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Purpose

Calculation of strong three-meson coupling constants, involving charmed or

charmonium particles. Cannot be measured in hadronic decays, because of lack

of phase space, but enter in the description of properties of these hadrons and in

the calculation of form factors. They appear in the residues of poles in the timelike

region.
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where fV is the vector meson decay constant:

〈0|jµ|V (p)〉 = fVMV εµ(p) .
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fP is the meson decay constant of the pseudoscalar meson:

〈0|j5µ|P (p)〉 = ifPpµ .
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Relativistic constituent quark model

Relativistic formalism adapted for the calculation of form factors by Anisovitch,

Melikhov, et al. (1992). (D. Melikhov, arXiv:hep-ph/0110087, Eur. Phys. J. direct 4 C2 (2002).)

Approximation of internal quark lines in Feynman diagrams by the two-body

intermediate states or two-body on-mass shell elastic scattering amplitude. One

transforms Feynman diagram loop calculations into three-dimensional integrals and

one ends up with dispersion relation type representations, which possess specific

analyticity properties.

In the application domain of the model (form factors, decay constants), concerning

mainly S-wave states or ground states, the detailed shape of the wave functions does

not play an important role; only the spatial extension of the bound state, or its radius,

is important; approximate guesses of the wave functions, with one or two parameters,

is widely sufficient.
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Another problem is the relationship between current and constituent
quarks, which appears at the level of currents. In terms of constituent
quarks (Q), one has

jµ = gV Q̄1γµQ2 + other Lorentz structures ,

j5µ = gAQ̄1γµγ5Q2 + other Lorentz structures .

When the currents contain at least one heavy quark, the choice
gV = gA = 1, neglecting other terms, provides satisfactory results.

When the currents contain only light quarks, gV and gA may be
different from 1 and more complicated structures might be needed.
(Pham, (1982).)
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Typical expressions of decay constants and form factors are the
following:

fi =

∞
∫

(m1+m2)2

ds φi(s) ρi(s) , i = P, V.

Fi(q
2) =

∫ ∞

(m1+m2)2
ds2 φ2(s2)

∫ s+1 (s2,q
2)

s
−
1 (s2,q2)

ds1 φ1(s1) ∆i(s1, s2, q
2) .

ρi(s) and ∆i(s1, s2, q
2) are single and double spectral densities,

calculated from the two-body quark kinematics.

Representation of Fi is valid in general for −∞ ≤ q2 ≤ (m1 −m2)
2.
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The wave functions φi have the following structure:

φi(s) =
π
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√

s2 − (m2
1 −m2)2

2 [s− (m1 −m)2]
wi(k

2
),

with

k2
=

(s−m2
1 −m2

2)
2 − 4m2

1m
2
2

4 s
.

The functionwi satisfies the normalization condition
∫

dk k2w2
i(k

2
) = 1 .

For the present applications, the detailed shape of the wave functionφi is not crucial.

It is mainly its spatial extension (or radius) that is important. wi is chosen here as a

gaussian function (for S-states):

wi(k
2
) = Ai exp

(

−
k2

2β2
i

)

.
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The previous representations (in the region q2 ≤ 0 for the form
factors) are equivalent to the light-front representations of the
relativistic constituent quark model (Jaus (1991), Schlumpf (1994),
Cardarelli et al. (1994)).

Advantage of the present representation: its analytic validity in
the extended region 0 ≤ q2 ≤ (m1 −m2)

2. Important for numerical
extrapolation to the resonance regions.
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Numerical values of parameters

Quark flavourQ u d s c

Quark massmQ (GeV) 0.23 0.23 0.35 1.45

Meson D D∗ Ds D∗
s ηc J/ψ

M (GeV) 1.87 2.010 1.97 2.11 2.980 3.097

f (MeV) 206 ± 8 260 ± 10 248 ± 2.5 311 ± 9 394.7 ± 2.4 405 ± 7

β (GeV) 0.475 0.48 0.545 0.54 0.77 0.68
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Form factors

M1 → M2 meson–meson transitions for M1,2 = ηc, J/ψ,D,D
∗,

Ds, D
∗
s , mediated by vector or axial-vector currents.

Examples of Feynman graphs, with vector currents, yielding the one-
loop contributions to the double spectral density ∆(s1, s2, q

2):
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Extrapolation to the resonance region

Once the slopes βi are fixed from the values of the decay constants,

the form factors Fi are known in their analytic representation region

−∞ ≤ q2 ≤ (m1 −m2)
2 (for fixed values of the constituent quark masses,

already given).

The form factors have resonance poles in the timelike region of q2 at mass values

MR (R = PR, VR). The analytic expressions of F should provide a basis for an

extrapolation to the first resonance region.

To implement the extrapolation, a four-parameter fit is adopted for F :

F(q2) =
F(0)

(

1 − σ1 q
2/M2

R + σ2 (q
2)2/M4

R

)

1

(1 − q2/M2
R)
, R = PR, VR .

(For conserved vector currents F(0) = 1.)
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As a first test, the above parametrization is confronted with the analytic expression

of F(q2) in the region −M2
R ≤ q2 ≤ 0.

The best fits produce the value of MR, with the appropriate quantum numbers,

very close to the physical mass of the resonance (within a few percent accuracy).

This step confirms the soundness of the parametrization for the extrapolation to the

timelike region near the resonance mass.

As a second step, the parametrization, with the mass MR fixed now at its

experimental value, is used in the timelike resonance region. The residue at the

resonance pole is

Res F(q2 = M2
R) =

F(0)

(1 − σ1 + σ2)
= gPPV

R
fV
R
/(2MV

R
) .

(A particular channel has been considered in the right.)

The same coupling constant can appear in different form factors (vector, axial).

This imposes additional consistency checks.
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The matching between the three parameter fit (F(0), σ1, σ2) and the analytic

expression of F(q2) in the spacelike region is realized within a 0.2% accuracy.

The figure below displays the dependence on x ≡ q2

M2
R

of the “off-shell strong

coupling” gηcηcψ(x), from the transition ηc → ηc (resonanceR = J/ψ, red) and

from the transition ηc → J/ψ (resonance R = ηc, blue), respectively. The two

curves converge smoothly to the same value at q=m2
R.
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PP ′V coupling gPP ′V

ηcηcJ/ψ 25.8 ± 1.7

DDJ/ψ 26.04 ± 1.43

DD∗ηc 15.51 ± 0.45

DsDsJ/ψ 23.83 ± 0.78

DsD
∗
sηc 14.15 ± 0.52

PV ′V coupling gPV ′V (GeV−1)

ηcJ/ψJ/ψ 10.6 ± 1.5

DD∗J/ψ 10.7 ± 0.4

D∗D∗ηc 9.76 ± 0.32

DsD
∗
sJ/ψ 9.6 ± 0.8

D∗
sD

∗
sηc 8.27 ± 0.37

Uncertainties do not include systematic uncertainties related to the model. Comparisons of

predictions for other channels with experimetal data and lattice calculations indicate that they are

not worse than 15-20%.
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Comparison with other approaches

QCD sum rules (Matheus et al. (2005), Rodrigues et al. (2014,2015)).

Strong coupling gDDψ gDD∗ψ(GeV−1) gDsDsψ gDsD∗
sψ

(GeV−1)

This investigation 26.04 ± 1.43 10.7 ± 0.4 23.83 ± 0.78 9.6 ± 0.8

QCD sum rules 11.6 ± 1.8 4.0 ± 0.6 11.96 ± 1.34 4.30 ± 1.53

In spite of similarities of approaches, a factor of two difference between both sets

of results.

More refined calculations require inclusion of perturbative contributions of gluon

radiative corrections.
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