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Theoretical approaches to the QCD phase diagram

Non-exhaustive list:

- finite-temperature lattice QCD
- Schwinger-Dyson equations
- functional renormalization group

⎫⎪⎪⎪⎬⎪⎪⎪⎭
non-perturbative

Perturbation theory?



Outline

I. A modified perturbation theory in the infrared?

(Vacuum, Landau gauge).

II. Application to the QCD phase structure.

(Finite T, Landau-DeWitt gauge).



A modified perturbation theory
in the infrared



Perturbation theory: common wisdom

The QCD running coupling decreases at high energies: asymptotic freedom.

As a counterpart, the (perturbative) running coupling increases when the
energy is decreased, and even diverges at a Landau pole known as ΛQCD:
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Yes but ... perturbation theory is based on the Faddeev-Popov procedure which
is at best valid at high energies and should be modified at low energies.



Perturbation theory: (not so) common wisdom

Perturbation theory defined only within a given gauge-fixing (ex: ∂µAa
µ = 0).

The gauge-fixing is based on the Faddeev-Popov approach:

A

Equivalent configs AU
µ

Field configs satisfying
gauge cond. (∂µAU

µ = 0)
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⇒ L = 1
4g2
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µνFa

µν + ∂µc̄a(Dµc)a + iha∂µAa
µ



Perturbation theory: (not so) common wisdom

Perturbation theory defined only within a given gauge-fixing (ex: ∂µAa
µ = 0).

The gauge-fixing is based on the Faddeev-Popov approach:

A

Gribov copies
Gauge condition

equivalent configs

1

⇒ L = 1
4g2

Fa
µνFa

µν + ∂µc̄a(Dµc)a + iha∂µAa
µ Valid at best at high energies!



Perturbation theory: (not so) common wisdom

Perturbation theory defined only within a given gauge-fixing (ex: ∂µAa
µ = 0).

The gauge-fixing is based on the Faddeev-Popov approach:

A

Gribov copies
Gauge condition

equivalent configs

1

⇒ L = 1
4g2

Fa
µνFa

µν + ∂µc̄a(Dµc)a + iha∂µAa
µ + LGribov ← not known so far

Could LGribov restore the applicability of perturbation theory in the IR?



How to constrain LGribov?

(Landau gauge) lattice simulations [Cucchieri and Mendes; Bogolubsky et al; Dudal et al; . . . ]
are crucial: ⋆ free from the Gribov ambiguity;

⋆ provide valuable information to construct models for LGribov.

In particular, they predict:

⋆ a gluon propagator G(p) that behaves like a massive one at p = 0;

⋆ a ghost propagator F(p)/p2 that remains massless.
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Our model

As the dominant contribution to LGribov, we propose a gluon mass term:

L = 1
4g2

Fa
µνFa

µν + ∂µc̄a(Dµc)a + iha∂µAa
µ +

1
2

m2Aa
µAa

µ

Particular case of the Curci-Ferrari (CF) model. Most appealing features:

⋆ Just one additional parameter (simple modification of the Feynman rules).
⋆ Perturbatively renormalizable and ∃ RG trajectories without Landau pole:
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⇒ perturbative calculations may be pushed down to the IR!



Vacuum correlators

Amazing agreement between LO perturbation theory in the CF model and
Landau gauge lattice vacuum correlators [with m ≃ 500 MeV for SU(3)]:
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[Tissier, Wschebor, Phys.Rev. D84 (2011)]

What are the predictions of the model at finite temperature?



QCD phase structure



Back to the QCD phase diagram
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Back to the QCD phase diagram
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Deconfinement transition
≡ SSB of center symmetry.

Problem: center symmetry is not
manifest in the Landau gauge.

Underlying symmetry: center symmetry

AU
µ = UAµU† − iU∂µU†

U(τ + 1/T, x⃗) = U(τ, x⃗) ei 2π
3 k (k = 0,1,2)

Under such a transformation: `→ ei2π3 k`
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Changing to the Landau-DeWitt gauge

We move from the Landau gauge to the Landau-DeWitt gauge:

0 = ∂µAa
µ → 0 = (D̄µaµ)a { D̄ab

µ ≡ ∂µδab + f acbĀc
µ

aa
µ ≡ Aa

µ − Āa
µ

with Ā a given background field configuration.

Faddeev-Popov gauge-fixed action + phenomenological LGribov:

LĀ =
1

4g2
Fa
µνFa

µν + (D̄µc̄)a(Dµc)a + iha(D̄µaµ)a+1
2

m2aa
µaa

µ

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Landau gauge + ∂µ → D̄µ and Aµ → aµ



Background and symmetries

In practice, one chooses Ā complying with the symmetries at finite T:

Āµ(τ, x⃗) = Tδµ0 (r3
λ3

2
+ r8

λ8

2
) ∈ Cartan subalgebra

It is also convenient to work with self-consistent backgrounds: 0 = ⟨aµ⟩Ā.
⋆ shown to be the minima of a certain Gibbs potential Γ̃[Ā] ≡ ΓĀ[a = 0].
⋆ this functional is center-symmetric:

Γ̃[ĀU] = Γ̃[Ā], ∀U(τ + 1/T) = ei 2π
3 k U(τ)

As in the textbook situation (ex: Ising-model), SSB occurs when the ground state
of the Gibbs potential moves from a symmetric state to a symmetry breaking one.
But what is the (center-)symmetric state in the present case?



Weyl chambers and center symmetry



Weyl chambers and center symmetry



Weyl chambers and center symmetry



Weyl chambers and center symmetry



Weyl chambers and center symmetry



Weyl chambers and center symmetry



One-loop result - SU(3)



One-loop result - SU(3)

T−4Γ̃[Ā] = 3F(r3, r8,m/T) − F(r3, r8,0) ∼ { −F(r3, r8) if T ≪ m
2F(r3, r8) if T ≫ m



One-loop result - SU(3)

We obtain a first order transition in agreement with lattice predictions:
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0

[UR, J. Serreau, M. Tissier and N. Wschebor, Phys.Lett. B742 (2015) 61-68]



Summary of one-loop results

order lattice fRG our model at 1-loop
SU(2) 2nd 2nd 2nd
SU(3) 1st 1st 1st
SU(4) 1st 1st 1st
Sp(2) 1st 1st 1st

Tc (MeV) lattice fRG(∗) our model at 1-loop(∗∗)

SU(2) 295 230 238
SU(3) 270 275 185

(∗) L. Fister and J. M. Pawlowski, Phys.Rev. D88 (2013) 045010.
(∗∗) UR, J. Serreau, M. Tissier and N. Wschebor, Phys.Lett. B742 (2015) 61-68.



Summary of two-loop results

order lattice fRG our model at 1-loop our model at 2-loop
SU(2) 2nd 2nd 2nd 2nd
SU(3) 1st 1st 1st 1st
SU(4) 1st 1st 1st 1st
Sp(2) 1st 1st 1st 1st

Tc (MeV) lattice fRG(∗) our model at 1-loop our model at 2-loop(∗∗)

SU(2) 295 230 238 284
SU(3) 270 275 185 254

(∗) L. Fister and J. M. Pawlowski, Phys.Rev. D88 (2013) 045010.
(∗∗) UR, J. Serreau, M. Tissier and N. Wschebor, Phys.Rev. D93 (2016) 105002.



Adding (fundamental) quarks

We add Nf (heavy) quarks in the fundamental representation:

L = LLdW + LGribov +
Nf

∑
f=1

{ψ̄f (∂/ − igAa/ ta +Mf + µγ0)ψf }

Center symmetry is explicitly broken by the boundary conditions:

ψ(1/T, x⃗) = −ψ(0, x⃗)

U(1/T, x⃗) = e−i2π/3U(0, x⃗)

⎫⎪⎪⎪⎬⎪⎪⎪⎭
⇒ ψ′(1/T, x⃗) = −e−i2π/3ψ′(0, x⃗)

C-symmetry is also broken as soon as µ ≠ 0:
r3

r8



µ = 0: Phase transition



µ = 0: Dependence on the quark masses
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µ = 0: Columbia plot
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µ = 0: Columbia plot

Nf (Mc/Tc)our model (*) (Mc/Tc)lattice (**) (Mc/Tc)matrix (***) (Mc/Tc)SD (****)

1 6.74 7.22 8.04 1.42
2 7.59 7.91 8.85 1.83
3 8.07 8.32 9.33 2.04

(∗) UR, J. Serreau and M. Tissier, Phys.Rev. D92 (2015).
(∗∗) M. Fromm, J. Langelage, S. Lottini and O. Philipsen, JHEP 1201 (2012) 042.
(∗∗∗) K. Kashiwa, R. D. Pisarski and V. V. Skokov, Phys.Rev. D85 (2012) 114029.
(∗∗∗∗) C. S. Fischer, J. Luecker and J. M. Pawlowski, Phys.Rev. D91 (2015) 1, 014024.



µ ∈ iR: Phase transition
Low T



µ ∈ iR: Phase transition
High T



µ ∈ iR: Roberge-Weiss transition
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µ ∈ iR: Dependence on the quark masses

M > Mc(0) ∶  0.36

 0.348
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Same structure as in the lattice study of [P. de Forcrand, O. Philipsen, Phys.Rev.Lett. 105 (2010)]



µ ∈ iR: Tricritical scaling
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µ ∈ R: Complex backgrounds

We find that, for µ ∈ R, the background r8 should be chosen imaginary:

r3

r8

r3

r8

ir8

µ ∈ iR, r8 ∈ R µ ∈ R, r8 ∈ iR



µ ∈ R: Complex backgrounds

The choice r8 = ĩr8, r̃8 ∈ R is crucial for the interpretation of ` and ¯̀ in terms of Fq

and Fq̄ to hold true [UR, J. Serreau and M. Tissier, Phys.Rev. D92 (2015)]:
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µ ∈ R: Columbia plot

The critical surface moves towards larger quark masses:
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µ ∈ R: tricritical scaling

The tricritical scaling survives deep in the µ2 > 0 region:
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Conclusions

Simple one-loop calculations in a model for a Gribov completion of the
Landau-DeWitt gauge account for qualitative and quantitative features
of the QCD phase diagram in the heavy quark limit:

⋆ Correct account of the order parameter in the quenched limit;
⋆ Critical line of the Columbia plot at µ = 0;
⋆ Roberge-Weiss phase diagram and its mass dependence for µ ∈ iR.

The case µ ∈ R requires the use of complex backgrounds.

Certain aspects require the inclusion of two-loop corrections.

TODO:

⋆ Chiral phase transition? Critical end-point in the (T, µ) diagram?
⋆ Hadronic bound states? Glueballs?
⋆ How to define the physical space?
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