Electromagnetic baryonic transitions in the time like region with HADES

Federico Scozzi for the HADES Collaboration IPN Orsay/TU Darmstadt

HADES detector

- Located at SIS18, GSI
" Beams: heavy-ions, protons, pions
" Low-mass fixed-target experiment
- Hadron and lepton identification
" Acceptance: 85\% azimuthal coverage, $18-85^{\circ}$ in polar angle
- 80.000 channels
" Fast DAQ: 50kHz event rate

Physics motivation

- Strong broadening of in-medium states
- Significant contribution from higher (than Δ) mass resonances
- Understanding of ρ-baryon coupling mechanism
- Crucial to better control medium effects

Physics motivation

- Study of electromagnetic structure of baryons electromagnetic transition form factor
- Important role of pion cloud at small q^{2}

Pion beams with HADES

Secondary π momentum $p_{\pi}=0.69 \mathrm{GeV} / \mathrm{c}$, $0.656 \mathrm{GeV} / \mathrm{c}, 0.748 \mathrm{GeV} / \mathrm{c}, 0.800 \mathrm{GeV} / \mathrm{c}$ in order to perform PWA analysis

- Excitation of the second resonance region
- Beam intensity I $=3-4 \times 10^{5} \pi / \mathrm{s}$
- Target: Polyethylene $\left(\mathrm{CH}_{2}\right)_{\mathrm{n}}$ and Carbon

Pion beam tracker
Diamond detectors

HADMU1

2 Double-Sided Silicon sensors $100 \times 100 \mathrm{~mm}^{2}, 300 \mu \mathrm{~m}$ thick 2×128 channels

- Primary beam:
$8 \times 10^{10} \mathrm{~N}_{2}$ ions/spill
- $\mathrm{E}=2 \mathrm{AGeV}$
- Spill: 4s cycle
- Total ~15 days of effective measurements

Normalization factor

- Normalization via measured $\pi^{-} p$ elastic scattering of known σ (SAID partial wave solution)
- $\pi^{-} p \rightarrow \pi^{-} p$ (after C subtraction)

HADES programme for pion beam

Scan of $\mathrm{N}(1520)$ resonance region :

- $\pi^{+} \pi$ - production

Improve very poor $\pi^{+} \pi$-database. Manley analysis is based on only 240000 events (no differential distributions)

- e^{+}e- production

No data are available
Resonance Dalitz decays $\mathrm{R} \rightarrow \mathrm{Ne}^{+} \mathrm{e}-$
(Link to time-like transition electromagnetic structure)

- Strangeness production ($\mathrm{K} \pm, \mathrm{KO}, \phi$)

Absorption of mesons in cold nuclear matter

Total cross sections from PWA

$2 \pi^{0}$ channels:
Dominant contributions
are $\Delta \pi$ and $N \sigma\left(2 \pi^{0}\right.$ in $\left.I=0\right)$ $\rho(\mathrm{I}=1)$ does not contribute
$\pi^{+} \pi^{-}$channels:
Important $\mathrm{N} \rho$ contribution

- Only N(1520) and P11(1440) play a significant role around $\sqrt{ } \mathrm{s}=1.5 \mathrm{GeV}$
- New HADES data are crucial for the determination of the ρ contribution
- Still no data on ρ between 1.54 and 1.75 GeV (part of HADES future program)

PWA results (one example)

Bonn-Gatchina PWA including

- HADES data (4 energies $\pi^{+} \pi$ - and $\pi \cdot \pi^{0}$)
- π and γ database

Preliminary

ρ total
ρ s-channel
$\rho \mathrm{D}_{13}(1520)$

10 November 2016 | GDR QCD 2016, Orsay | Federico Scozzi | 9

PWA $\pi^{+} \pi^{-}$inv. mass ρ contribution

Important non-resonant t-channel contribution $\mathrm{N}(1520) \mathrm{D}_{13}$ coupling to $\rho \mathrm{N}: 17 \%$
Total $\rho \mathrm{N}$: 2.3 mb

Dominated by s-channel resonant D13(1520) production Strong interferences between $1 / 2$ - states with isospin $1 / 2$ and $3 / 2$

Inclusive invariant mass spectrum (raw)

Signal $=N_{\text {ete- }}-C B$
Same-event like-sign CB geometric and/or arithmetic mean

CB rejection cuts:

- Opening angle > 9°
- Tracks with a not fitted track in the vicinity of 4° are excluded from further analysis

Signal $\left(\mathrm{M}<140 \mathrm{MeV} / \mathrm{c}^{2}\right)=13138$
Signal $\left(M>140 \mathrm{MeV} / \mathrm{c}^{2}\right)=2209$

Efficiency corrections based on
Monte Carlo simulations

Comparison with simulation

- $\pi+C$ treated as a quasi-free process

- Simulation results are combined according to the ratio p / C 1:2

Sources:

" $\sigma\left(\pi^{-} p->\pi^{0} \mathrm{X}\right)=16.1 \mathrm{mb} \pi^{0} \rightarrow \mathrm{e}^{+} \mathrm{e}^{-} \gamma$

- $\pi p \rightarrow \mathrm{~N}(1520)=20.4 \mathrm{mb}$

Wolf / Zetenyi „QED" model (no FF) with $\mathrm{BR}=4 \times 10^{-5} \rightarrow$ ne $^{+} \mathrm{e}^{-}$

- $\sigma(\eta)=0.3 \mathrm{mb}(\mathrm{p}) ; 0.7(\mathrm{C}) \mathrm{mb}$ $\eta \rightarrow \mathrm{e}^{+} \mathrm{e} \gamma$
- Efficiency corrected data
- Simulations filtered through the HADES acceptance
- Cocktail without ρ contribution does not describe measured data!

Exclusive channel: $\pi-p \rightarrow$ ne $^{+} e^{-}$

$900<$ Miss.Mass $<1020 \mathrm{MeV} / \mathrm{M}^{2}$

Good description using a cocktail of point-like baryons $+\rho$ contribution
ρ contribution from PWA and using the Strict Vector Dominance Model

Deviation from point-like behaviour

- Ratio between:
- Efficiency corrected exclusive e+e- spectra
- N(1520) QED calculation, filtered through the HADES acceptance
- Clear deviation from unity in the
high mass region!
- Indication for VDM like form factors

Comparison with GiBUU model

Inclusive spectrum

- BUU-type hadronic transport model
- Incoherent sum of the cocktail components
- $\sigma_{\mathrm{p}}\left(\pi^{0}\right)=19 \mathrm{mb}$
- $\sigma_{p}(\eta)=0.9 \mathrm{mb}$
- $\sigma_{p}(\Delta)=4.24 \mathrm{mb}$
- Some overestimation in π^{0} region and above $140 \mathrm{MeV} / \mathrm{c}^{2}$ dominated by $N(1520)$ and η

Comparison with GiBUU model

Exclusive spectrum

- Overestimation in π^{0} region
" $\mathrm{N}(1520) \rightarrow \mathrm{N} \rho \rightarrow \mathrm{Ne}^{+} \mathrm{e}$ - with $\rho \rightarrow \mathrm{e}^{+\mathrm{e}}-$ following pure VDM form factor for N(1520)
\rightarrow yield excess for $\mathrm{N}(1520)$->e+e- N at small q ${ }^{2}$
points to known problem of too large radiative decay width : ($\mathrm{N}^{*} /$ Delta->N γ) in pure VDM model.

Outlook - exploiting γ^{*} and $\mathrm{e}^{+} / \mathrm{e}^{-}$angular distributions

For a vector particle decaying in 2 fermions:

$$
|A|^{2}=8|\mathbf{k}|^{2}\left[1-\rho_{11}^{(H)}+\cos ^{2} \theta\left(3 \rho_{11}^{(H)}-1\right)+\sqrt{2} \sin (2 \theta) \cos \phi \mathbf{R e} \rho_{10}^{(H)}+\sin ^{2} \theta \cos (2 \phi) \boldsymbol{R e} \rho_{1-1}^{(H)}\right]
$$

θ and ϕ are in the rest frame of the vector state, $\rho_{\mathrm{ij} \text { : }}$ coefficients of spin density matrix

Using the data for γ^{*}->e+e- decay to find the values of ρ_{11}, ρ_{10} and ρ_{1-1} using log-likehood method

Points:data
Histogram: fitted function

Outlook - exploiting $\gamma *$ and $\mathrm{e}^{+} / \mathrm{e}^{-}$angular distributions

Microscopic model(B. Friman, M. Zetenyi, E. Speranza) arxiv.org/pdf/1605.04954.pdf Distribution of virtual photon angle in CM: sensitive to interference between amplitudes for different contributions

- Distribution of helicity angle: for each contribution, it reflects the electromagnetic structure of the transition

$$
\begin{aligned}
\frac{d \sigma}{d M d \cos \theta_{\gamma^{*}} d \cos _{e}} & \propto \Sigma_{\perp}\left(1+\cos ^{2} \theta_{e}\right)+\Sigma_{\|}\left(1-\cos ^{2} \theta_{e}\right) \\
& \propto A\left(1+B\left(\theta_{\gamma^{*}}, M\right) \cos ^{2} \theta_{e}\right)
\end{aligned}
$$

Summary

- HADES - Di-Electron spectrometer in combination with pion beam is an unique tool to understand in details baryon- ρ couplings using both $\mathrm{e}^{+} \mathrm{e}^{-}$and $\pi^{+} \pi^{-}$ measurements
- Very precise new data in $\pi \pi$ channels
\rightarrow Strong impact for baryon spectroscopy $N(1520)$
- Measurement of $e^{+} e^{-}$invariant mass spectra for inclusive and exclusive channels
- Good agreement with a cocktail of point-like source $+\rho$ contribution deduced from PWA of $\pi^{+} \pi^{-}$data
- Comparison to GiBUU points to too large $\mathrm{N}(1520)$ contributions (due to VDM model?)
- Programme to be continued in 2018 (higher lying resonances, improved quality of π beam, ..)

Baryon data base
A.Saranstev

DATA	BG2013-2014	added in BG2014-2015
$\pi N \rightarrow \pi N$ ampl.	SAID or Hoehler energy fixed	
$\gamma p \rightarrow \pi N$	$\frac{d \sigma}{d \Omega}, \Sigma, T, P, E, G, H$	E, G, T, P (CB-ELSA, CLAS)
$\gamma n \rightarrow \pi N$	$\frac{d \sigma}{d \Omega}, \Sigma, T, P$	$\frac{d \sigma}{d \Omega}(M A M I)$
$\gamma n \rightarrow \eta n$	$\frac{d \sigma}{d \Omega}, \Sigma$	$\frac{d \sigma}{d \Omega}$ (MAMI)
$\gamma p \rightarrow \eta p$	$\frac{d \sigma}{d \Omega}, \Sigma$	T, P, H, E (CB-ELSA)
$\gamma p \rightarrow \eta^{\prime} p$	$\frac{d \sigma}{d \Omega}, \Sigma$	
$\gamma p \rightarrow K^{+} \Lambda$	$\frac{d \sigma}{d \Omega}, \Sigma, P, T, C_{x}, C_{z}, O_{x^{\prime}}, O_{z^{\prime}}$	$\Sigma, P, T, O_{x}, O_{z}$ (CLAS)
$\gamma p \rightarrow K^{+} \Sigma^{0}$	$\frac{d \sigma}{d \Omega}, \Sigma, P, C_{x}, C_{z}$	$\Sigma, P, T, O_{x}, O_{z}$ (CLAS)
$\gamma p \rightarrow K^{0} \Sigma^{+}$	$\frac{d \sigma}{d \Omega}, \Sigma, P$	
$\pi^{-} p \rightarrow \eta n$	$\frac{d \sigma}{d \Omega}$	
$\pi^{-} p \rightarrow K^{0} \Lambda$	$\frac{d \sigma}{d \Omega}, P, \beta$	
$\pi^{-} p \rightarrow K^{0} \Sigma^{0}$	$\frac{d \sigma}{d \Omega}, P\left(K^{0} \Sigma^{0}\right) \frac{d \sigma}{d \Omega}\left(K^{+} \Sigma^{-}\right)$	
$\pi^{+} p \rightarrow K^{+} \Sigma^{+}$	$\frac{d \sigma}{d \Omega}, P, \beta$	
$\pi^{-} p \rightarrow \pi^{0} \pi^{0} n$	$\frac{d \sigma}{d \Omega}(C r y s t a l ~ B a l l)$	$\frac{d \sigma}{d \Omega}$ (HADES)
$\pi^{-} p \rightarrow \pi^{+} \pi^{-} n$		
$\gamma p \rightarrow \pi^{0} \pi^{0} p$	$\frac{d \sigma}{d \Omega}, \Sigma, E, I_{c}, I_{s}$	
$\gamma p \rightarrow \pi^{0} \eta p$	$\frac{d \sigma}{d \Omega}, \Sigma, I_{c}, I_{s}$	$\frac{d \sigma}{d \Omega}, I_{c}, I_{s}$ (CLAS)
$\gamma p \rightarrow \pi^{+} \pi^{-} p$		$\frac{d \sigma}{d \Omega}, \Sigma, \rho_{i j}^{0}$ (CLAS)
$\gamma p \rightarrow \omega p$		
$\gamma p \rightarrow K^{*}(890) \Lambda$		$\frac{d \sigma}{d \Omega}, \Sigma, \rho_{i j}^{0}, \rho_{i j}^{1}, \rho_{i j}^{2}, E, G$ (CB-ELSA)

Included in fit

