

A HERMES-type Gas Target, Internal to the LHC for the Study of pp Singlespin and Heavy Ion Collisions

November 9th, 2016 | Alexander Nass

Motivation

- AFTER@LHC: A Fixed-Target ExpeRiment for hadron, heavy ions and spin-physics at LHC.
- Physics goals:
 - Large-x gluon, antiquark and heavy-quark content in the nucleon and nucleus.
 - Dynamics and spin of gluons in (un)polarized nucleons
 - Heavy-ion collisions towards large rapidities

-> L. Massacrier: talk today at 10:00

Fixed target mode at LHC

Advantages of the fixed-target mode (wrt to collider):

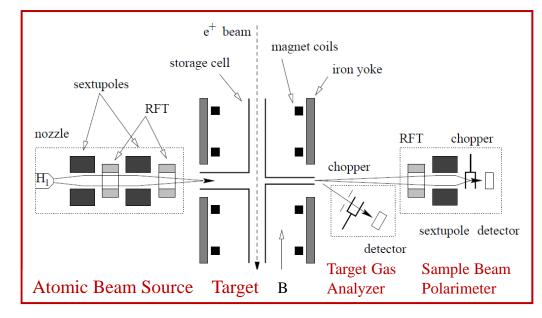
- Access high Feynman x_F domain ($x_F = p_z/p_{zmax}$)
- High luminosities (dense targets)
- Easy change target type
- Possibility to polarize the target
 - Spin physics program

No effect on the LHC performance:

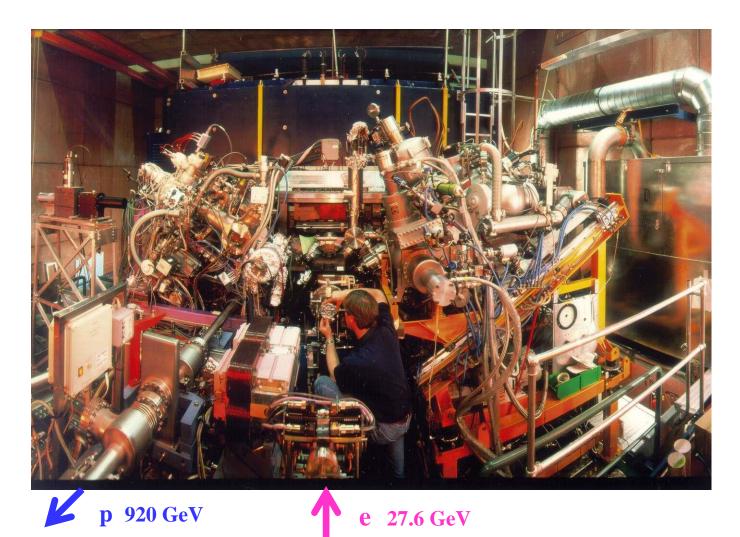
Two options possible:

- Bent crystal in the halo of the LHC beam + solid target.
- Internal gas target

Storage cell internal gas target

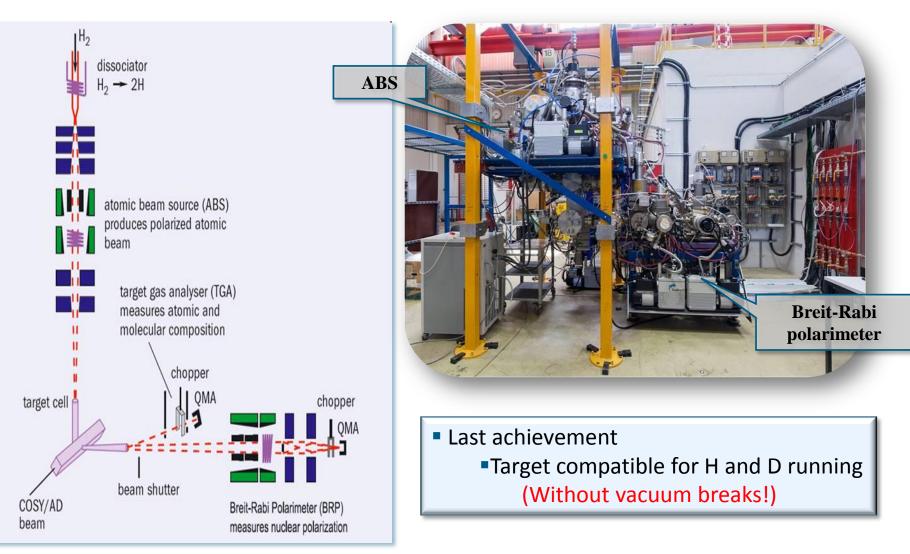

History

- Teflon-coated storage cell filled with polarized H from an ABS as target for Scattering Experiments first proposed by W. Haeberly in 1965
- First experimental test of in Madison, Wisconsin (1980)
- Experimentally used with:
 - Proton beams (< 2 GeV): PINTEX@IUCF, ANKE/PAX@COSY
 - Electron/positron beam (27 GeV): HERMES@HERA (1995-2005)


The HERMES polarized internal gas target @ HERA

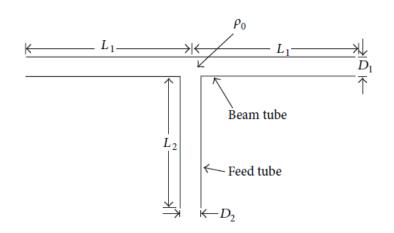
- Polarized atomic beam injected from atomic beam source
- Sample beam:
 - QMS (α = molecular fraction).
 - Polarimeter (P = atomic polarization).
- Sampling corrections to compute polarization seen by beam.

HERMES H&D target



November 9th, 2016

GDR-QCD Meeting, Orsay


The HERMES target now: PAX @ COSY


The HERMES target (1995-2005) @ DESY

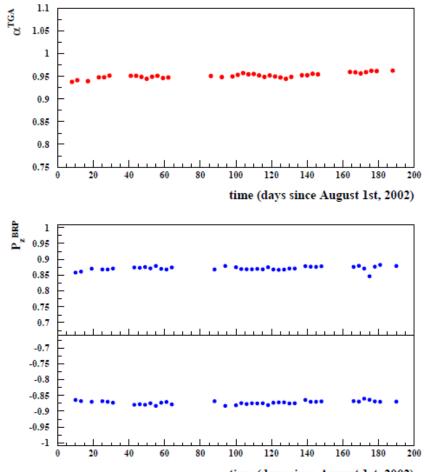
- Low- β section @ 30 GeV HERA e⁺/e⁻
- Polarized ³He, ¹H, ²D and unpolarized gas H₂ to Xe [NIM A540 (2005) 68].
- T-shaped Al-storage cell
 - 400 mm long, Elliptical cross section $r_{x,y} \approx 15 \sigma_{x,y} + 1 \text{ mm}$
 - Feed tube: 100 mm long, 10 mm (plus capillary for gas feed system).
- Density ρ_0 at cell center: $\rho_0 = I / C_{tot}$
- Narrow tube gives high density, but space for the beam needed!
- Additional requirements:
 - wall coating for low recombination and depolarization;
 - strong guide field.

The HERMES storage cell

Material: Size: Temperature: 75 μm Al with Drifilm coating length 400mm, elliptical cross section (21 mm x 8.9 mm) 100 K (variable 35 K – 300 K)

November 9th, 2016

GDR-QCD Meeting, Orsay

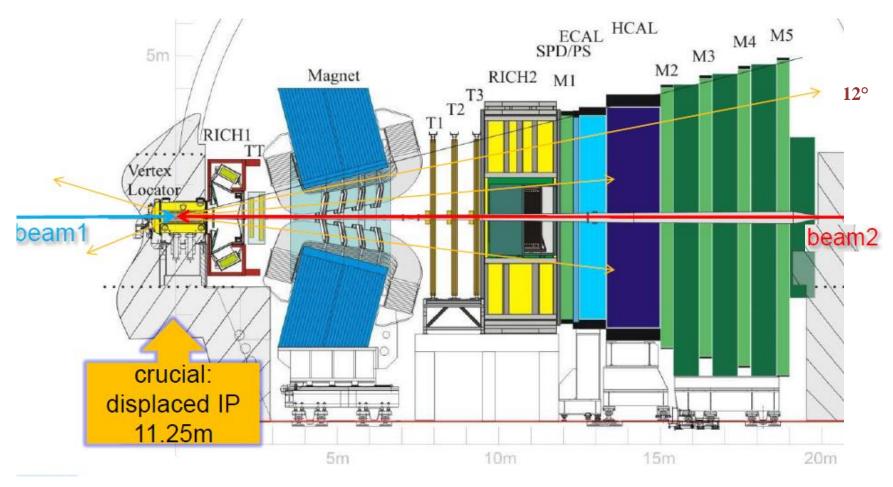


Performance for \overrightarrow{H} (2002/03)

HERMES 2002/03 data taking with transverse proton polarization

Top: Degree of dissociation measured by the TGA (α = 1: no molecules);

Bottom: Vector polarization P_z measured by Breit-Rabi-Polarimeter for 2 different injection modes.



time (days since August 1st, 2002)

The SMOG gas target @ LHCb for diagnostic purposes (vertex locator)

from talk by M. Ferro-Luzzi (CERN) workshop AFTER@LHC on 17-Nov-2014

Mitglied der Helmholtz-Gemeinschaft

The SMOG internal gas target @ LHC

- AFTER@LHC M. Ferro-Luzzi (CERN):
- Originally: pure residual gas (10⁻⁹ mbar).
 - Switching off the pumps, pressure up to $5 \cdot 10^{-9}$ mbar used as target.
- Since 2012: Ne injected up to $p \approx 1.5 \cdot 10^{-7}$ mbar
 - At T=293K corresponds to $\rho = 4 \cdot 10^{12} / \text{cm}^3$.
 - Pressure bump 10 m long areal density θ is 4.10¹⁵/cm².
 - Beam losses negligible ($\tau >> 10^8$ s).
- Si-strip detector (VELO): two halves positioned near beam axis.
 - Closed position: detectors-distance to beam: 8 mm, Al housing: 5 mm.
 - Opened position: free space of \approx 50 mm.

Conclusions:

- "LHCb has pioneered the use of gaseous "fixed target" in the LHC ..."
- "Extensions involving target polarization require bigger investments and long studies (!)"

LHC operation

p and Pb beams intensities @ LHC

- Protons: $I_p = 3.63 \cdot 10^{18} \text{ p/s} @ 7 \text{ TeV}.$
- Lead: $I_{Pb} = 4.64 \cdot 10^{14} \text{ Pb/s} @ 2.76 \text{ TeV/u}.$

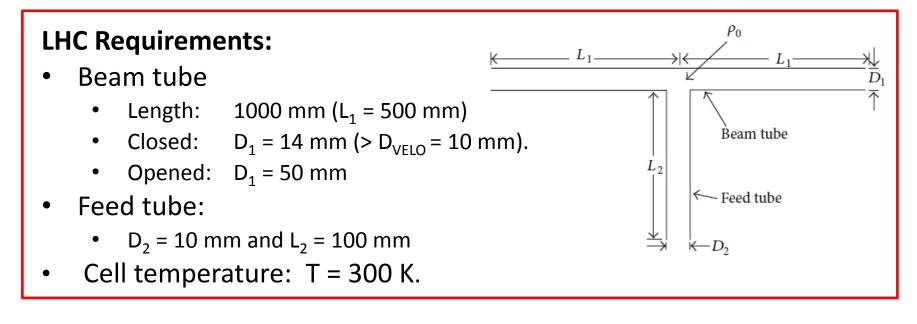
Beam half-life: ≈ 10 h

• Parasitic operation requires small reduction of half-life (< 10%)

1σ-radius at IP (full energy):
Negligible compared with the cell radius (> 5 mm)
Safety radius at injection (450 GeV for p): > 25 mm

• "Openable" cell required.

Openable storage cell development in Ferrara


(Storage cell for 2 GeV p/d beam at COSY (FZ-Juelich)

Proposed geometry for a LHC storage cell

Conductance: $C_i[l/s] = 3.81 \sqrt{T/M} \cdot D_i^3 / (L_i + 1.33 D_i)$ (*M* = molecular weight) Density: $\rho_0 = I / C_{tot}$ with $C_{tot} = C_1 + C_2 + ...$ (*I* [part/s] gas flow-rate)

Example: H, $C_{tot} = 2 C_1 + C_2 = 12.81 \text{ l/s}$, $I = 6.5 \cdot 10^{16}/\text{s}$ (HERMES): $\rho_0 = 5.07 \cdot 10^{12}/\text{cm}^3$ areal density $\theta = L_1 \cdot \rho_0 = 2.54 \cdot 10^{14}/\text{cm}^2$

Polarized ¹H gas target performance

Polarized H injected into storage cell

- Areal density: $\theta = 2.54 \cdot 10^{14}$ H/ cm²
- Proton current $I_p = 3.63 \cdot 10^{18}/s$ (similar @ TeV)
 - Total luminosity: $p\vec{p}$ $L_{pp} = 0.92 \cdot 10^{33} / \text{ cm}^2 \text{ s}$
- (About 10% of the collider luminosity)
- (x20 RHIC p↑-p↑ luminosity)
- Possibility to cool down the cell to 100 K (θ increase by $\sqrt{300/100}$ = 1.73)

 $\sigma_{pp} @ \sqrt{s} \approx 100 \text{ GeV} = 50 \text{ mb} = 5 \cdot 10^{-26} \text{ cm}^2$

- Loss rate dN/dt: 4.5·10⁷/ s
- Stored protons: $N = 3.2 \cdot 10^{14}$

Max. *relative* loss rate: $(dN/dt)/N = 1.4 \cdot 10^{-7}/s$.

The H target does not affect the life time of the 7 TeV proton beam.

Polarized ²D and ³He gas targets

- Polarized ²D target produced with densities comparable to ¹H.
- HERMES: ³He target operated at HERA in 1995.
 - ³He gas polarized by Metastability Exchange Optical Pumping (1083 nm laser).
 - Modern lasers make a ³He source (much) more intense than an ABS

Choice of the best target has to be made in an early phase of the project!

Unpolarized gas targets (H₂,²⁰Ne,⁸⁴Kr,¹³¹Xe,...)

- LHC enables collisions of beams of same rigidity
 - i.e. p-p collisions @ E_{max}= 2x7 TeV

and Pb-Pb @ E_{max} = 2x2.76 TeV/nucleon.

- (Other ions than p or Pb not used for experiments so far).
- Parallel operation of heavy-Ion Fixed-Target program possible:
 - Storage cell target fed with unpolarized gas:
 - Different combinations of masses could be studied (e.g. Pb on Xe or Ne).

Example: Pb on Xe target

- Pb lifetime in Pb-Pb collider: $\tau_c = 10 \text{ h}/0.693 = 14.4 \text{ h}$ Max Induced target life time: $\tau_t = 10.14.4 \text{ h} = 144 \text{ h}$ Loss rate dN/dt = \hat{N} (N = number Pb ions = 4.10^{10}):• $\hat{N}/N = 1/144 \text{ h} \rightarrow \hat{N} = N/5.18 \cdot 10^5 \text{ s} = 7.72 \cdot 10^4/\text{s} = L_{Pb-Xe} \cdot \sigma_{tot}$ (Pb-Xe)
 - $\sigma_{hadronic}$: 7.65 barn -> scaling with nuclear radii: σ_{tot} (Pb-Xe) = 6.6 barn

Max. Pb-Xe lumi: $L_{Pb-Xe} = 1.17 \cdot 10^{28} / \text{ cm}^2\text{s}$

- (10 x Pb-Pb collider design luminosity (10²⁷/ cm² s)
- Xe density θ : 2.52 \cdot 10¹³/cm²
- Xe flow rate at 300 K: 2.1·10⁻⁵ mbar l/s

Conclusions

- Interesting physics perspectives for a fixed target at LHC.
- **Storage cell target** provides highest areal density at minimum gas input.
 - Solid technology tested at the HERA 27.6 GeV e^{+}/e^{-} at I = 40 mA
- Polarized H gas target:
 - Cell with L=1 m and ϕ = 14 mm assumed (as SMOG/VELO @ LHCb)
 - 10³³/cm² s accessible (16% of collider lumi)
- Unpolarized target:
 - p-A and Pb-A collisions with H₂, He, Ne, Ar, Kr and Xe
 - Max. Pb-Xe lumi: $L_{Pb-Xe} = 1.17 \cdot 10^{28} / \text{ cm}^2 \text{s}$ (10 x higher than collider lumi)
 - Locations at LHC to be identified for realistic planning and design!

Further reading

Advances in High Energy Physics

Physics at a Fixed-Target Experiment Using the LHC Beams

http://www.hindawi.com/journals/ahep/si/354953/

Thank you !

Backup slide

Extracted beam by bent-crystal

AFTER@LHC (Phys. Part. and Nucl.(2014) p. 336):

- LHC beam halo (p)extraction by bent-crystal onto polarized proton target.
 - Exp beam intensity: $i_p = 5.10^8$ /s.
- COMPASS type frozen spin target too large for LHC tunnel.
- UVa-type NH₃ DNP target with smaller target set-up considered:
 - $n_t = 1.5 \ 10^{23}/cm^2$, $P_p = 0.85$, dilution f = 0.17, FoM = $n_t P^2 f^2 = 3.1 \cdot 10^{21}/cm^2$.
 - Beam intensity i_p also enters the measurement quality:
 - FoM* = $i_p \cdot FoM = P^2 \cdot f^2 \cdot i_p \cdot n_t = P^2 \cdot f^2 \cdot L$

Comparison:

UVa-target and bent-crystal extr. beam:FoM*'COMPASS-target """'HERMES' target and full LHC beam:FoM*(T = 300/100 K, P = 0.85, α = 0.95)FoM*

FoM* = $1.57 \cdot 10^{30}$ /cm² s FoM* = $1.87 \cdot 10^{32}$ /cm² s FoM* = $0.60/1.04 \cdot 10^{33}$ /cm² s