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SM at the LHC

LHC is a discovery machine

I optimize as much as possible our knowledge of the SM to make the most
out of this experiment (particularly so if no BSM smoking-gun discovery)

Higgs

SM SM

. accurate measurement of
Higgs couplings

. extraction of SM parameters

. detect small deviations from
SM backgrounds
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outline

I selection of recent theoretical progress in “large pT ” perturbative QCD, relevant
for precise predictions of SM processes

1. total cross sections

2. differential distributions (at
fixed-order and matched with
resummation)

3. Monte Carlo tools

4. PDFs
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the inclusive Higgs cross section
I to measure Higgs properties, need to know Higgs production cross section

- gg → H is the dominant production mechanism at the LHC

I known at NLO [Dawson; Djouadi et al.] and NNLO [Harlander,Kilgore; Anastasiou,Melnikov; Ravindran et al.]

. perturbative series: converges very slowly

. large perturbative uncertainties (estimated by scale variation)
4 / 14



gluon-fusion Higgs production at N3LO
I the gg → H cross section is now know at N3LO !

[Anastasiou,Duhr,Dulat,Herzog,Mistlberger (+Furlan,Gehrmann) ’14-’15]

[Anastasiou,Duhr,Dulat,Herzog,Mistlberger (+Furlan,Gehrmann) ’14-’15][Anastasiou,Duhr,Dulat,Furlan,Gehrmann,Herzog,Lazopoulos,Mistlberger ’16]

from C. Duhr talk at Higgs Hunting ’15

. N3LO result: perturbative
uncertainties massively
reduced [±2 %]

. consider residual effects:
(1/mt) , threshold resummation ,
missing N3LO PDFs , PDFs+αS ,
EW effects...

. next challenge: Higgs rapidity
at N3LO
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differential distributions

“NNLO revolution”
. NNLO computations, matched with resummation when needed, are

becoming the new standard

[figure: G. Salam, PLHC 2016]
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fully differential NNLO

I differential distributions essential to compare EX (after cuts) and TH
I last 3 years: huge progress in computing 2→ 2 LHC processes at NNLO in QCD

matrix elements
- 2-loops 2→ 2 amplitudes ∼ known for years

subtraction scheme
- O(α2

s) matrix-elements live in different phase
spaces

⇓
- numerical algorithm to combine them:
cancellation of IR divergences for a generic
observable

# loops: 0 1 2

# loops: 0 1

# loops: 0

. qT -subtraction [Catani,Grazzini ’07]

. sector-improved residue subtraction
[Czakon ’10, Boughezal et al. ’11]

. antenna subtraction [Gehrmann et al.]

. colorful NNLO [Somogy et al.]

. N-jettiness subtraction
[Boughezal et al., Gaunt et al. ’15]

. “projection to Born” [Cacciari et al. ’15]

� NNLO QCD at the LHC: [ V / H / VV / VH ] [ top-pair / single-top ] [ VBF H ]
[ Vj / Hj / dijets ]

� first partial results for 2-loops 2→ 3
. gg → ggg, planar, all + helicities

[Badger et al. ’13-’15, Gehrmann,Henn et al. ’15]
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fully differential NNLO

I the Z pT spectrum is measured
with less that 1% EX uncertainty

I NLO is definitely not enough

I NNLO available [Gehrmann-de Ridder et al. ’16, Boughezal et al. ’15]

I in perturbative region, normalized spectrum agrees very well with theory

I absolute rate: not so well

I in corner of phase-space, matching
to resummation needed

φ∗ = tan

(
π −∆φ

2

)
sin θ∗
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fixed-order + resummation

I jet-substructure methods very powerful as SM/BSM discriminators
. especially to have a solid understanding of them, analytic resummation needed

[→ talk by L. Schunk]

I jet-binned cross sections important to suppress backgrounds
. for H →WW and H → ττ : jet veto at 25-30 GeV

W

W

W

W

I 0-jet x-section now known at N3LO + NNLL + LLR [Banfi et al. ’15]

. NNLL resummation of log(mH/pT,veto)

[Banfi et al. ’12 (+heavy quarks ’13)]
[Becher et al. ’15; Stewart et al. ’13]

. N3LO and NNLO H+1 jet
[Anastasiou et al. ’15]
[Boughezal et al. ’15]

. jet-radius logarithms
[Dasgupta et al. ’14]

I impact of N3LO: +2%; impact of resummation: +2% (not shown in plot above)
I final perturbative uncertainty: ∼ 4 %
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the Higgs transverse momentum distribution

I Sudakov resummation at NLO+NNLL (NNLO inclusive) available in various
approaches [Bozzi,Catani et al.; Becher et al.]

I matching at NNLO+NNLL (N3LO inclusive) now available [Monni,ER,Torrielli ’16]

pp, 13 TeV, mH = 125 GeV
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I new method to resum directly in direct space, validated against previous results
I resummation: sizeable below 30 GeV
I medium-high pT , matching to differential NNLO matters (as expected): + 10 %
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MC generators
� NLO+PS has become the standard: by using the MC@NLO and POWHEG methods,
NLO QCD results can be matched to Parton Showers (Pythia8, Herwig7, Sherpa)

⇓
. fully automated for SM, getting closer and closer for BSM

. improved description of phase-space regions where large soft/collinear
logarithms arise

. available to a wide EXP community

I extract mt looking into the kinematics
of visible particles from top-decay

I complete matrix elements for
W+W−bb̄ final state, no
approximations

I W+W−bb̄ @ NLOPS now available
[Jezo et al, ’16]

11 / 14



MC generators
� NLO+PS has become the standard: by using the MC@NLO and POWHEG methods,
NLO QCD results can be matched to Parton Showers (Pythia8, Herwig7, Sherpa)

⇓
. fully automated for SM, getting closer and closer for BSM
. improved description of phase-space regions where large soft/collinear

logarithms arise
. available to a wide EXP community

I extract mt looking into the kinematics
of visible particles from top-decay

I complete matrix elements for
W+W−bb̄ final state, no
approximations

I W+W−bb̄ @ NLOPS now available
[Jezo et al, ’16]

11 / 14



MC generators
� NLO+PS has become the standard: by using the MC@NLO and POWHEG methods,
NLO QCD results can be matched to Parton Showers (Pythia8, Herwig7, Sherpa)

⇓
. fully automated for SM, getting closer and closer for BSM
. improved description of phase-space regions where large soft/collinear

logarithms arise
. available to a wide EXP community

I extract mt looking into the kinematics
of visible particles from top-decay

I complete matrix elements for
W+W−bb̄ final state, no
approximations

I W+W−bb̄ @ NLOPS now available
[Jezo et al, ’16]

11 / 14



MC generators
� NLO+PS has become the standard: by using the MC@NLO and POWHEG methods,
NLO QCD results can be matched to Parton Showers (Pythia8, Herwig7, Sherpa)

⇓
. fully automated for SM, getting closer and closer for BSM

. improved description of phase-space regions where large soft/collinear
logarithms arise

. available to a wide EXP community

I extract mt looking into the kinematics
of visible particles from top-decay

I complete matrix elements for
W+W−bb̄ final state, no
approximations

I W+W−bb̄ @ NLOPS now available
[Jezo et al, ’16]

11 / 14



MC generators

I steady progress, mostly related to “NLO+PS merging’’, from which “NNLO+PS”
can be achieved (for color-singlet production)

. NNLOPS available with 3 methods MiNLO+Powheg, UN2LOPS, Geneva
[Hamilton et al. ’13; Hoeche et al. ’14, Alioli et al. ’14]

. few months ago: pp→WH at NNLO+PS [Astill,Bizon,ER,Zanderighi ’16]
- should be possible to include NLO QCD corrections to H decay

. important result (with MiNLO): H+jj @ NLO, H+j @ NLO and H @ NNLO
[Hamilton,Frederix ’15]
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MC generators

I steady progress, mostly related to “NLO+PS merging’’, from which “NNLO+PS”
can be achieved (for color-singlet production)

. NNLOPS available with 3 methods MiNLO+Powheg, UN2LOPS, Geneva
[Hamilton et al. ’13; Hoeche et al. ’14, Alioli et al. ’14]

. few months ago: pp→WH at NNLO+PS [Astill,Bizon,ER,Zanderighi ’16]
- should be possible to include NLO QCD corrections to H decay

. important result (with MiNLO): H+jj @ NLO, H+j @ NLO and H @ NNLO
[Hamilton,Frederix ’15]
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PDFs

I long-awaited NNLO jet computation
now available [Currie et al. ’16]
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conclusions

. pQCD is central to maximise the information we can get from LHC data:
- the experimental precision already requires very accurate computations

- interesting in their own
- relevant for direct & indirect searches for new Physics

. current status:
- all backgrounds and many signals known at NLO+PS
- almost all 2→ 2 NNLO fully differential computations performed

- NNLO+PS for simple processes achieved
- gg → and VBF Higgs cross sections known at N3LO
- subleading log-resummation: jet-vetoes, jet-shapes, jet substructures

- PDFs (and αS) will be known better and better (data driven + new ideas)

. stay tuned

thank you for your attention !
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light-Yukawa from Higgs pT
I several methods have been proposed to constrain the light Yukawa couplings

[exclusive decays (Bodwin et al.; Kagan et al.; Koenig,Neubert), recasting V h(→ bb̄) (Perez et al.; Delaunay et al.),

hc (Brivio et al.), width, global fit]

I bounds can also be inferred comparing data and theory for differential
distributions [Bishara,Haisch,Monni,ER ’16; Soreq et al. ’16]

- gg → H + j: bottom and charm mass effects important at low to intermediate pT,H

- interplay with quark-initiated processes

κc ∈ [−16, 18] [LHC Run I]

κc ∈ [−1.4, 3.8] [LHC Run II (300 fb−1)]
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I using pT,H , EX uncertainty expected not to be a limiting factor

. improving theory⇒ better bound!

15 / 14



light-Yukawa from Higgs pT
I several methods have been proposed to constrain the light Yukawa couplings

[exclusive decays (Bodwin et al.; Kagan et al.; Koenig,Neubert), recasting V h(→ bb̄) (Perez et al.; Delaunay et al.),

hc (Brivio et al.), width, global fit]

I bounds can also be inferred comparing data and theory for differential
distributions [Bishara,Haisch,Monni,ER ’16; Soreq et al. ’16]

- gg → H + j: bottom and charm mass effects important at low to intermediate pT,H

- interplay with quark-initiated processes

κc ∈ [−16, 18] [LHC Run I]

κc ∈ [−1.4, 3.8] [LHC Run II (300 fb−1)]
10 20 30 40 50 60

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

pT , j [GeV]

(1
/σ
d
σ
/d
p T
,j
)/
(1
/σ
d
σ
/d
p T
,j
) S
M κc = -10

κc= -5

κc = 0

κc= 5

I using pT,H , EX uncertainty expected not to be a limiting factor

. improving theory⇒ better bound!

15 / 14


