Heavy quark(onium) production in the high energy limit

Bertrand Ducloué (University of Jyväskylä)

Theorie LHC France & GDR QCD 2016 Orsay, 08/11/2016

Motivations

PSfrag replacements

The high energy limit of QCD should be described by the BK/JIMWLK equation

Forward heavy quark(onium) production in high energy proton-nucleus collisions can be a useful probe of these dynamics:

- $\bullet\,$ Probes very small values of x: down to $x\sim 10^{-6}$ at the LHC
- $\bullet\,$ Heavy quark mass should provide a hard scale ightarrow perturbative calculation
- Experimental data to compare with
- Quarkonium suppression possible probe of QGP in AA collisions: need to understand cold nuclear matter effects in pA collisions first

Motivations

- A projectile probing a hadron at very small x can acquire some transverse momentum from the target via multiple scatterings
- In this case $2 \rightarrow 1$ kinematics with non-zero final p_T are allowed
- $\bullet\,$ The saturation scale Q_s of the target corresponds to the typical transverse momentum than can be acquired by the projectile
- Q_s increases when x gets smaller
- At high $p_{\perp} \gg Q_s$ collinear calculation should give the correct description
- Description of the dense target in terms of classical color fields: 'color glass condensate' (CGC)

Simple example: single inclusive hadron production

Formalism

The hadronization of $c\bar{c}$ $(b\bar{b})$ pairs into J/ψ (Υ) mesons is not well understood already in proton-proton collisions

Hadronization long-range mechanism: should not be modified in proton-nucleus collisions \to study the nuclear modification factor

$$R_{\mathbf{p}\mathbf{A}} = \frac{\sigma^{\mathbf{p}\mathbf{A}}}{A \times \sigma^{\mathbf{p}\mathbf{p}}}$$

CGC calculation: a large x gluon from the dilute projectile can split into a heavy quark-antiquark pair either before or after the interaction with the dense target

The x values probed in the projectile and the target are $x_{1,2}=\frac{\sqrt{P_{\perp}^2+M^2}}{\sqrt{s}}e^{\pm Y}$

Hadronization model 1: Color Evaporation Model (CEM)

Simple assumption: a fixed fraction of all $c\bar{c}$ pairs produced below the D-meson mass threshold are assumed to hadronize into J/ψ mesons

$$\frac{\mathrm{d}\sigma_{J/\psi}}{\mathrm{d}^2\mathbf{P}_{\perp}\mathrm{d}Y} = F_{J/\psi} \int_{4m_c^2}^{4M_D^2} \mathrm{d}M^2 \frac{\mathrm{d}\sigma_{c\bar{c}}}{\mathrm{d}^2\mathbf{P}_{\perp}\mathrm{d}M^2\mathrm{d}Y}$$

where we have summed over spins and colors of the $c\bar{c}$ pair, M is the invariant mass of the pair and $F_{J/\psi}$ is a non-perturbative constant which cancels in $R_{\rm PA}$

 $\frac{{\rm d}\sigma_{c\bar{c}}}{{\rm d}^2{\bf P}_{\perp}{\rm d}M^2{\rm d}Y}$ in the CGC framework: Blaizot, Gelis, Venugopalan

Hadronization model 2: Non-relativistic QCD (NRQCD)

Systematic expansion in powers of v, the relative velocity of the heavy quark pair in the bound state. The quarkonium production cross section is

$$\mathrm{d}\sigma_H = \sum_{\kappa} \mathrm{d}\hat{\sigma}^{\kappa} \langle \mathcal{O}^H_{\kappa} \rangle$$

where $d\hat{\sigma}^{\kappa}$ is the cross section for the production of a heavy quark pair with given quantum numbers $\kappa = {}^{2S+1}\!L_J^{[C]}$, computed perturbatively by applying projection operators on the heavy quark pair production amplitude

 $\langle O_{\kappa}^{H} \rangle$ are universal non-perturbative long distance matrix elements (LDME) which can be extracted from data

Contributing states for J/ψ and Υ production: ${}^{3}S_{1}^{[1]}$, ${}^{1}S_{0}^{[8]}$, ${}^{3}S_{1}^{[8]}$, ${}^{3}P_{J}^{[8]}$ ${}^{3}S_{1}^{[1]}$ is leading power in v but suppressed by powers of p_{\perp} compared to the others Simplest case: color evaporation model in the large N_c limit and collinear approximation on the proton side (justified at forward rapidity since $x_1 = \frac{\sqrt{P_\perp^2 + M^2}}{\sqrt{s}} e^Y$ is not small):

$$\frac{\mathrm{d}\sigma_{c\bar{c}}}{\mathrm{d}^{2}\mathbf{p}_{T}\mathrm{d}^{2}\mathbf{q}_{T}\mathrm{d}y_{p}\mathrm{d}y_{q}} = \frac{\alpha_{s}^{2}N_{c}}{8\pi^{2}d_{A}} \frac{1}{(2\pi)^{2}} \int_{\mathbf{k}_{\perp}} \frac{\Xi_{\mathrm{coll}}(\mathbf{p}_{T} + \mathbf{q}_{T}, \mathbf{k}_{\perp})}{(\mathbf{p}_{T} + \mathbf{q}_{T})^{2}} \phi_{Y=\ln\frac{1}{x_{2}}}^{q\bar{q},g} (\mathbf{p}_{T} + \mathbf{q}_{T}, \mathbf{k}_{\perp}) x_{1}g(x_{1}, Q^{2})$$

with
$$\phi_Y^{q\bar{q},g}(\mathbf{l}_T,\mathbf{k}_T) = \int d^2 \mathbf{b}_T \frac{N_c \frac{1}{2}}{4\alpha_s} S_Y(\mathbf{k}_T) S_Y(\mathbf{l}_T - \mathbf{k}_T)$$

The gluon density in the projectile is described by a usual collinear PDF xg(x)The information about the target is contained in $S_Y(\mathbf{k}_T)$, which can be related to its unintegrated gluon distribution and is the Fourier transform of $S_Y(\mathbf{r})$:

$$S_Y(\mathbf{k}_T) = \int \mathrm{d}^2 \mathbf{r} e^{i\mathbf{k}_T \cdot \mathbf{r}} S_Y(\mathbf{r}) , \quad S_Y(\mathbf{r}) = S_Y(\mathbf{x} - \mathbf{y}) = \frac{1}{N_c} \left\langle \operatorname{Tr} U^{\dagger}(\mathbf{x}) U(\mathbf{y}) \right\rangle$$

where $U(\mathbf{x})$ is a fundamental representation Wilson line in the target color field

The evolution of $S_Y(\mathbf{r})$ as a function of $Y = \ln \frac{1}{x}$ is governed by the Balitsky-Kovchegov equation:

$$\frac{\partial S_Y(\mathbf{x} - \mathbf{y})}{\partial Y} = \frac{\alpha_s N_c}{2\pi^2} \int d^2 \mathbf{z} \frac{(\mathbf{x} - \mathbf{y})^2}{(\mathbf{x} - \mathbf{z})^2 (\mathbf{z} - \mathbf{y})^2} \left[S_Y(\mathbf{x} - \mathbf{z}) S_Y(\mathbf{z} - \mathbf{y}) - S_Y(\mathbf{x} - \mathbf{y}) \right]$$

Given an initial condition for S at some $x_0,$ one can solve numerically the BK equation to obtain S at any $x < x_0$

The initial condition involves non-perturbative dynamics and can't be computed

It can be for example obtained by a fit to HERA data for F_2 and F_L which can be expressed as functions of $S_Y(\mathbf{r})$ in this formalism

Typical value for x_0 in such fits is 0.01

Results: first CGC calculation

Predictions for $R_{pA}^{J/\psi} = \sigma^{pA}/(A \times \sigma^{pP})$ in pPb collisions at the LHC in the CGC formalism with color evaporation model: Fujii, Watanabe Measurement of this observable at the LHC by ALICE:

Much smaller suppression than predicted

We will see that some part of this disagreement can be attributed to the lack of constraints on the unintegrated gluon distribution in a nucleus

Initial condition for the BK evolution of the proton (used for the proton-proton reference): fit to HERA DIS data \rightarrow relatively well constrained

Initial condition for a nucleus target (pA collisions): no accurate enough DIS data to perform a similar fit. Fujii, Watanabe: same initial condition as for a proton but with an initial saturation scale scaled by $A^{1/3}$

Argument: saturation scale related to the typical transverse momentum taken by the projectile from the target. Proton-nucleus collisions: the projectile will see about $A^{1/3}$ nucleons when crossing the nucleus and therefore can pick up a $p_{\perp} \sim A^{1/3}Q_{\mathrm{s0},p}^2$ (initial condition: rather large $x \to$ assume independent scatterings)

This is only approximate and neglects nuclear geometry

Choice of the nucleus initial condition

Fit to NMC data by Dusling, Gelis, Lappi, Venugopalan for $Q_{s0,A}^2 = c A^{1/3} Q_{s0,p}^2$: ($x \sim 0.01$ close to the initial condition)

The best fit value for c depends on the exact form of the initial condition parametrization but is always smaller than the naive expectation c = 1. For a lead nucleus this corresponds to $Q_{\mathrm{s0},Pb}^2 \sim (1.5-3) Q_{\mathrm{s0},p}^2$

Smaller initial saturation scale: expect less nuclear suppression

Other possible approach to get the initial condition for a nucleus: use of the Glauber model. In this model the nuclear density in the transverse plane is given by the Woods-Saxon distribution $T_A(\mathbf{b}_T)$:

$$T_A(\mathbf{b}_T) = \int dz \frac{n}{1 + \exp\left[\frac{\sqrt{\mathbf{b}_T^2 + z^2} - R_A}{d}\right]}$$

This introduces an impact-parameter dependence for the nucleus initial condition

The standard Woods-Saxon transverse thickness T_A is the only additional input needed to go from a proton to a nucleus target

(No need to introduce new parameters for the transverse area of the nucleus or the total inelastic proton-nucleus cross section)

Choice of the nucleus initial condition

Initial saturation scale at $x_0 = 0.01$ of the lead nucleus in different models:

The scaling $Q_{s0,A}^2 = A^{1/3}Q_{s0,p}^2$ leads to much larger saturation scales than the optical Glauber model or fits to NMC data \rightarrow more suppression

Using the Glauber approach (again with CEM) leads to a much better agreement with experimental data:

Ma, Venugopalan, Zhang also obtained good agreement with data using $Q^2_{\rm s0,A}=2\,Q^2_{\rm s0,p}$ with NRQCD hadronization:

The uncertainty band is obtained by taking the envelope of R_{pA} for each channel (independent of the LDME values) excluding the color singlet channel (small contribution to the cross section, especially at large P_{\perp})

Summary

Updated results by Fujii, Watanabe: use $Q^2_{{
m s0},A}=3\,Q^2_{{
m s0},p}$

Recent calculations quite close to each other and to the data

Several calculations in different formalisms are compatible with data within uncertainties :

Apparently not a good observable to discriminate between these approaches

Comparison with other formalisms

Recent proposal (Arleo, Peigné): study $R_{pA}^{J/\psi}/R_{pA}^{DY}$

The calculations based on nuclear PDFs and coherent energy loss have very different behaviours \rightarrow potential to discriminate between these approaches It would be very interesting to compare with results in the CGC formalism (Maybe R_{pA}^D/R_{pA}^{DY} would be cleaner with respect to hadronization)

In the CEM one can in principle compute Υ production in the same way as J/ψ replacing $m_c\to m_b$ and $m_D\to m_B$

However this leads to a bad description of p_{\perp} spectra at low P_{\perp}

Possible explanation: for heavy states it may be necessary to resum logs of $\frac{M^2}{P_\perp^2}$ (Watanabe, Xiao)

Noticeable improvement in the small P_{\perp} region where this resummation should be valid

 $(J/\psi: \text{ smaller mass} \rightarrow \text{much smaller effect})$

Excited states

ALICE: $R_{pA}^{\psi(2S)}$ significantly smaller than $R_{pA}^{J/\psi}$. Can't be explained in the color evaporation model in which the ratio of $\psi(2S)$ and J/ψ is a constant

NRQCD: same color states contributing but with different relative weights \to same uncertainty band as for J/ψ

Potential agreement for $R_{pA}(Y)$ but problems for $R_{pA}(P_{\perp})$

See also improved color evaporation model (Ma, Vogt): can describe $\sigma^{\psi(2S)}/\sigma^{J/\psi}$ in pp collisions in collinear factorization

Could also be implemented in CGC

From
$$\frac{\mathrm{d}\sigma_{c\bar{c}}}{\mathrm{d}^2\mathbf{p}_T\mathrm{d}^2\mathbf{q}_T\mathrm{d}y_p\mathrm{d}y_q}$$
 one can also compute D -meson production:
 $\frac{\mathrm{d}\sigma_{D^0}}{\mathrm{d}^2\mathbf{P}_{\perp}\mathrm{d}Y} = Br(c \to D^0) \int \frac{\mathrm{d}z}{z^2} D(z) \int \mathrm{d}^2\mathbf{q}_T \,\mathrm{d}y_q \frac{\mathrm{d}\sigma_{c\bar{c}}}{\mathrm{d}^2\mathbf{p}_T\mathrm{d}^2\mathbf{q}_T\mathrm{d}y_p\mathrm{d}y_q}, \ \mathbf{p}_T = \mathbf{P}_{\perp}/z, \ y_p = Y$

Results in the following use the fragmentation function parametrization from Kartvelishvili, Likhoded, Petrov: $D(z) = (\alpha + 1)(\alpha + 2)z^{\alpha}(1 - z)$

From the point of view of saturation this process is not as clean as J/ψ production since the x values probed in the projectile and target are not bounded:

$$x_{1,2} = \frac{\sqrt{m_c^2 + p_T^2}}{\sqrt{s}} e^{\pm y_p} + \frac{\sqrt{m_c^2 + q_T^2}}{\sqrt{s}} e^{\pm y_q}$$

Similar conclusions as for J/ψ : predictions by Fujii, Watanabe using $Q_{\mathrm{s0},A}^2=A^{1/3}Q_{\mathrm{s0},p}^2$ leads to strong suppression. Glauber model: less suppression, better agreement with data

Experimental uncertainties still quite large, only one bin in rapidity

- Forward heavy quark(onium) production at high energies probes very small values of $x \to \text{study}$ of the saturation regime
- Hadronization mechanism not well understood The study of R_{pA} can partially alleviate this problem
- First CGC calculation: used $Q_{s0,A}^2 = A^{1/3}Q_{s0,p}^2$ \rightarrow too strong suppression compared to data
- More recent calculations: initial condition for the BK evolution of the nucleus more consistent with other observables
 → less suppression, much better agreement with data
- Different suppression of excited states difficult to explain even in NRQCD

- Better constraints for the nucleus initial condition could come from accurate nuclear DIS data (EIC)
- The CGC calculations shown are still performed at leading order accuracy, resumming terms proportional to $(\alpha_s \ln 1/x)^n$ The extension of this framework to NLO, which is necessary to have more reliable predictions, is being worked on
- Several formalisms (nPDFs, coherent energy loss, CGC) can reproduce experimental data for $R_{pA}^{J/\psi}$ at forward rapidity The study of $R_{pA}^{J/\psi}/R_{pA}^{DY}$ (or R_{pA}^{D}/R_{pA}^{DY}) could help to discriminate between these approaches