J/ψ production in pp and Pb-Pb collisions measured by ALICE at LHC

GDR QCD 2016, Orsay, November 08-10

Benjamin Audurier Subatech Laboratory, Nantes, France

Outline

I. Physics Motivations
II. The ALICE Detector
III. J/ψ production in pp collisions
IV. J/ψ production in Pb-Pb collisions

Physics Motivations

- Charmonium is produced <u>at the</u> <u>earliest stage</u> of the collision.
- J/ψ suppression by the QGP through <u>Debye like color</u> <u>screening mechanism</u>¹.
- Color screening suppression depends on charmonium binding energy and medium temperature
 → Sequential suppression
- * $c\bar{c}$ cross-section increases at LHC energies \rightarrow <u>regeneration^{2,3)}</u>.
- charmonium states = <u>good</u>
 <u>probes of deconfined state of</u>
 <u>QCD phase diagram.</u>

Matsui & Satz, *J/psi suppression by quark-gluon plasma formation*, Physics Letters B vol.178 n.4
 P. Braun-Munzinger et al. PLB 490 (2000) 196
 R. Thews et al: Phys. Rev. C63 054905 (2001)

3

- Charmonium also sensitive to <u>cold nuclear matter effects</u> (energy loss, shadowing ...) → Studied in p-Pb collisions.
- A reference is needed to <u>disentangle cold/hot nuclear matter effects</u> from standard production → Studied in p-p collisions.
- * Different sources of charmonium production :
 - Direct production.
 - Decay from from higher mass charmonium states (~ 24%).
 - Decay from B-hadrons (~ 10%).

nclusive

1) The LHCb Coll., Measurement of the ratio of prompt x_c to J/ψ production in pp collisions at $\sqrt{s} = 7$ TeV, arXiv:1204.1462v2 2) The LHCb Coll., Measurement of $\psi(2S)$ meson production in pp collisions at $\sqrt{s} = 7$ TeV, arXiv:1204.1258 3) The LHCb Coll., Measurement of J/ψ production in pp collisions at $\sqrt{s} = 7$ TeV, arXiv:1103.0423v2

Observables

* Assumption : $\bigcirc_{Pb} \rightarrow \leftarrow \bigcirc_{Pb} = \langle N_{coll} \rangle \bullet_{p} \rightarrow \leftarrow \bullet_{p}$

The Nuclear Modification Factor

- * If $R_{AA} > 1 \rightarrow More$ charmonium produced than expected from pp results.
- * If $R_{AA} = 1 \rightarrow$ Hard to conclude...
- * If $R_{AA} < 1 \rightarrow Less$ charmonium than expected from pp results.

The Elliptic Flow v₂

$$v_n^i(p_t, y) = \langle cos[n(\varphi - \Psi_{RP}]) \rangle^i$$

* J/ ψ produced through the regeneration mechanism should inherit the elliptic flow of the charm quarks in the QGP \rightarrow Positive v₂.

The ALICE Detector

Two decay channels studied in ALICE :

J/ψ production in pp collisions measured by ALICE

- * Range extended to $p_T = 30 \text{ GeV}/c$ for the J/ ψ
- ✤ 6 bins in *y* for 2,5 < *y* < 4</p>

Excellent agreement between the two experiments

All points lie within 1 sigma (stat+syst) of each other

1) JHEP10 (2015) 172

ALICE's Inclusive Results Compared to Models

NRQCD (left) Butenschon and Kniel, PRL 106 (2011) 022003 NRQCD (right) Ma, Wang and Chao, PRL 106 (2011) 042002 NRQCD+CGC Ma and Venugopalan, PRL 113 (2014) 192301 FONLL Cacciari et al., JHEP 1210 (2012) 137

- Steady increase of the luminosity and p_T reach with increasing energy
- * Change of slop at high p_T and $\sqrt{s} = 13$ TeV -> onset of the non-prompt J/ ψ contribution

No visible change in the y distribution.

J/ψ production in PbPb collisions measured by ALICE

ALICE Results in Pb-Pb@2.76 TeV

- Clear J/ψ suppression both at ALICE and PHENIX (Au-Au at √s_{NN}= 200 GeV).
- Weaker centrality dependence and smaller suppression for central events in ALICE compared to PHENIX.
- * Less suppression at low w.r.t high p_T for ALICE and less suppression compared to PHENIX.
- Previous observations expected in regeneration scenario.

Very Low $p_{\rm T}$ excess

- An excess of J/ψ was observed at very low p_T in the most peripheral collisions.
- * Photoproduction mechanism for Pb-Pb collisions with b < 2R was proposed to explain this excess of $J/\psi^{1,2}$.
- * The cut at $p_T > 0.3$ GeV/c is applied to remove ~75% of this non-hadronic contribution.
- *R*_{AA} smaller by 30% at maximum in peripheral bins when applying the previous cut.

1) STARLIGHT website (2013) . http://starlight.hepforge.org/.

2)M. Kusek-Gawenda and A. Szczurek, "Photoproduction of J/ψ mesons in peripheral and semi-central heavy ion collisions," arXiv:1509.03173 [nucl-th].

arXiv:1606.08197

$R_{\rm AA}^{0-90\%}$ (0 < $p_{\rm T}$ < 8 GeV/c) :	0.66 ± 0.01 (stat.) ± 0.05 (syst.)
$2011 R_{AA}^{0.90\%} (0 < p_{T} < 8 \text{ GeV}/c):$	0.58 ± 0.01 (stat) ±0.09 (syst.)

- * Finer bins in centrality.
- Better control of the syst. uncert.
- Clear J/ψ suppression with no centrality dependence in the most central collisions.
- * Effect of the non-prompt component on the inclusive *R*_{AA:}
- *R*_{AA(non-prompt)} = 0
 All non-prompt J/ψ are suppressed
- R_{AA(prompt)} 10%
 higher

- *R*_{AA(non-prompt)} = 1
 All non-prompt J/ψ survives
- R_{AA(prompt)} 5% to
 1% lower

Results between $\sqrt{s_{_{NN}}}$ = 2.76 and 5.02 TeV data are compatible within uncertainties

TM1: Nucl. Phys. A859 (2011) 114–125 TM2: Phys. Rev. C89 no. 5, 459 (2014) 054911 Stat. hadronization: NPA 904-905 (2013) 535c Co-movers: Phys. Lett. B731 (2014) 57–63

- * The p_T >0.3 GeV/c cut removes ~80% of the photoproduced J/ ψ .
- * Large uncertainties on the theoretical calculations due mainly to the choice of $\sigma_{c\bar{c}}$.
- * All models include a large amount of regeneration
- A better agreement is found for some transport (Du and Rapp) and co-movers (Ferreiro) models when we consider their upper limit.
- In transport models this corresponds to the absence of nuclear shadowing -> extreme assumption.

- *R*_{AA} ratio allows some uncertainties on the models to cancel out
- *T_{AA}* uncert. also cancels out for the experimental results
- * Error bands on models correspond to a 5% variation of $\sigma_{c\bar{c}}$
- 2% variation of the ratio when considering the non-prompt contribution
- Ratio value for the most central events : 1.17 ± 0.04 (stat.) ± 0.20 (syst.)

Models are compatible with data within uncertainties showing no clear centrality dependance of the ratio.

Benjamin Audurier | GDR QCD | 08/11/16

Inclusive J/ ψR_{AA} versus p_{T} in Pb-Pb@5.02 TeV

- * Less suppression at low $p_{\rm T}$ w.r.t high $p_{\rm T}$.
- Assuming beauty fully suppressed :
 - * $R_{AA(prompt)}$ expected to be 7% larger for $p_T < 1$ GeV/c.
 - * $R_{AA(prompt)}$ expected to be 30% larger for $10 < p_T < 12 \text{ GeV}/c$.
- Assuming beauty binary scaling :

* $R_{AA(prompt)}$ expected to be 2% smaller for $p_T < 1$ GeV/c.

* $R_{AA(prompt)}$ expected to be 55% smaller for $10 < p_T < 12 \text{ GeV}/c$.

Benjamin Audurier | GDR QCD | 08/11/16

- The J/ψ cross section in pp collisions :
 - ♦ New measurements at \sqrt{s} = 5.02 and 13 TeV.
 - * Good agreement between ALICE and LHCb data.
 - * Change of slop at high p_T and $\sqrt{s} = 13$ TeV.
- * Inclusive J/ψ nuclear modification factor in PbPb collisions :
 - * New measurements at $\sqrt{s_{NN}} = 5.02$ TeV at forward rapidity down to $p_T = 0$ GeV/c.
 - * Study of the centrality and p_T dependence of R_{AA} shows :
 - * an increase of the J/ ψ suppression with centrality up to N_{part} ~100 followed by a saturation as for previous results in PbPb collisions at $\sqrt{s_{NN}} = 2.76$ TeV.
 - * less suppression at low $p_{\rm T}$ with respect to high $p_{\rm T}$.
 - Comparison between √s = 2.76 and 5.02 TeV results through R_{AA} ratio shows :
 NN
 NN
 - * Results are compatible within uncertainties in the full centrality range.
 - Data and theoretical models are compatible within uncertainties and support a picture of competing J/ψ suppression and regeneration in the QGP.
- * Outlooks :
 - * Multi-differential study ongoing for inclusive J/ ψ nuclear modification factor in PbPb collisions at $\sqrt{s_{NN}} = 5.02$ TeV
 - Study of the mid-rapidity R_{AA} ongoing

- * No visible \sqrt{s} dependance of the p_T differential $\psi(2s)$ -to-J/ ψ ratio
- No clear trend either vs rapidity

Results in pp@2.76 TeV and pp@7 TeV

Good agreement between the results.

Source	0-90% p _T <12 GeV/c	р _т (0-20%)	centrality
Signal Extraction	1,8%	1.2-3.1 %	1.6-2.8 %
MC input	2,0%	2,0%	2%
Tracking eff.	3,0%	3,0%	3%
Trigger eff.	3,6%	1.5-4.8	3,6%
Matching Eff.	1%	1%	1%
F _{Norm}	0,5%	0,5%	0,5%
<t<sub>AA></t<sub>	3,2%	3,2%	3,1-7,6 %
Centrality limits	0%	0,1%	0-6,6 %
$\sigma^{pp}_{J/\psi}$ (data)	5,0%	3-10% + 2.1%	4,9%

Uncorrelated uncertainties **Correlated uncertainties**

Source	$0 < p_T < 12 \text{ GeV}/c$	рт
Signal Extraction	3%	1,5-9,3 %
MC input	2,0%	0,7-1,5 %
Tracking eff.	1,0%	1,0%
Trigger eff.	1,8%	1,5-1,8 %
Matching Eff.	1%	1%
Luminosity	2,1%	2,1%

Uncorrelated uncertainties **Correlated uncertainties**

Models parameters

model	$\sigma_{c\bar{c}}(mb)$	N-N $\sigma_{c\bar{c}}(\mu b)$	comover $\sigma_{J/\psi}$	Shadowing
Transport	0.57	3.14	-	EPS09
Transport	0.82	3.5	-	EPS09
Stat.	0.45	-	-	EPS09
Comovers	[0.45,0.7]	3.53	0.65	Glauber-Gribov theory

The cc Cross-Section

arXiv:1605.07569 [nucl-ex]

J/ψ Production versus Multiplicity

