Electromagnetic baryonic transitions in the time like region with HADES

Federico Scozzi for the HADES Collaboration IPN Orsay/TU Darmstadt

Physique des 2 Infinis et des Origines

HADES detector

- Located at SIS18, GSI
- Beams: heavy-ions, protons, pions
- Low-mass fixed-target experiment
- Hadron and lepton identification

- Acceptance: 85% azimuthal coverage, 18-85° in polar angle
- 80.000 channels
- Fast DAQ: 50kHz event rate

Physics motivation

- Strong broadening of in-medium states
- Significant contribution from higher (than Δ) mass resonances
- Understanding of ρ-baryon coupling mechanism
- Crucial to better control medium effects

Physics motivation

meson cloud"

- Study of electromagnetic structure of baryons electromagnetic transition form factor
- Important role of pion cloud at small q²

I.G. Aznauryan, V.D. Burkert Prog. Part. Nucl. Phys. 67, 1 (2012)

-0.5

0

0.5

 $q^2 (\text{GeV}^2)$

1.5

Pion beams with HADES

Secondary π momentum p_{π} = 0.69 GeV/c, 0.656 GeV/c, 0.748 GeV/c, 0.800 GeV/c in order to perform PWA analysis

- Excitation of the second resonance region
- Beam intensity I = $3-4 \times 10^5 \pi/s$
- Target: Polyethylene (CH₂)_n and Carbon

- Primary beam: 8 × 10¹⁰ N₂ ions/spill
- E = 2 AGeV
- Spill: 4s cycle
- Total ~15 days of effective measurements

Normalization factor

10 November 2016 | GDR QCD 2016, Orsay | Federico Scozzi | 6

HADES programme for pion beam

Scan of N(1520) resonance region :

π+π- production

Improve very poor $\pi^+\pi^-$ database. Manley analysis is based on only 240000 events (no differential distributions)

e+e- production

No data are available

Resonance Dalitz decays R→Ne+e-

(Link to time-like transition electromagnetic structure)

Strangeness production (K[±], K0, φ)

Absorption of mesons in cold nuclear matter

Manley et al. PRD30(1984), 904

PWA results (one example)

Bonn-Gatchina PWA including

- HADES data (4 energies $\pi^+\pi^-$ and $\pi^-\pi^0$)
- π and γ database

PWA $\pi^+\pi^-$ inv. mass ρ contribution

Important non-resonant t-channel contributionDominated by s-channelN(1520)D13coupling to ρN: 17 %resonant D13(1520) productionTotal ρN : 2.3 mbStrong interferences between1/2 - states with isospin 1/2 and 3/2

Inclusive invariant mass spectrum (raw)

Same-event like-sign CB geometric and/or arithmetic mean

CB rejection cuts:

- Opening angle > 9°
- Tracks with a not fitted track in the vicinity of 4° are excluded from further analysis

Signal (M<140 MeV/c²) = **13138** Signal (M>140 MeV/c²) = **2209**

Efficiency corrections based on Monte Carlo simulations

TECHNISCHE

Comparison with simulation

- π⁻+C treated as a quasi-free process
- Simulation results are combined according to the ratio p/C 1:2
 Sources:
- $\sigma(\pi^- p \rightarrow \pi^0 X) = 16.1 \text{ mb } \pi^0 \rightarrow e^+ e^- \gamma$
- π⁻p → N(1520) = 20.4 mb
 Wolf / Zetenyi "QED" model (no FF)
 with BR = 4 × 10⁻⁵ → ne⁺e⁻
- σ(η) = 0.3 mb (p); 0.7 (C) mb
 η→ e⁺e⁻γ
- Efficiency corrected data
- Simulations filtered through the HADES acceptance
- Cocktail without ρ contribution does not describe measured data!

Deviation from point-like behaviour

- Ratio between:
 - Efficiency corrected exclusive e⁺e⁻ spectra
 - N(1520) QED
 calculation, filtered
 through the HADES
 acceptance
- Clear deviation from unity in the

high mass region!

 Indication for VDM like form factors

Comparison with GiBUU model

- BUU-type hadronic transport model
- Incoherent sum of the cocktail components
- $\sigma_{p}(\pi^{0}) = 19 \text{ mb}$
- $\sigma_{p}(\eta) = 0.9 \text{ mb}$
- $\sigma_{p}(\Delta) = 4.24 \text{ mb}$
- Some overestimation in π⁰
 region and above 140 MeV/c²
 dominated by N(1520) and η

Comparison with GiBUU model

Exclusive spectrum

- Overestimation in π^0 region
- N(1520)→Nρ→Ne⁺e⁻ with p→e⁺e⁻ following pure VDM form factor for N(1520)
- → yield excess for N(1520)->e+e-N at small q²

points to known problem of too large radiative decay width : $(N^*/Delta > N\gamma)$ in pure VDM model.

Outlook – exploiting γ* and e⁺/e⁻ angular distributions

For a vector particle decaying in 2 fermions:

$$|A|^{2} = 8|\mathbf{k}|^{2} \left[1 - \rho_{11}^{(H)} + \cos^{2}\theta(3\rho_{11}^{(H)} - 1) + \sqrt{2}\sin(2\theta)\cos\phi\,\mathbf{Re}\rho_{10}^{(H)} + \sin^{2}\theta\cos(2\phi)\,\mathbf{Re}\rho_{1-1}^{(H)}\right]$$

 θ and ϕ are in the rest frame of the vector state, $\rho_{ij:}$ coefficients of spin density matrix

Outlook – exploiting γ* and e⁺/e⁻ angular distributions

- Distribution of virtual photon angle in CM: sensitive to interference between amplitudes for different contributions
- Distribution of helicity angle: for each contribution, it reflects the electromagnetic structure of the transition $c_{M frame} = z' / z'$

Summary

- HADES Di-Electron spectrometer in combination with pion beam is an unique tool to understand in details baryon- ρ couplings using both e⁺e⁻ and $\pi^+\pi^-$ measurements
- Very precise new data in $\pi\pi$ channels
 - \rightarrow Strong impact for baryon spectroscopy N(1520)
- Measurement of e⁺e⁻ invariant mass spectra for inclusive and exclusive channels
- Good agreement with a cocktail of point-like source + ρ contribution deduced from PWA of $\pi^+\pi^-$ data
- Comparison to GiBUU points to too large N(1520) contributions (due to VDM model?)
- Programme to be continued in 2018 (higher lying resonances, improved quality of π beam, ..)

A.Saranstev

Baryon data base

	DATA	BG2013-2014	added in BG2014-2015	
	$\pi N ightarrow \pi N$ ampl.	SAID or Hoehler energy fixed		
-	$\gamma p \to \pi N$	$\frac{d\sigma}{d\Omega}, \Sigma, T, P, E, G, H$	E, G, T, P (CB-ELSA, CLAS)	
	$\gamma n \to \pi N$	$\frac{d\sigma}{d\Omega}, \Sigma, T, P$	$\frac{d\sigma}{d\Omega}(MAMI)$	
	$\gamma n \to \eta n$	$rac{d\sigma}{d\Omega}, \Sigma$	$rac{d\sigma}{d\Omega}$ (MAMI)	
	$\gamma p \rightarrow \eta p$	$rac{d\sigma}{d\Omega}, \Sigma$	T, P, H, E (CB-ELSA)	
	$\gamma p \to \eta' p$		$rac{d\sigma}{d\Omega}, \Sigma$	
	$\gamma p \to K^+ \Lambda$	$\frac{d\sigma}{d\Omega}, \Sigma, P, T, C_x, C_z, O_{x'}, O_{z'}$	Σ, P, T, O_x, O_z (CLAS)	
	$\gamma p \to K^+ \Sigma^0$	$\frac{d\sigma}{d\Omega}, \Sigma, P, C_x, C_z$	Σ, P, T, O_x, O_z (CLAS)	
	$\gamma p \to K^0 \Sigma^+$	$\frac{d\sigma}{d\Omega}, \Sigma, P$		
	$\pi^- p \to \eta n$	$\frac{d\sigma}{d\Omega}$		
	$\pi^- p \to K^0 \Lambda$	$rac{d\sigma}{d\Omega}, P, eta$		
	$\pi^- p \to K^0 \Sigma^0$	$\frac{d\sigma}{d\Omega}$, $P(K^0\Sigma^0)\frac{d\sigma}{d\Omega}(K^+\Sigma^-)$		
	$\pi^+ p \to K^+ \Sigma^+$	$\frac{d\sigma}{d\Omega}, P, \beta$		-
	$\pi^- p \to \pi^0 \pi^0 n$	$rac{d\sigma}{d\Omega}$ (Crystal Ball)		Included
	$\pi^- p \to \pi^+ \pi^- n$		$rac{d\sigma}{d\Omega}$ (HADES)	in fit
	$\gamma p \to \pi^0 \pi^0 p$	$rac{d\sigma}{d\Omega}, \Sigma, E, I_c, I_s$		
	$\gamma p \to \pi^0 \eta p$	$rac{d\sigma}{d\Omega}, \Sigma, I_c, I_s$		
	$\gamma p \to \pi^+ \pi^- p$		$rac{d\sigma}{d\Omega}, I_c, I_s$ (CLAS)	
	$\gamma p \rightarrow \omega p$		$rac{d\sigma}{d\Omega}, \Sigma, ho_{ij}^0, ho_{ij}^1, ho_{ij}^2, E, G$ (CB-ELSA)	-
—	$\gamma p \to K^*(890)\Lambda$		$rac{d\sigma}{d\Omega}, \Sigma, ho_{ij}^{ ilde{0}}$ (CLAS)	

10 November 2016 | GDR QCD 2016, Orsay | Federico Scozzi | 20