GDR -INTERACTIONS SIMPLES ET MULTIPLES ENTRE PARTONS DANS LES NUCLÉONS

DRELL-YAN MEASUREMENTS AT COMPASS

NOVEMBER 10, 2016 - MARCO MEYER

INTRODUCTION

Introduction to the Drell-Yan process

➤ The **COMPASS experiment** - Setup of 2015

Personal on going analysis for Drell-Yan 2015

Conclusion & Outlook

(SI)DIS

PDF ⊗ FF

Drell-Yan (DY)

PDF ⊗ PDF

$$f_{1T}^{\perp}(DY) = -f_{1T}^{\perp}(SIDIS)$$

Sivers function

$$h_1^{\perp}(DY) = -h_1^{\perp}(SIDIS)$$

Boer-Mulders function

Main goal for COMPASS is to measure the sign change..

Naive Drell-Yan:

EM process only

$$\frac{d\sigma}{d\Omega} \propto 1 + \cos^2 \theta$$

Drell-Yan at higher order:

include quark momentum + gluon exchanges + higher $O(\alpha_S)$:

$$\frac{d\sigma}{d\Omega} \propto 1 + \lambda \cos^2 \theta + \mu \sin(2\theta) \cos \phi + \frac{\mathbf{v}}{2} \sin^2 \theta \cos(2\phi)$$

Lam-Tung relation

C.S. Lam and W.K. Tung, PRD 18 (1978) 2447

$$1 - \lambda = 2\nu$$

NO SPIN CONSIDERATION

Drell-Yan including spin effects:

$$d\sigma(\pi^-p^\uparrow \to \mu^+\mu^-X) = 1 + \overline{h}_1^\bot \otimes \overline{h}_1^\bot \cos(2\phi) \qquad \text{(BM)} \otimes \text{(BM)}$$

$$+|S_T| \quad \overline{f}_1 \otimes \overline{f}_{1T}^\bot \sin \phi_S \qquad \text{(f_1)} \otimes \text{(Sivers)} \qquad \text{Measurement of interest}$$

$$+|S_T| \quad \overline{h}_1^\bot \otimes \overline{h}_{1T}^\bot \sin(2\phi + \phi_S) \qquad \text{(BM)} \otimes \text{(Pretzelosity)}$$

$$+|S_T| \quad \overline{h}_1^\bot \otimes \overline{h}_1 \sin(2\phi - \phi_S) \qquad \text{(BM)} \otimes \text{(Transversity)}$$

TRANSVERSELY POLARIZED TARGET

 $\mathbf{Q}^2[\mathrm{GeV}^2]$

Drell-Yan data taking:

- 2008 : test run
- 2014 : pilot run (no transversaly polarized target)
- 2015 : main run (NH3 target, transversaly polarized)
- 2018 : 2nd data taking (approved by SPS)

Goals:

- Asymmetry measurements
- PDF/TMD PDFs determination Structure functions determination
- ➤ Absolute cross-section measurement

THE COMPASS EXPERIMENT - SETUP FOR 2015

- COMPASS is an high-energy physics experiment on the Super Proton Synchrotron (SPS) at CERN
- 190 GeV negative hadron beam (π/K/p 97/2/1%) (from 400 GeV SPS protons onto conversion target)
- **▶ Beam intensity 2015:** ~10⁸ particles/s

THE COMPASS EXPERIMENT - SETUP FOR 2015

➤ COMPASS is a 2-stage spectrometer: (~350 tracking planes)

"LAS": 35 mrad $< \theta_{\mu} <$ 180 mrad

"SAS": 18 mrad $< \theta_{\mu} <$ 35 mrad

Measurements performed: Track reconstruction, momentum measurement, particle identification

Polarized target

³He − ⁴He dilution refrigerator (T~50mK) Solenoid 2.5T

Absorber

Cross section measurement?

$$\sigma = \frac{N}{\int}$$
Number of events (Classical physics analysis)
$$\int$$
Integrated luminosity

How to get the integrated luminosity?

Using Randomly Triggerred Events

Why do we use the Random Trigger method?

Not be correlated with physics triggers

How to calculate the flux?

Total flux integrated for 2 weeks (~ 100 runs ~ 4TB of reconstructed data)

=> 2 weeks (~ 100 runs)

DY 2015 ~ 30 weeks data taking~ 1 PB

- ~ 16 weeks has been produced
- ~ 2758 runs ~ 31557 files
- ~ 100 TB

Next question: how to analyse quickly this amount of data?

PARALLEL DATA PROCESSING FOR MASS ANALYSIS

Use a computing model with parallel data processing:

Hardware-wise

- Using Blue Waters, a Petascale computing facility,
 Located at Illinois, USA
- Especially well designed parallel computing center
- Cf. Blue Waters Talk (Meyer M.)
 22nd International Spin Symposium (Illinois, 2016)

Gain of time by a factor x90, using parallel queue (Relative gain)

Software-wise

Developping PROOF packages for data analysis

Gain of time by a factor x10 in my analysis (Relative gain)

Logarithmic complexity => Double the amount of data doesn't double the time needed to analyse them

PROOF = Parallel ROOT Facility

CONCLUSION AND OUTLOOK

Overview of Drell-Yan process measured at COMPASS

COMPASS data analysis ongoing on Drell-Yan 2015.
 Expected result in Spring 2017

Thank you for your attention!

EXTRA SLIDES

EXTRA SLIDES

Structure functions

		Quark polarization		
		Unpolarized (<i>U</i>)	Longitudinally polarized (L)	Transversely polarized (T)
Nucleon polarization	U	$f_1 = \bullet$		$h_1^{\perp} = $ $ \bullet$ Boer–Mulder
	L		$g_1 = \bigcirc \longrightarrow \bigcirc \bigcirc$ Helicity	$h_{1L}^{\perp} = \bigcirc \longrightarrow - \bigcirc \bigcirc$
	Τ	$f_{17}^{\perp} = \bullet$ - Sivers	$g_{17}^{\perp} = $ -	$h_{1T} = \begin{array}{c} & & & \\ & & - & \\ & & & \\ & & & \\ & & & \\ h_{1T}^{\perp} = \begin{array}{c} & & & \\ & & \\ & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & \\ & & $

beam target

(BM) ⊗ **(BM)**

(f₁) ⊗ (Sivers)

 $+|S_T||\overline{h}_1^{\perp}|\otimes|h_{1T}^{\perp}|\sin(2\phi+\phi_S)$ (BM) \otimes (Pretzelosity)

 $+|S_T| \overline{f}_1 \otimes f_{1T}^{\perp} \sin \phi_S$

 $+|S_T|\overline{h}_1^{\perp}\otimes h_1\sin(2\phi-\phi_S)$ (BM) \otimes (Transversity)

TRANSVERSELY POLARIZED TARGET

 $d\sigma(\pi^- p^\uparrow \to \mu^+ \mu^- X) = 1 + \overline{h}_1^\perp \otimes \overline{h}_1^\perp \cos(2\phi)$

Integrated flux VC Cail

Parallel processing = logarithmic complexity

Big data analysis: How to play with the Drell-Yan 2015 data?

DY 2015 ~ 30 weeks total ~ 1 PB

~ 16 weeks produced ~ 2758 runs ~ 31557 files ~ 100 TB

- > Developpement of a data management software called : ESCALADE
 - 1 input file = 1 output file; No error; All logfiles checked
- PROOF: Parallel ROOT Facility (developped at CERN)
 - Standardized packages (ready to use) and parallel processing of trees
 - Logarithmic complexity (2x amount of data to analyse != 2x time needed to analysis
 - On the flight analysis (Need few minutes to analyze few million events)

Blue Waters project

➤ Petascale computing center, located in Urbana-Champaign

(PetaFLOPS = Peta-FLoating point Operations Per Second = measurement of the computer performances)

A especially well designed architecture The keyword is the scalability: capacity to process data in parallel without any performance decrease

PARALLEL DATA PROCESSING FOR MASS ANALYSIS

	Usual time unit (realtime processing)		
Data taking	7 months		
First level production (event reconstruction)	2 weeks of data taking = 2 weeks of production		
Second level of production (subselection of events)	2 weeks of data taking = 1/2 day of subselection		

Comparison of first level production between CERN and BW

=> Gain by a factor x15

Comparison of second level production between CERN and BW

=> Gain by a factor x90

No multi-threading means: N files to process = only 1 cpu used

Multi-threaded software means: N files are spread over N cpus

CPUs available

 $1 ext{ file} = a ext{ set of physics events}$