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Theoretical approaches to the QCD phase diagram
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Non-exhaustive list:

- finite-temperature lattice QCD
- Schwinger-Dyson equations non-perturbative
- functional renormalization group

Perturbation theory?
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Outline

I. A modified perturbation theory in the infrared?

(Vacuum, Landau gauge).

II. Application to the QCD phase structure.
(Finite T, Landau-DeWitt gauge).



A modified perturbation theory
in the infrared



Perturbation theory: common wisdom
The QCD running coupling decreases at high energies: asymptotic freedom.

As a counterpart, the (perturbative) running coupling increases when the
energy is decreased, and even diverges at a Landau pole known as Agcp:
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Yes but ... perturbation theory is based on the Faddeev-Popov procedure which
is at best valid at high energies and should be modified at low energies.



Perturbation theory: (not so) common wisdom

Perturbation theory defined only within a given gauge-fixing (ex: d,Aj, = 0).

The gauge-fixing is based on the Faddeev-Popov approach:

Field configs satisfying
gauge cond. (8NAE =0)

1
= L= @FZ’VFZ’V + aMZ'a(DNC)a + lhaauAZ



Perturbation theory: (not so) common wisdom

Perturbation theory defined only within a given gauge-fixing (ex: 6MAZ =0).
The gauge-fixing is based on the Faddeev-Popov approach:

equivalent configs

Gribov copies

Gauge condition

1
= L= Ig —Fu,F, + 0, (Dyc) +ih“0, A, Valid at best at high energies!



Perturbation theory: (not so) common wisdom

Perturbation theory defined only within a given gauge-fixing (ex: J,A7, = 0).

The gauge-fixing is based on the Faddeev-Popov approach:

equivalent configs

Gribov copies

Gauge condition

1
= L= 4—2F:’WFZV +0,¢"(Dye)' + ih“0,Aj, +’ LGriboy < Not known so far

Could Lgripey restore the applicability of perturbation theory in the IR?



How to constrain Lgipo,?

(Landau gauge) lattice simulations
are crucial: * free from the Gribov ambiguity;
* provide valuable information to construct models for Lgsipoy-
In particular, they predict:
* a gluon propagator G(p) that behaves like a massive one at p = 0;

* a ghost propagator F(p)/p* that remains massless.
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Our model

As the dominant contribution to Lgiiboy, We propose a gluon mass term:

1 a a —a a 1 a a 1 2 4a pa
L= Ig — F Fp,, + 0,8 (Dyc)® +ih0,A; + M ALAY,

Particular case of the Curci-Ferrari (CF) model. Most appealing features:

* Just one additional parameter (simple modification of the Feynman rules).

= Perturbatively renormalizable and 3 RG trajectories without Landau pole:
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= perturbative calculations may be pushed down to the IR!



Vacuum correlators

Amazing agreement between LO perturbation theory in the CF model and
Landau gauge lattice vacuum correlators [with m ~ 500 MeV for SU(3)]:
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What are the predictions of the model at finite temperature?




QCD phase structure



Back to the QCD phase diagram
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Back to the QCD phase diagram
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Changing to the Landau-DeWitt gauge

We move from the Landau gauge to the Landau-DeWitt gauge:

) ~ . Dab = a 5ab +fachc
0=0u4, — 0=(Dyay) { a%EA%‘AZ '

with A a given background field configuration.

Faddeev-Popov gauge-fixed action + phenomenological Lgriboy:

1 _ _ 1
L3 = rng/‘fWFZV + (Do) (Duc)* + iha(Duau)“-kEmza;‘La;‘ll

Landau gauge + 8, » D, and A, - a,,



Background and symmetries

In practice, one chooses A complying with the symmetries at finite T:

3 8

— A
Au(7,%) = Tépo (Fsz + ng) ¢ Cartan subalgebra

It is also convenient to work with self-consistent backgrounds: 0 = (a,, ).
« shown to be the minima of a certain Gibbs potential T[A] = T';[a = 0].
= this functional is center-symmetric:

T[AY] =T[A], VU(r + 1/T) = ¢ T+ U(7)

As in the textbook situation (ex: Ising-model), SSB occurs when the ground state
of the Gibbs potential moves from a symmetric state to a symmetry breaking one.
But what is the (center-)symmetric state in the present case?



Weyl chambers and center symmetry
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Weyl chambers and center symmetry
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Weyl chambers and center symmetry
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Weyl chambers and center symmetry
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Weyl chambers and center symmetry
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Weyl chambers and center symmetry
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One-loop result - SU(3)




One-loop result - SU(3)

~ - -F if T
TT[A] = 3F (rs, s, m|T) - F(rs, 75, 0) ~{ (r3, rs) if T" << m

2F(r3,rg) if T >>m




One-loop result - SU(3)

We obtain a first order transition in agreement with lattice predictions:

0 Ny

[UR, J. Serreau, M. Tissier and N. Wschebor, Phys.Lett. B742 (2015) 61-68]



Summary of one-loop results

| order [ lattice | fRG [| our model at I-loop

SUQ) 2nd 2nd 2nd
SU@3) Ist 1st 1st
SU4) 1st Ist 1st
Sp(2) 1st 1st 1st

’ T. MeV) H lattice H fRG H our model at 1-loop

SU) 295 230 238
SU(3) 270 275 185




Summary of two-loop results

| order [ lattice || fRG [| our model at I-loop | our model at 2-loop

SUQ) 2nd 2nd 2nd 2nd
SU@3) Ist 1st 1st 1st
SU4) 1st 1st 1st 1st
Sp(2) 1st 1st 1st 1st

H our model at 1-loop H our model at 2-loop

| T. MeV) [ lattice | fRG
SU@) 295 230 238 284
SUB) 270 || 275 185 254




Adding (fundamental) quarks

We add Ny (heavy) quarks in the fundamental representation:
N
L= Lraw + Laribov + ), {1/%/"(67 —ight" + My + /V‘/O)Y/)f}
f=1

Center symmetry is explicitly broken by the boundary conditions:

Y(1/T,%) = =1(0,%) ,
. = ¢ (1/T,%) = —e ™34/ (0,%)
U(1/T,%) = e 2B U(0,%)

s

C-symmetry is also broken as soon as y # 0:




i = 0: Phase transition




1 = 0: Dependence on the quark masses

M>M,: first order

second order

M<M,: crossover




i = 0: Columbia plot
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i = 0: Columbia plot

|Nf ” (MC/T )ourmodel( ” (MC/T )lamce ” (M /T )matnx ” (M /T )SD D) |

1 6.74 7.22 8.04 1.42
2 7.59 7.91 8.85 1.83
3 8.07 8.32 9.33 2.04

(*) UR, J. Serreau and M. Tissier, Phys.Rev. D92 (2015).

(**) M. Fromm, J. Langelage, S. Lottini and O. Philipsen, JHEP 1201 (2012) 042.
(+**) K. Kashiwa, R. D. Pisarski and V. V. Skokov, Phys.Rev. D85 (2012) 114029.
(+#**) S, Fischer, J. Luecker and J. M. Pawlowski, Phys.Rev. D91 (2015) 1, 014024.



i € iR: Phase transition
Low T




i € iR: Phase transition
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1 € ilR: Roberge-Weiss transition

Arg /




1 € iR: Dependence on the quark masses

M >M(0): o
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Same structure as in the lattice study of [P. de Forcrand, O. Philipsen, Phys.Rev.Lett. 105 (2010)]



w € iRz Tricritical scaling

6 0 0‘.2 ()‘44 d.6 0‘.8 ‘1 1.2
(m/3) = (mi/T.)?
l H our model H lattice
1 ric 2 272/5
%=%+K[(g) (%) ] M[; 1.85 1.55
ﬁ 6.15 6.66




1 € R: Complex backgrounds

We find that, for 1 € R, the background rg should be chosen imaginary:
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i € R: Complex backgrounds

The choice rg = irg, rg € R is crucial for the interpretation of ¢ and £ in terms of F, q
and Fj to hold true
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1 € R: Columbia plot

The critical surface moves towards larger quark masses:
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1 € R tricritical scaling

The tricritical scaling survives deep in the p> > 0 region:

0 40 80 120
(m/3)* + (u/T.)?



Conclusions

Simple one-loop calculations in a model for a Gribov completion of the
Landau-DeWitt gauge account for qualitative and quantitative features
of the QCD phase diagram in the heavy quark limit:

= Correct account of the order parameter in the quenched limit;
% Critical line of the Columbia plot at u = 0;

* Roberge-Weiss phase diagram and its mass dependence for y € iRR.

The case p € R requires the use of complex backgrounds.

Certain aspects require the inclusion of two-loop corrections.
TODO:

» Chiral phase transition? Critical end-point in the (7, ) diagram?
% Hadronic bound states? Glueballs?

» How to define the physical space?
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