Perturbative aspects of the QCD phase diagram

Urko Reinosa*

(based on collaborations with J. Serreau, M. Tissier and N. Wschebor)

*Centre de Physique Théorique, Ecole Polytechnique, CNRS.

GDR-QCD, November 10, 2016, IPNO.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Theoretical approaches to the QCD phase diagram

Non-exhaustive list:

- finite-temperature lattice QCD
- Schwinger-Dyson equations
- functional renormalization group

Perturbation theory?

non-perturbative

Outline

I. A modified perturbation theory in the infrared? (Vacuum, Landau gauge).

II. Application to the QCD phase structure. (Finite T, Landau-DeWitt gauge).

A modified perturbation theory in the infrared

Perturbation theory: common wisdom

The QCD running coupling decreases at high energies: asymptotic freedom.

As a counterpart, the (perturbative) running coupling increases when the energy is decreased, and even diverges at a Landau pole known as Λ_{QCD} :

Yes but ... perturbation theory is based on the Faddeev-Popov procedure which is at best valid at high energies and should be modified at low energies.

Perturbation theory: (not so) common wisdom

Perturbation theory defined only within a given gauge-fixing (ex: $\partial_{\mu}A^{a}_{\mu} = 0$). The gauge-fixing is based on the Faddeev-Popov approach:

▲□▶▲□▶▲□▶▲□▶ ▲□ ● のへで

Perturbation theory: (not so) common wisdom

Perturbation theory defined only within a given gauge-fixing (ex: $\partial_{\mu}A^{a}_{\mu} = 0$). The gauge-fixing is based on the Faddeev-Popov approach:

$$\Rightarrow \mathcal{L} = \frac{1}{4g^2} F^a_{\mu\nu} F^a_{\mu\nu} + \partial_\mu \bar{c}^a (D_\mu c)^a + ih^a \partial_\mu A^a_\mu \quad \text{Valid at best at high energies!}$$

▲□▶▲□▶▲□▶▲□▶ □ のQで

Perturbation theory: (not so) common wisdom

Perturbation theory defined only within a given gauge-fixing (ex: $\partial_{\mu}A^{a}_{\mu} = 0$). The gauge-fixing is based on the Faddeev-Popov approach:

$$\Rightarrow \mathcal{L} = \frac{1}{4g^2} F^a_{\mu\nu} F^a_{\mu\nu} + \partial_\mu \bar{c}^a (D_\mu c)^a + ih^a \partial_\mu A^a_\mu + \mathcal{L}_{\text{Gribov}} \leftarrow \text{not known so far}$$

Could $\mathcal{L}_{\text{Gribov}}$ restore the applicability of perturbation theory in the IR?

How to constrain \mathcal{L}_{Gribov} ?

(Landau gauge) lattice simulations [Cucchieri and Mendes; Bogolubsky *et al*; Dudal *et al*; ...] are crucial: * free from the Gribov ambiguity;

* provide valuable information to construct models for \mathcal{L}_{Gribov} .

In particular, they predict:

- * a gluon propagator G(p) that behaves like a massive one at p = 0;
- * a ghost propagator $F(p)/p^2$ that remains massless.

Our model

As the dominant contribution to \mathcal{L}_{Gribov} , we propose a gluon mass term:

$$\mathcal{L} = \frac{1}{4g^2} F^a_{\mu\nu} F^a_{\mu\nu} + \partial_\mu \bar{c}^a (D_\mu c)^a + ih^a \partial_\mu A^a_\mu + \frac{1}{2} m^2 A^a_\mu A^a_\mu$$

▲□▶▲□▶▲□▶▲□▶ □ のQで

Particular case of the Curci-Ferrari (CF) model. Most appealing features:

- * Just one additional parameter (simple modification of the Feynman rules).
- * Perturbatively renormalizable and \exists RG trajectories without Landau pole:

 \Rightarrow perturbative calculations may be pushed down to the IR!

Vacuum correlators

Amazing agreement between LO perturbation theory in the CF model and Landau gauge lattice vacuum correlators [with $m \simeq 500 \text{ MeV}$ for SU(3)]:

▲□▶▲□▶▲□▶▲□▶ □ のQで

[Tissier, Wschebor, Phys.Rev. D84 (2011)]

What are the predictions of the model at finite temperature?

QCD phase structure

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Back to the QCD phase diagram

Order parameter(s): Polyakov loop(s)

$$\ell \equiv \frac{1}{3} \left\langle \operatorname{tr} \mathcal{P} e^{ig \int_{0}^{1/T} d\tau A_{0}} \right\rangle \propto e^{-\beta F_{\text{quark}}}$$
$$\bar{\ell} \equiv \frac{1}{3} \left\langle \operatorname{tr} \left(\mathcal{P} e^{ig \int_{0}^{1/T} d\tau A_{0}} \right)^{\dagger} \right\rangle \propto e^{-\beta F_{\text{antiquark}}}$$

Back to the QCD phase diagram

Deconfinement transition \equiv SSB of center symmetry.

Problem: center symmetry is not manifest in the Landau gauge.

Order parameter

Underlying symmetry: center symmetry

$$\begin{split} A^{U}_{\mu} &= U A_{\mu} U^{\dagger} - i U \partial_{\mu} U^{\dagger} \\ U(\tau + 1/T, \vec{x}) &= U(\tau, \vec{x}) e^{i \frac{2\pi}{3} k} \ (k = 0, 1, 2) \end{split}$$

Under such a transformation: $\ell \rightarrow e^{i2\frac{\pi}{3}k}\ell$

Changing to the Landau-DeWitt gauge

We move from the Landau gauge to the Landau-DeWitt gauge:

$$0 = \partial_{\mu}A^{a}_{\mu} \rightarrow 0 = (\bar{D}_{\mu}a_{\mu})^{a} \begin{cases} \bar{D}^{ab}_{\mu} \equiv \partial_{\mu}\delta_{ab} + f^{acb}\bar{A}^{c}_{\mu} \\ a^{a}_{\mu} \equiv A^{a}_{\mu} - \bar{A}^{a}_{\mu} \end{cases}$$

with \overline{A} a given background field configuration.

Faddeev-Popov gauge-fixed action + phenomenological \mathcal{L}_{Gribov} :

$$\mathcal{L}_{\bar{A}} = \frac{1}{4g^2} F^a_{\mu\nu} F^a_{\mu\nu} + \underbrace{(\bar{D}_{\mu}\bar{c})^a (D_{\mu}c)^a + ih^a (\bar{D}_{\mu}a_{\mu})^a + \frac{1}{2}m^2 a^a_{\mu}a^a_{\mu}}_{\text{Landau gauge} + \partial_{\mu} \to \bar{D}_{\mu} \text{ and } A_{\mu} \to a_{\mu}}$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

Background and symmetries

In practice, one chooses \overline{A} complying with the symmetries at finite T:

$$\bar{A}_{\mu}(\tau, \vec{x}) = T\delta_{\mu 0}\left(r_3\frac{\lambda^3}{2} + r_8\frac{\lambda^8}{2}\right) \in \text{Cartan subalgebra}$$

It is also convenient to work with self-consistent backgrounds: $0 = \langle a_{\mu} \rangle_{\bar{A}}$.

- * shown to be the minima of a certain Gibbs potential $\tilde{\Gamma}[\bar{A}] \equiv \Gamma_{\bar{A}}[a=0]$.
- * this functional is center-symmetric:

$$\tilde{\Gamma}[\bar{A}^U] = \tilde{\Gamma}[\bar{A}], \ \forall \ U(\tau + 1/T) = e^{i\frac{2\pi}{3}k} \ U(\tau)$$

As in the textbook situation (ex: Ising-model), SSB occurs when the ground state of the Gibbs potential moves from a symmetric state to a symmetry breaking one. But what is the (center-)symmetric state in the present case?

One-loop result - SU(3)

|□▶ ◀@▶ ◀ ≧▶ ◀ ≧▶ | 差|||の��|

One-loop result - SU(3)

$$T^{-4}\tilde{\Gamma}[\bar{A}] = 3F(r_3, r_8, m/T) - F(r_3, r_8, 0) \sim T$$

 $\begin{cases} -F(r_3, r_8) \text{ if } T \ll m\\ 2F(r_3, r_8) \text{ if } T \gg m \end{cases}$

One-loop result - SU(3)

We obtain a first order transition in agreement with lattice predictions:

[UR, J. Serreau, M. Tissier and N. Wschebor, Phys.Lett. B742 (2015) 61-68]

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Summary of one-loop results

order	lattice	fRG	our model at 1-loop
SU(2)	2nd	2nd	2nd
SU(3)	1st	1st	1st
SU(4)	1st	1st	1st
Sp(2)	1st	1st	1st

$T_{\rm c}~({\rm MeV})$	lattice	fRG ^(*)	our model at 1-loop ^(**)	
SU(2)	295	230	238	
SU(3)	270	275	185	

(*) L. Fister and J. M. Pawlowski, Phys.Rev. D88 (2013) 045010.

(**) UR, J. Serreau, M. Tissier and N. Wschebor, Phys.Lett. B742 (2015) 61-68.

Summary of two-loop results

order	lattice	fRG	our model at 1-loop	our model at 2-loop
SU(2)	2nd	2nd	2nd	2nd
SU(3)	1st	1st	1st	1st
SU(4)	1st	1st	1st	1st
Sp(2)	1st	1st	1st	1st

$T_{\rm c}~({\rm MeV})$	lattice	fRG ^(*)	our model at 1-loop	our model at 2-loop ^(**)
SU(2)	295	230	238	284
SU(3)	270	275	185	254

(*) L. Fister and J. M. Pawlowski, Phys.Rev. D88 (2013) 045010.

(**) UR, J. Serreau, M. Tissier and N. Wschebor, Phys.Rev. D93 (2016) 105002.

Adding (fundamental) quarks

We add N_f (heavy) quarks in the fundamental representation:

$$\mathcal{L} = \mathcal{L}_{LdW} + \mathcal{L}_{Gribov} + \sum_{f=1}^{N_f} \left\{ \bar{\psi}_f (\partial - igA^a t^a + M_f + \mu\gamma_0) \psi_f \right\}$$

Center symmetry is explicitly broken by the boundary conditions:

$$\left.\begin{array}{l}\psi(1/T,\vec{x}) = -\psi(0,\vec{x})\\ U(1/T,\vec{x}) = e^{-i2\pi/3}U(0,\vec{x})\end{array}\right\} \Rightarrow \psi'(1/T,\vec{x}) = -e^{-i2\pi/3}\psi'(0,\vec{x})$$

C-symmetry is also broken as soon as $\mu \neq 0$:

うくで

μ = 0: **Phase transition**

「ロトメ母トメヨトメヨト」 ヨークへの、

μ = 0: Dependence on the quark masses

◆□▶◆圖▶◆圖▶◆圖▶ ■ のなぐ

 μ = 0: Columbia plot

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ◆ □ ◆ ○ へ ⊙

 μ = 0: Columbia plot

N _f	$(M_c/T_c)^{\text{our model (*)}}$	$(M_c/T_c)^{\text{lattice (**)}}$	$(M_c/T_c)^{\text{matrix (***)}}$	$(M_c/T_c)^{\mathrm{SD}(****)}$
1	<mark>6.74</mark>	7.22	8.04	1.42
2	7.59	7.91	8.85	1.83
3	8.07	8.32	9.33	2.04

(*) UR, J. Serreau and M. Tissier, Phys.Rev. D92 (2015).

(**) M. Fromm, J. Langelage, S. Lottini and O. Philipsen, JHEP 1201 (2012) 042.

(***) K. Kashiwa, R. D. Pisarski and V. V. Skokov, Phys.Rev. D85 (2012) 114029.

(****) C. S. Fischer, J. Luecker and J. M. Pawlowski, Phys.Rev. D91 (2015) 1, 014024.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

$\mu \in i\mathbb{R}$: Phase transition

Low T

$\mu \in i\mathbb{R}$: Phase transition High T

SAC

$\mu \in i\mathbb{R}$: Roberge-Weiss transition

▲□▶▲圖▶★臣▶★臣▶ 臣 のへで

$\mu \in i\mathbb{R}$: Dependence on the quark masses

Same structure as in the lattice study of [P. de Forcrand, O. Philipsen, Phys.Rev.Lett. 105 (2010)]

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 - のへで

$\mu \in i\mathbb{R}$: Tricritical scaling

$$\frac{M_c}{T_c} = \frac{M_{\text{tric.}}}{T_{\text{tric.}}} + K \left[\left(\frac{\pi}{3}\right)^2 + \left(\frac{\mu}{T}\right)^2 \right]^{2/5}$$

	our model ^(*)	lattice ^(**)	SD ^(***)
K	1.85	1.55	0.98
$\frac{M_{\text{tric.}}}{T_{\text{tric.}}}$	6.15	6.66	0.41

(*) UR, J. Serreau and M. Tissier, Phys.Rev. D92 (2015).

(**) Fromm et.al., JHEP 1201 (2012) 042.

(***) Fischer et.al., Phys.Rev. D91 (2015) 1, 014024.

$\mu \in \mathbb{R}$: Complex backgrounds

We find that, for $\mu \in \mathbb{R}$, the background r_8 should be chosen imaginary:

 $\mu \in \mathbf{i} \mathbb{R}, r_8 \in \mathbb{R}$

 $\mu \in \mathbb{R}, r_8 \in \mathbf{i} \mathbb{R}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

$\mu \in \mathbb{R}$: Complex backgrounds

The choice $r_8 = i\tilde{r}_8$, $\tilde{r}_8 \in \mathbb{R}$ is crucial for the interpretation of ℓ and $\bar{\ell}$ in terms of F_q and $F_{\bar{q}}$ to hold true [UR, J. Serreau and M. Tissier, Phys.Rev. D92 (2015)]:

・ コ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

$\mu \in \mathbb{R}$: Columbia plot

The critical surface moves towards larger quark masses:

$\mu \in \mathbb{R}$: tricritical scaling

The tricritical scaling survives deep in the $\mu^2 > 0$ region:

ヘロト 人間 とくほとく ほとう

3

Conclusions

Simple one-loop calculations in a model for a Gribov completion of the Landau-DeWitt gauge account for qualitative and quantitative features of the QCD phase diagram in the heavy quark limit:

- * Correct account of the order parameter in the quenched limit;
- * Critical line of the Columbia plot at $\mu = 0$;
- ★ Roberge-Weiss phase diagram and its mass dependence for $\mu \in i\mathbb{R}$.

The case $\mu \in \mathbb{R}$ requires the use of complex backgrounds.

Certain aspects require the inclusion of two-loop corrections.

TODO:

* Chiral phase transition? Critical end-point in the (T, μ) diagram?

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Hadronic bound states? Glueballs?
- ★ How to define the physical space?