Virtual Compton Scattering on the proton at low energy

GDR-QCD

MERIEM BENALI LPC-Clermont-Ferrand

November 09, 2016

Plan

- Generalized Polarizabilities (GPs) of the proton
- Extraction methods of GPs at Q²=0.45 GeV²:
 - Low Energy eXpansion approach (LEX)
 - Dispersion Relations model (DR)
- Conclusion
- VCS perspectives

Why use EM probes?

Powerful tool to study the internal structure of the nucleon

An elementary and understood probe (QED)

Real Photon

Momentum = energy

(q = v)Photon is massless $Q^2 = |q|^2 - v^2 = 0$

Virtual Photon

Non-zero and negative squared mass $(q \neq v)$ Virtuality $Q^2 = -\underline{q}^2 \neq 0$ = momentum transfer to the nucleon = Resolution of the probe $\lambda = 1/\sqrt{Q^2}$

Proton Scalar Polarizabilities

 \checkmark α_{E} and β_{M} in RCS are the integral of local deformation in différents points in the proton

To probe locally the polarizabilities

Virtual Compton Scattering (VCS)

From RCS to VCS

Generalized Polarizabilities GPs

Theoretical picture obtained in the heavy-baryon chiral perturbation theory :

- Mapping the spatial distribution of the deformation (small dipoles) in the proton
- Parameterize the local response of a proton in an external field.

HBChPT $O(p^3)$: Electric polarization in the nucleon induced by the field E_x

Measurement Methods

The VCS amplitude is a coherent sum of the **Bethe-Heitler**, **Born** and **Non-Born** contributions:

Measurement Methods

Measurement Methods 1-Low Energy Theorem (LEX)

Unpolarized cross section below threshold pion production:

expansion in powers of q'

$$d\sigma(ep \rightarrow e' p' \gamma) = d\sigma(BH + Born) + \Phi q' \begin{bmatrix} v_{LL}(P_{LL} - \frac{P_{TT}}{\mathcal{E}}) + v_{LT}(P_{LT}) \end{bmatrix} + O(q'^2)$$
new information on the
structure of the proton
$$q'$$
(P.A.M. Guichon et al. Nucl. Phys. (1995))
$$2 \text{ structure functions (linear combinations of GPs):}$$

$$P_{LL} - \frac{P_{TT}}{\epsilon} = (...) \times \alpha_{\epsilon}(Q^2) + [\text{Spin flip GPs}]$$

$$P_{LT} = -(...) \times \beta_{M}(Q^2) + [\text{Spin flip GPs}]$$

For extraction of the scalar GPs, α_E (Q²) and β_M (Q²), spin-flip GPs need to be fixed using some theoretical model (example: using DR Model)

Measurement Methods

2- Dispersion Relations Model (DR)

includes all orders in q'

VCS amplitude is computed through dispersion integrals calculations by using MAID model for pion production by real or virtual photon

$$d\sigma(ep \rightarrow e' p' \gamma) = d\sigma(BH + Born) + [...]$$

- {B. Pasquini et al. EPJA 11 (2001) 185.} Advantages of DR model :
- Model is valid over a wide range in Q²
- The calculation is valid above the pion production threshold
- Spin GPs are fixed by Dispersion Relations

 \checkmark α_E (Q²) and β_M (Q²) are directly parametrized by 2 free parameters Λ_α and Λ_β

 $\alpha_{E}(Q^{2}) = \alpha_{E}^{\pi N}(Q^{2}) + \frac{\left(\alpha_{E}^{\exp} - \alpha_{E}^{\pi N}\right)_{Q^{2}=0}}{\left(1 + \Lambda^{2}\right)^{2}}$ Asymptotic part unconstrained by DR $\beta_{M}(Q^{2}) = \beta_{M}^{\pi N}(Q^{2}) + \frac{\left(\beta_{M}^{\exp} - \beta_{M}^{\pi N}\right)_{Q^{2}=0}}{\left(1 + \frac{Q^{2}}{\Lambda^{2}}\right)^{2}}$

 Λ_{α} et Λ_{β} obtained by adjusting the $d^{5}\sigma^{exp}$ by $d^{5}\sigma^{DR}$ (predicted by the DR model)

World data on the VCS Structure Functions

(Figures constructed by H. FONVIEILLE)

World data on the VCS GPs

(Figures constructed by H. FONVIEILLE)

Goal of VCSq2 experiment:

Measure the GPs of the proton at Q²=0.1, 0.2 and 0.45 GeV² below pion threshold

My thesis Goal (at Q²=0.45 GeV²)

Measure the 2 structure functions (using LEX approach and DR model): (P_{LL}-P_{TT}/ε) and P_{LT}

♦ Measure the electric α_E (Q²) and magnetic β_M (Q²) **GPs**

Experimental Facility

The VCS experiment was performed at MAMI-A1 from 2011 to 2015

Mainz Microtron MAMI

- Electron accelerator
 - ✓ Polarized electron source
 - ✓ Linac
 - ✓ 4 microtrons
 - ✓ Emax=1.6 GeV
 - ✓ Imax=100 μA
- ✤ 4 experimentals Halls (A1 electron scattering, A2 tagged photons, A4 parity violation, X1 X-rays)

Hall A1 (3 spectrometers setup) We used 2 Spectrometers A and B

- ✓ momentum resolution ≤ 10 -4
- ✓ Angular resolution \leq 3 mrad

Composed by

- ✓ 4 VDC planes
- \checkmark 2 scintillators planes
- ✓ Cerenkov detector

Hall A1

- In our experiment we detect the scattered electron in spectrometer B and the recoil proton in spectrometer A
- The emitted real photon is signed by a zero missing mass:

Kinematics of the experiment

Our analyzed data are a combination out-of-Plane and In-Plane data, covering two different angular regions in (ϕ , cos (θ))

Kinematics of the experiment

Our analyzed data are a combination out-of-Plane and In-Plane data, covering two different angular regions in (ϕ , cos (θ))

We measure the small deviation between $\sigma(BH+Born)$ and $\sigma(BH+Born+GP_{S})$ in order to extract the GPs

Kinematics of the experiment

Our analyzed data are a combination out-of-Plane and In-Plane data, covering two different angular regions in (ϕ , cos (θ))

We measure the small deviation between $\sigma(BH+Born)$ and $\sigma(BH+Born+GP_{S})$ in order to extract the GPs

Fit of structure functions – LEX

Normalization step

Interest: At low q'(37.5 MeV/c in our case) the experimental cross section is dominated by the (BH+Born) cross section : ergy theoreme $\int \sigma^{exp} \to \sigma^{BH+B}$

$$\sigma^{LEX} = \sigma^{BH+B} + q' [...]$$

GPs effect at low q' ~ 1 %

• Renormalize the σ^{exp} on σ^{LEX} at low q' (χ^2 minimization)

• Renormalization is Form factors depends

Form factors	Fnorm	before normalisation	After normalisation
Bernauer Phys.Rev.Lett. 105:242001, 201	1.052 º	15.29 ± 0.96	7.39 ± 1.02
F-Walcher Eur.Phys, J.A17 :607 2003	1.026	10.62 ± 0.96	6.88 ± 0.98
Arrington Phys.Rev.C76:035205, 2007	1.032	11.80 ± 0.96	7.14 ± 1.00 17

Result fit LEX

Generalized polarizabilities fit – DR

Generalized polarizabilities fit – DR

LEX and DR comparaison

A good agreement between the LEX and DR Fit at Q²=0.45 GeV²

DR model does NOT predict the structure functions, the "DR curve" includes another assumption: fixing the two free parameters to a constant, independently of Q²

GPs DR extraction at Q²=0.45 GeV²

World data on the VCS Generalized Polarizabilities (GPs)

Conclusion

- > Fit of the electric (α_E) and magnetic (β_M) Generalised Polarizabilities at (Q²=0.45GeV²) via the Dispersion Relations model and deduce the structure functions values P_{LL}- P_{TT} / ϵ and P_{LT}.
- Extracting the same two structure functions via LEX approach
 - A good agreement between the results of the two extractions
 - New constraint on nucleon structure at low energy

GPs from the VCSq2 MAMI experiment at Q²=0.1, 0.2 and 0.45 GeV²

at Q²=0.1 GeV², J.Bericic, PhD student, Ljubljana university, Slovenia at Q²=0.2 GeV², L.Correa, PhD student (LPC Clermont Ferrand, France)

Understand the region around Q²=0.33 GeV²

Perspectives in VCS

JLab VCS proposal in Hall C to measure the electric (α_E) and magnetic (β_M)

at $Q^2 = 0.3 \text{ GeV}^2$ to 0.75 GeV^2 (+ one more measurement at $Q^2 = 0.33 \text{ GeV}^2$):

- Using asymmetry of the (ep \rightarrow epq) cross section in the $\Delta(1232)$ region
- Using the DR model

N.Sparveris, M.Paolone, A.Camsonne, M.Jones et al (2016)

Measurement of the Generalized Polarizabilities of the Proton in Virtual Compton Scattering

Proposal to Jefferson Lab PAC-44

H. Atac, H. Banjade, A. Blomberg, S. Joosten, Z.E. Meziani, M. Paolone (spokesperson), N. Sparveris (spokesperson / contact person) *Temple University, Philadelphia, PA, USA*

A. Camsonne (spokesperson), J.P. Chen, M. Jones (spokesperson) Thomas Jefferson National Accelerator Facility, Newport News, VA, USA

Sadman, S. Li, E. Long, K. McCarty, C. Meditz, M. O'Meara, R. Paremuzyan, S. Santiesteban, P. Solvignon-Slifer, K. Slifer, B. Yale, R. Zielinski University of New Hampshire, Durham NH, 03824

K Allada A Rernstein S Gilad

THANK YOU FOR YOUR ATTENTION

Normalization step of the $d\sigma^{exp}$ cross section

Interest: At low q'(37.5 MeV/c in our case) the experimental cross section is dominated by the (BH+Born) cross section_:

At low q', the GPs effect accounts for about ~ 1.0% (but att high q'=104 MeV/c \rightarrow GPs effect ~ 6%) of the cross section. Using the value of the structure functions from our first-pass fit \rightarrow we can basically FIX the term [...] and test if our measured cross section needs to be renormalized globally:

→ this is of the order of an GPs effect at important q' !!!

Our hypothesis: this percentage (5.2%) depends on the choice of proton form factors, because the (BH+Born) cross section depends on this FF choice.

Normalization step of the $d\sigma^{exp}$ cross section

Interest: At low q'(37.5 MeV/c in our case) the experimental cross section is dominated by the (BH+Born) cross section :

 $\sigma^{\exp} = \sigma^{BH+B} + q'[...] \qquad \text{Low energy theoreme} \quad \left\{ \begin{array}{c} q' \to 0 \\ \sigma^{\exp} \to \sigma^{BH+B} \end{array} \right.$

At low q', the GPs effect accounts for about ~ 1.0% (but att high q'=104 MeV/c \rightarrow GPs effect ~ 6%) of the cross section. Using the value of the structure functions from our first-pass fit \rightarrow we can basically FIX the term [...] and test if our measured cross section needs to be renormalized globally:

Method: $(P_{TT} - \frac{P_{TT}}{P_{TT}})$ et P_{TT} de (OOP + INP) (From first pass fit) 1.02					
	(P _{LL} - P _{TT} /ε) (GeV ⁻²)				
	Form factors	Fnorm	before normalisation	After normalisation	
7	Bernauer Phys.Rev.Lett. 105:242001, 2010	1.052	15.29±0.96	7.39±1.02	
	F-Walcher Eur.Phys, J.A17 :607 2003	1.026	10.62±0.96	6.88±0.98	Fnorm
	Arrington Phys.Rev.C76:035205, 2007	1.032	11.80±0.96	7.14±1.00	32

Normalization step of the $d\sigma^{exp}$ cross section

Interest: At low q'(37.5 MeV/c in our case) the experimental cross section is dominated by the (BH+Born) cross section :

At low q', the GPs effect accounts for about ~ 1.0% (but att high q'=104 MeV/c \rightarrow GPs effect ~ 6%) of the cross section. Using the value of the structure functions from our first-pass fit \rightarrow we can basically FIX the term [...] and test if our measured cross section needs to be renormalized globally:

