}
\end{equation*}
$$

- DDs F^{q}, G^{q} are defined on the support $\Omega=\{|\beta|+|\alpha| \leq 1\}$ but are not unique:
- A gauge transform leaves the GPD H unchanged.
- Polynomiality fulfilled:

$$
\begin{align*}
\int_{-1}^{1} \mathrm{~d} x x^{m} H(x, \xi, t) & =\int \mathrm{d} x x^{m} \int_{\Omega} \mathrm{d} \beta \mathrm{~d} \alpha(F(\beta, \alpha, t)+\xi G(\beta, \alpha, t)) \delta(x-\beta-\alpha \xi) \\
& =\int_{\Omega} \mathrm{d} \beta \mathrm{~d} \alpha(\beta+\xi \alpha)^{m}(F(\beta, \alpha, t)+\xi G(\beta, \alpha, t)) \tag{10}
\end{align*}
$$

Double Distributions (DDs)

- DD representation of GPDs:

$$
\begin{equation*}
H^{q}(x, \xi, t)=\int_{\Omega} \mathrm{d} \beta \mathrm{~d} \alpha\left(F^{q}(\beta, \alpha, t)+\xi G^{q}(\beta, \alpha, t)\right) \delta(x-\beta-\alpha \xi) \tag{9}
\end{equation*}
$$

- DDs F^{q}, G^{q} are defined on the support $\Omega=\{|\beta|+|\alpha| \leq 1\}$ but are not unique:
- A gauge transform leaves the GPD H unchanged.
- Polynomiality fulfilled:
- Polynomial in ξ of degree $\leq m+1$.

$$
\begin{align*}
\int_{-1}^{1} \mathrm{~d} x x^{m} H(x, \xi, t) & =\int \mathrm{d} x x^{m} \int_{\Omega} \mathrm{d} \beta \mathrm{~d} \alpha(F(\beta, \alpha, t)+\xi G(\beta, \alpha, t)) \delta(x-\beta-\alpha \xi) \\
& =\int_{\Omega} \mathrm{d} \beta \mathrm{~d} \alpha(\beta+\xi \alpha)^{m}(F(\beta, \alpha, t)+\xi G(\beta, \alpha, t)) \tag{10}
\end{align*}
$$

Double Distributions (DDs)

- DD representation of GPDs:

$$
\begin{equation*}
H^{q}(x, \xi, t)=\int_{\Omega} \mathrm{d} \beta \mathrm{~d} \alpha\left(F^{q}(\beta, \alpha, t)+\xi G^{q}(\beta, \alpha, t)\right) \delta(x-\beta-\alpha \xi) \tag{9}
\end{equation*}
$$

- DDs F^{q}, G^{q} are defined on the support $\Omega=\{|\beta|+|\alpha| \leq 1\}$ but are not unique:
- A gauge transform leaves the GPD H unchanged.
- Polynomiality fulfilled:
- Polynomial in ξ of degree $\leq m+1$.
- Positivity not manifest...

$$
\begin{align*}
\int_{-1}^{1} \mathrm{~d} x x^{m} H(x, \xi, t) & =\int \mathrm{d} x x^{m} \int_{\Omega} \mathrm{d} \beta \mathrm{~d} \alpha(F(\beta, \alpha, t)+\xi G(\beta, \alpha, t)) \delta(x-\beta-\alpha \xi) \\
& =\int_{\Omega} \mathrm{d} \beta \mathrm{~d} \alpha(\beta+\xi \alpha)^{m}(F(\beta, \alpha, t)+\xi G(\beta, \alpha, t)) \tag{10}
\end{align*}
$$

Double Distributions (DDs)

- DD representation of GPDs:

$$
\begin{equation*}
H^{q}(x, \xi, t)=\int_{\Omega} \mathrm{d} \beta \mathrm{~d} \alpha\left(F^{q}(\beta, \alpha, t)+\xi G^{q}(\beta, \alpha, t)\right) \delta(x-\beta-\alpha \xi) \tag{9}
\end{equation*}
$$

- DDs F^{q}, G^{q} are defined on the support $\Omega=\{|\beta|+|\alpha| \leq 1\}$ but are not unique:
- A gauge transform leaves the GPD H unchanged.
- Polynomiality fulfilled:
- Polynomial in ξ of degree $\leq m+1$.
- Positivity not manifest...
- Pobylitsa gauge (One Component DD): (Pobylitsa, 2003)

$$
\begin{equation*}
H(x, \xi, t)=(1-x) \int_{\Omega} \mathrm{d} \beta \mathrm{~d} \alpha f_{P}(\beta, \alpha, t) \delta(x-\beta-\alpha \xi) \tag{11}
\end{equation*}
$$

with

$$
\left\{\begin{array}{l}
F(\beta, \alpha)=(1-\beta) f_{P}(\beta, \alpha) \tag{12}\\
G(\beta, \alpha)=-\alpha f_{P}(\beta, \alpha)
\end{array}\right.
$$

Radon transform

- Radon Transform:

$$
\begin{equation*}
\mathcal{R} f(x, \xi) \propto \int \mathrm{d} \beta \mathrm{~d} \alpha f(\beta, \alpha) \delta(x-\beta-\alpha \xi) \tag{13}
\end{equation*}
$$

Radon transform

- Radon Transform:

$$
\begin{equation*}
\mathcal{R} f(x, \xi) \propto \int \mathrm{d} \beta \mathrm{~d} \alpha f(\beta, \alpha) \delta(x-\beta-\alpha \xi) \tag{13}
\end{equation*}
$$

- DGLAP region: $|x|>|\xi|$.

Radon transform

- Radon Transform:

$$
\begin{equation*}
\mathcal{R} f(x, \xi) \propto \int \mathrm{d} \beta \mathrm{~d} \alpha f(\beta, \alpha) \delta(x-\beta-\alpha \xi) \tag{13}
\end{equation*}
$$

- DGLAP region: $|x|>|\xi|$.
- ERBL region: $|x|<|\xi|$.

Outline

(1) Introduction to Generalized Parton Distributions

- Definition and properties
(2) Overlap and Double Distribution representations of GPDs
- Overlap of Light-cone wave functions
- Double Distributions
(3) From an Overlap of LCWFs to a Double Distribution
- Inversion of Incomplete Radon Transform
- Results

4 Conclusion

From DGLAP GPD to a DD

- In Overlap representation: DGLAP region only (e.g. two-body LCWFs).

From DGLAP GPD to a DD

- In Overlap representation: DGLAP region only (e.g. two-body LCWFs).
- Need ERBL to complete polynomiality.

From DGLAP GPD to a DD

- In Overlap representation: DGLAP region only (e.g. two-body LCWFs).
- Need ERBL to complete polynomiality.

Problem

Find $f(\beta, \alpha)$ on square $\{|\alpha|+|\beta| \leq 1\}$ such that

$$
\left.H(x, \xi)\right|_{\mathrm{DGLAP}}=(1-x) \int \mathrm{d} \beta \mathrm{~d} \alpha f(\beta, \alpha) \delta(x-\beta-\alpha \xi)
$$

From DGLAP GPD to a DD

- In Overlap representation: DGLAP region only (e.g. two-body LCWFs).
- Need ERBL to complete polynomiality.

Problem

Find $f(\beta, \alpha)$ on square $\{|\alpha|+|\beta| \leq 1\}$ such that

$$
\left.H(x, \xi)\right|_{\mathrm{DGLAP}}=(1-x) \int \mathrm{d} \beta \mathrm{~d} \alpha f(\beta, \alpha) \delta(x-\beta-\alpha \xi)
$$

- If model fulfills Lorentz invariance: (Moutarde, 2015)

From DGLAP GPD to a DD

- In Overlap representation: DGLAP region only (e.g. two-body LCWFs).
- Need ERBL to complete polynomiality.

Problem

Find $f(\beta, \alpha)$ on square $\{|\alpha|+|\beta| \leq 1\}$ such that

$$
\left.H(x, \xi)\right|_{\mathrm{DGLAP}}=(1-x) \int \mathrm{d} \beta \mathrm{~d} \alpha f(\beta, \alpha) \delta(x-\beta-\alpha \xi)
$$

- If model fulfills Lorentz invariance: (Moutarde, 2015)
- DD $f(\beta, \alpha)$ exists (as a distribution) and is unique (if it is a function).

From DGLAP GPD to a DD

- In Overlap representation: DGLAP region only (e.g. two-body LCWFs).
- Need ERBL to complete polynomiality.

Problem

Find $f(\beta, \alpha)$ on square $\{|\alpha|+|\beta| \leq 1\}$ such that

$$
\left.H(x, \xi)\right|_{\mathrm{DGLAP}}=(1-x) \int \mathrm{d} \beta \mathrm{~d} \alpha f(\beta, \alpha) \delta(x-\beta-\alpha \xi)
$$

- If model fulfills Lorentz invariance: (Moutarde, 2015)
- DD $f(\beta, \alpha)$ exists (as a distribution) and is unique (if it is a function).
- We can reconstruct the GPD everywhere.

Support properties

Support properties

- Quark GPD: $H(x, \xi)=0$ for $-1<x<-|\xi| \Longrightarrow f(\beta, \alpha)=0$ for $\beta<0$.

Support properties

- Quark GPD: $H(x, \xi)=0$ for $-1<x<-|\xi| \Longrightarrow f(\beta, \alpha)=0$ for $\beta<0$.

Support properties

- Quark GPD: $H(x, \xi)=0$ for $-1<x<-|\xi| \Longrightarrow f(\beta, \alpha)=0$ for $\beta<0$.
- Domains $\beta<0$ and $\beta>0$ are uncorrelated in the DGLAP region.

Support properties

- Quark GPD: $H(x, \xi)=0$ for $-1<x<-|\xi| \Longrightarrow f(\beta, \alpha)=0$ for $\beta<0$.
- Domains $\beta<0$ and $\beta>0$ are uncorrelated in the DGLAP region.
- Divide and conquer:
- Better numerical stability.
- Lesser complexity: $O\left(N^{p}+N^{p}\right) \ll O\left((N+N)^{p}\right)$.

Domain for the inversion

Domain for the inversion

- Rotated square $\left[-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right] \times\left[-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right]$:

$$
\left\{\begin{array}{l}
u=\frac{\beta+\alpha}{\sqrt{2}} \tag{14}\\
v=\frac{\alpha-\beta}{\sqrt{2}}
\end{array}\right.
$$

Domain for the inversion

- Rotated square $\left[-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right] \times\left[-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right]$:

$$
\left\{\begin{array}{l}
u=\frac{\beta+\alpha}{\sqrt{2}} \tag{14}\\
v=\frac{\alpha-\beta}{\sqrt{2}}
\end{array}\right.
$$

- α-parity of the DD:

$$
\begin{equation*}
f(\beta,-\alpha)=f(\beta, \alpha) \tag{15}
\end{equation*}
$$

Discretization

- Discretization of the DD (piece-wise constant):

$$
\begin{equation*}
\tilde{f}(u, v)=\sum_{i=0}^{N-1} \sum_{j=0}^{N-1} \tilde{f}_{i j} \mathbf{1}_{\left[u_{i}, u_{i+1}\right]}(u) \mathbf{1}_{\left[v_{j}, v_{j+1}\right]}(v) \tag{16}
\end{equation*}
$$

Discretization

- Discretization of the DD (piece-wise constant):

$$
\begin{equation*}
\tilde{f}(u, v)=\sum_{i=0}^{N-1} \sum_{j=0}^{N-1} \tilde{f}_{i j} \mathbf{1}_{\left[u_{i}, u_{i+1}\right]}(u) \mathbf{1}_{\left[v_{j}, v_{j+1}\right]}(v) \tag{16}
\end{equation*}
$$

- Mesh:

Discretization

- Discretization of the DD (piece-wise constant):

$$
\begin{equation*}
\tilde{f}(u, v)=\sum_{i=0}^{N-1} \sum_{j=0}^{N-1} \tilde{f}_{i j} \mathbf{1}_{\left[u_{i}, u_{i+1}\right]}(u) \mathbf{1}_{\left[v_{j}, v_{j+1}\right]}(v) \tag{16}
\end{equation*}
$$

- Mesh:
- Cells $(u, v) \rightarrow n$ columns of the matrix.

Discretization

- Discretization of the DD (piece-wise constant):

$$
\begin{equation*}
\tilde{f}(u, v)=\sum_{i=0}^{N-1} \sum_{j=0}^{N-1} \tilde{f}_{i j} \mathbf{1}_{\left[u_{i}, u_{i+1}\right]}(u) \mathbf{1}_{\left[v_{j}, v_{j+1}\right]}(v) \tag{16}
\end{equation*}
$$

- Mesh:
- Cells $(u, v) \rightarrow n$ columns of the matrix.
- Sampling:

Discretization

- Discretization of the DD (piece-wise constant):

$$
\begin{equation*}
\tilde{f}(u, v)=\sum_{i=0}^{N-1} \sum_{j=0}^{N-1} \tilde{f}_{i j} \mathbf{1}_{\left[u_{i}, u_{i+1}\right]}(u) \mathbf{1}_{\left[v_{j}, v_{j+1}\right]}(v) \tag{16}
\end{equation*}
$$

- Mesh:
- Cells $(u, v) \rightarrow n$ columns of the matrix.
- Sampling:
- Random couples $(x, \xi) \rightarrow m \geq n$ lines of the matrix.

Discretization

- Discretization of the DD (piece-wise constant):

$$
\tilde{f}(u, v)=\sum_{i=0}^{N-1} \sum_{j=0}^{N-1} \tilde{f}_{i j} \mathbf{1}_{\left[u_{i}, u_{i+1}\right]}(u) \mathbf{1}_{\left[v_{j}, v_{j+1}\right]}(v)
$$

- Mesh:
- Cells $(u, v) \rightarrow n$ columns of the matrix.
- Sampling:
- Random couples $(x, \xi) \rightarrow m \geq n$ lines of the matrix.
- Linear problem: $A X=B$ where $B_{k}=H\left(x_{k}, \xi_{k}\right)$.

Discretization

- Discretization of the DD (piece-wise constant):

$$
\tilde{f}(u, v)=\sum_{i=0}^{N-1} \sum_{j=0}^{N-1} \tilde{f}_{i j} \mathbf{1}_{\left[u_{i}, u_{i+1}\right]}(u) \mathbf{1}_{\left[v_{j}, v_{j+1}\right]}(v)
$$

- Mesh:
- Cells $(u, v) \rightarrow n$ columns of the matrix.
- Sampling:
- Random couples $(x, \xi) \rightarrow m \geq n$ lines of the matrix.
- Linear problem: $A X=B$ where $B_{k}=H\left(x_{k}, \xi_{k}\right)$.

- A full-rank: more information but also more noise.

Test (constant DD)

- Test with Constant DD.

$$
\begin{gathered}
f(\beta, \alpha)= \begin{cases}1 & \beta>0 \\
0 & \beta<0\end{cases} \\
\downarrow \\
\left.H(x, \xi)\right|_{\text {DGLAP }}= \begin{cases}\frac{2 \times(1-x)}{1-\xi^{2}} & |\xi|<x<1 \\
0 & -1<x<-|\xi|\end{cases}
\end{gathered}
$$

Test (constant DD)

- Test with Constant DD.
- Goal: retrieve known DD from DGLAP GPD.

$$
\begin{gathered}
f(\beta, \alpha)= \begin{cases}1 & \beta>0 \\
0 & \beta<0\end{cases} \\
\downarrow \\
\left.H(x, \xi)\right|_{\text {DGLAP }}= \begin{cases}\frac{2 \times(1-x)}{1-\xi^{2}} & |\xi|<x<1 \\
0 & -1<x<-|\xi|\end{cases}
\end{gathered}
$$

Test (constant DD)

- Test with Constant DD.
- Goal: retrieve known DD from DGLAP GPD.
- Consistent problem (discretized DD $=$ theoretical DD):

$$
f(\beta, \alpha)= \begin{cases}1 & \beta>0 \\ 0 & \beta<0\end{cases}
$$

$$
\left.H(x, \xi)\right|_{\mathrm{DGLAP}}= \begin{cases}\frac{2 \times(1-x)}{1-\xi^{2}} & |\xi|<x<1 \\ 0 & -1<x<-|\xi|\end{cases}
$$

Test (constant DD)

- Test with Constant DD.
- Goal: retrieve known DD from DGLAP GPD.
- Consistent problem (discretized DD $=$ theoretical DD):
- Objective DD retrieved at arbitrary precision: residual decreases to 0 (machine precision).

First result

- Real application to a DSE toy model.

$$
\begin{gathered}
f(\beta, \alpha)= \begin{cases}? & \beta>0 \\
0 & \beta<0\end{cases} \\
\downarrow \\
\left.H(x, \xi)\right|_{x>|\xi|}=30 \frac{(1-x)^{2}\left(x^{2}-\xi^{2}\right)}{\left(1-\xi^{2}\right)^{2}}
\end{gathered}
$$

First result

- Real application to a DSE toy model.
- Goal: extend the DGLAP GPD of Ref. (Mezrag, 2015; Mezrag et al., 2016).

$$
\begin{gathered}
f(\beta, \alpha)= \begin{cases}? & \beta>0 \\
0 & \beta<0\end{cases} \\
\downarrow \\
\left.H(x, \xi)\right|_{x>|\xi|}=30 \frac{(1-x)^{2}\left(x^{2}-\xi^{2}\right)}{\left(1-\xi^{2}\right)^{2}}
\end{gathered}
$$

First result

- Real application to a DSE toy model.
- Goal: extend the DGLAP GPD of Ref. (Mezrag, 2015; Mezrag et al., 2016).

$$
f(\beta, \alpha)= \begin{cases}? & \beta>0 \\ 0 & \beta<0\end{cases}
$$

- Least-squares problem:

$$
\left.H(x, \xi)\right|_{x>|\xi|}=30 \frac{(1-x)^{2}\left(x^{2}-\xi^{2}\right)}{\left(1-\xi^{2}\right)^{2}}
$$

First result

- Real application to a DSE toy model.
- Goal: extend the DGLAP GPD of Ref. (Mezrag, 2015; Mezrag et al., 2016).

$$
f(\beta, \alpha)= \begin{cases}? & \beta>0 \\ 0 & \beta<0\end{cases}
$$

- Least-squares problem:
- Residual has a finite limit.

$$
\left.H(x, \xi)\right|_{x>|\xi|}=30 \frac{(1-x)^{2}\left(x^{2}-\xi^{2}\right)}{\left(1-\xi^{2}\right)^{2}}
$$

First result

- Real application to a DSE toy model.
- Goal: extend the DGLAP GPD of Ref. (Mezrag, 2015; Mezrag et al., 2016).

$$
f(\beta, \alpha)= \begin{cases}? & \beta>0 \\ 0 & \beta<0\end{cases}
$$

- Least-squares problem:
- Residual has a finite limit.
- Compromise between noise on $\beta=0$ and artifact on $\alpha=0$.

$$
\left.H(x, \xi)\right|_{x>|\xi|}=30 \frac{(1-x)^{2}\left(x^{2}-\xi^{2}\right)}{\left(1-\xi^{2}\right)^{2}}
$$

First result

- Real application to a DSE toy model.
- Goal: extend the DGLAP GPD of Ref. (Mezrag, 2015; Mezrag et al., 2016).

$$
f(\beta, \alpha)= \begin{cases}\frac{30}{4}\left(1-3 \alpha^{2}-2 \beta+3 \beta^{2}\right) & \beta>0 \\ 0 & \beta<0\end{cases}
$$

- Least-squares problem:
- Residual has a finite limit.
- Compromise between noise on $\beta=0$ and artifact on $\alpha=0$.

$$
\left.H(x, \xi)\right|_{x>|\xi|}=30 \frac{(1-x)^{2}\left(x^{2}-\xi^{2}\right)}{\left(1-\xi^{2}\right)^{2}}
$$

- Smooth function in Pobylitsa gauge:

First result

- Real application to a DSE toy model.
- Goal: extend the DGLAP GPD of Ref. (Mezrag, 2015; Mezrag et al., 2016).

$$
f(\beta, \alpha)= \begin{cases}\frac{30}{4}\left(1-3 \alpha^{2}-2 \beta+3 \beta^{2}\right) & \beta>0 \\ 0 & \beta<0\end{cases}
$$

- Least-squares problem:
- Residual has a finite limit.
- Compromise between noise on $\beta=0$ and artifact on $\alpha=0$.

$$
\left.H(x, \xi)\right|_{x>|\xi|}=30 \frac{(1-x)^{2}\left(x^{2}-\xi^{2}\right)}{\left(1-\xi^{2}\right)^{2}}
$$

- Smooth function in Pobylitsa gauge:
- $(1-x)^{2}$ behavior of the GPD.

First result

- Real application to a DSE toy model.
- Goal: extend the DGLAP GPD of Ref. (Mezrag, 2015; Mezrag et al., 2016).

$$
f(\beta, \alpha)= \begin{cases}\frac{30}{4}\left(1-3 \alpha^{2}-2 \beta+3 \beta^{2}\right) & \beta>0 \\ 0 & \beta<0\end{cases}
$$

- Least-squares problem:
- Residual has a finite limit.
- Compromise between noise on $\beta=0$ and artifact on $\alpha=0$.

$$
\left.H(x, \xi)\right|_{x>|\xi|}=30 \frac{(1-x)^{2}\left(x^{2}-\xi^{2}\right)}{\left(1-\xi^{2}\right)^{2}}
$$

- Smooth function in Pobylitsa gauge:
- $(1-x)^{2}$ behavior of the GPD.
- Gauge introduced for positivity.

Quantitative comparison of DDs

Figure: Quantitative comparison for the Overlap results. Left: Theoretical discretized DD. Middle: Numerical solution at tolerance 10^{-6}. Right: Absolute difference.

$$
f(\beta, \alpha)= \begin{cases}\frac{30}{4}\left(1-3 \alpha^{2}-2 \beta+3 \beta^{2}\right) & \beta>0 \\ 0 & \beta<0\end{cases}
$$

Quantitative comparison of GPDs

Figure: Quantitative comparison for the Overlap GPD obtained from the numerical DD solution. Left: Theoretical GPD. Middle: Numerical solution at tolerance 10^{-6}. Right: Absolute difference.

$$
H(x, \xi)= \begin{cases}30 \frac{(1-x)^{2}\left(x^{2}-\xi^{2}\right)}{\left(1-\xi^{2}\right)^{2}} & x>|\xi| \\ \frac{15(x-1)\left(x^{2}-\xi^{2}\right)\left(\xi^{2}+2|\xi| x+x\right)}{2|\xi|^{3}(|\xi|+1)^{2}} & |x|<|\xi|\end{cases}
$$

Summary

- Extension of the DSE overlap toy model.

Summary

- Extension of the DSE overlap toy model.
- Systematic procedure for GPD modeling from first principles:

Summary

- Extension of the DSE overlap toy model.
- Systematic procedure for GPD modeling from first principles:
- LCWFs $\underset{\text { Overlap }}{\longrightarrow}$ GPD in DGLAP $\underset{\text { Inverse Radon Transform }}{\vec{~}}$ DD $\underset{\text { RT }}{\longrightarrow}$ GPD.

Summary

- Extension of the DSE overlap toy model.
- Systematic procedure for GPD modeling from first principles:
- LCWFs $\underset{\text { Overlap }}{\longrightarrow}$ GPD in DGLAP $\underset{\text { Inverse Radon Transform }}{\vec{~}}$ DD $\underset{\text { RT }}{\longrightarrow}$ GPD.
- Both polynomiality and positivity!

Summary

- Extension of the DSE overlap toy model.
- Systematic procedure for GPD modeling from first principles:
- LCWFs $\underset{\text { Overlap }}{\longrightarrow}$ GPD in DGLAP $\underset{\text { Inverse Radon Transform }}{\overrightarrow{~ R T}}$ GPD.
- Both polynomiality and positivity!
- Important points:

Summary

- Extension of the DSE overlap toy model.
- Systematic procedure for GPD modeling from first principles:
- LCWFs $\underset{\text { Overlap }}{\longrightarrow}$ GPD in DGLAP $\underset{\text { Inverse Radon Transform }}{\vec{~}}$ DD $\underset{\text { RT }}{\longrightarrow}$ GPD.
- Both polynomiality and positivity!
- Important points:
- Compromise with respect to noise and convergence.

Summary

- Extension of the DSE overlap toy model.
- Systematic procedure for GPD modeling from first principles:
- LCWFs $\underset{\text { Overlap }}{\longrightarrow}$ GPD in DGLAP Inverse Radon Transform $_{\vec{~}}^{\overrightarrow{R T}}$ GPD.
- Both polynomiality and positivity!
- Important points:
- Compromise with respect to noise and convergence.
- Pobylitsa gauge is promising.

Summary

- Extension of the DSE overlap toy model.
- Systematic procedure for GPD modeling from first principles:
- LCWFs $\underset{\text { Overlap }}{\longrightarrow}$ GPD in DGLAP $\underset{\text { Inverse Radon Transform }}{\vec{~}}$ DD $\underset{\text { RT }}{\longrightarrow}$ GPD.
- Both polynomiality and positivity!
- Important points:
- Compromise with respect to noise and convergence.
- Pobylitsa gauge is promising.
- In the future:

Summary

- Extension of the DSE overlap toy model.
- Systematic procedure for GPD modeling from first principles:
- LCWFs $\underset{\text { Overlap }}{\longrightarrow}$ GPD in DGLAP $\underset{\text { Inverse Radon Transform }}{\vec{~}}$ DD $\underset{\text { RT }}{\longrightarrow}$ GPD.
- Both polynomiality and positivity!
- Important points:
- Compromise with respect to noise and convergence.
- Pobylitsa gauge is promising.
- In the future:
- Different methods: Basis functions, Bayesian methods, etc.

Summary

- Extension of the DSE overlap toy model.
- Systematic procedure for GPD modeling from first principles:
- LCWFs $\underset{\text { Overlap }}{\longrightarrow}$ GPD in DGLAP $\underset{\text { Inverse Radon Transform }}{\vec{~}}$ DD $\underset{\text { RT }}{\longrightarrow}$ GPD.
- Both polynomiality and positivity!
- Important points:
- Compromise with respect to noise and convergence.
- Pobylitsa gauge is promising.
- In the future:
- Different methods: Basis functions, Bayesian methods, etc.
- Handling of errors.

Summary

- Extension of the DSE overlap toy model.
- Systematic procedure for GPD modeling from first principles:
- LCWFs $\underset{\text { Overlap }}{\longrightarrow}$ GPD in DGLAP $\underset{\text { Inverse Radon Transform }}{\overrightarrow{~ D T}}$ GPD.
- Both polynomiality and positivity!
- Important points:
- Compromise with respect to noise and convergence.
- Pobylitsa gauge is promising.
- In the future:
- Different methods: Basis functions, Bayesian methods, etc.
- Handling of errors.
- Thank you!

Summary

- Extension of the DSE overlap toy model.
- Systematic procedure for GPD modeling from first principles:
- LCWFs $\underset{\text { Overlap }}{\longrightarrow}$ GPD in DGLAP $\underset{\text { Inverse Radon Transform }}{\vec{~}}$ DD $\underset{\text { RT }}{\longrightarrow}$ GPD.
- Both polynomiality and positivity!
- Important points:
- Compromise with respect to noise and convergence.
- Pobylitsa gauge is promising.
- In the future:
- Different methods: Basis functions, Bayesian methods, etc.
- Handling of errors.
- Thank you!

- Any questions?

Bibliography I

D. Müller, D. Robaschik, B. Geyer, F. M. Dittes, and J. Hořejši, "Wave functions, evolution equations and evolution kernels from light ray operators of QCD", Fortsch. Phys. 42 (1994) 101-141, arXiv:hep-ph/9812448 [hep-ph].
A. V. Radyushkin, "Scaling limit of deeply virtual Compton scattering", Phys. Lett. B380 (1996) 417-425, arXiv:hep-ph/9604317 [hep-ph].
X.-D. Ji, "Deeply virtual Compton scattering", Phys. Rev. D55 (1997) 7114-7125, arXiv:hep-ph/9609381 [hep-ph].
M. Burkardt, "Impact parameter dependent parton distributions and off forward parton distributions for zeta —> 0", Phys. Rev. D62 (2000) 071503, arXiv:hep-ph/0005108 [hep-ph], [Erratum: Phys. Rev.D66,119903(2002)].
B. Pire, J. Soffer, and O. Teryaev, "Positivity constraints for off - forward parton distributions", Eur. Phys. J. C8 (1999) 103-106, arXiv:hep-ph/9804284 [hep-ph].
S. J. Brodsky and G. P. Lepage, "Exclusive Processes in Quantum Chromodynamics", Adv. Ser. Direct. High Energy Phys. 5 (1989) 93-240.
M. Diehl, T. Feldmann, R. Jakob, and P. Kroll, "The overlap representation of skewed quark and gluon distributions", Nucl. Phys. B596 (2001) 33-65, arXiv:hep-ph/0009255 [hep-ph], [Erratum: Nucl. Phys.B605,647(2001)].
C. Mezrag, "Generalised Parton Distributions : from phenomenological approaches to Dyson-Schwinger equations", PhD thesis, IRFU, SPhN, Saclay, 2015.

Bibliography II

P. V. Pobylitsa, "Solution of polynomiality and positivity constraints on generalized parton distributions", Phys. Rev. D67 (2003) 034009, arXiv:hep-ph/0210150 [hep-ph].
H. Moutarde, "Nucleon Reverse Engineering: Structuring hadrons with colored degrees of freedom", 2015.
C. Mezrag, H. Moutarde, and J. Rodriguez-Quintero, "From Bethe-Salpeter Wave functions to Generalised Parton Distributions", Few Body Syst. 57 (2016), no. 9, 729-772, arXiv:1602.07722 [nucl-th].
P. C. Hansen, "Regularization Tools version 4.0 for Matlab 7.3", Numerical Algorithms 46 (2007), no. 2, 189-194.

Discrete ill-posed problem

Theoretical "L-curve": curve parameterized by the regularization factor.
(fig. taken from Ref. (Hansen, 2007))

L-curve

L-curve with the iteration number as regularization factor.

