

# Studying nucleon structure with time like processes IPN Orsay activities for PANDA

### QCD-GDR meeting, 10 November 2016, Orsay





# Outline

- Nucleon structure studies in time-like processes
- FAIR and PANDA
- Technical and software developments of IPNO
- Time Like Electromagnetic form factors
- Feasibility studies for TDA measurements in  $\bar{p}p \rightarrow J/\psi \pi^0$  with PANDA

# Using time-like electromagnetic processes for nucleon structure studies

 Access to nucleon structure observables currently limited to lepton/photon scattering on protons (JLab, Compass, Mainz...)



# Using time-like electromagnetic processes for nucleon structure studies



Crossing symetry: same or complementary information available in electron scattering and pp annihilation
 Challenge of e<sup>+</sup>e<sup>-</sup> exit channels:

- Only Time-like form factors measured in pp (LEAR, Fermilab) pionic background !
- Novel opportunity with Panda: high precision and large kinematic coverage

# The FAIR facility at Darmstadt



# The PANDA multipurpose detector

- Meson spectroscopy: D mesons, charmonia
- Search for exotic QCD states: glueballs, tetraquarks, hybrids, molecules...
- Single and Double hypernuclei
- Hadrons in nuclear matter
- Nucleon structure

#### AntiProton ANnihilation at Darmstadt



# Tracking and PID for nucleon structure studies



EMC ()

Target spectrometer: Large coverage (2π, 5°<θ<145°) Silicon MVD, Straw Tube and GEM dE/dx for PID from STT and MVD

PbWO4 crystals, APDs (barrel), VPT(forward) Operation at -25° for optimal light yield Wide dynamic range >3 MeV Excellent resolution  $\sigma(E)/E \sim 1\% \oplus 2\%/\sqrt{E}$ 



### **Technical contribution of IPNO**





1/3 of the 120 crystal prototype

#### R & D on the barrel calorimeter

- General layout and integration (EMC TDR)
- Design of the cooling system (-25°C)

tests of chiller  $\rightarrow$  transfer of know-how to Bochum/Giessen in Spring 2015

- Optical glue studies (A. Dbeyssi et al; NIM A722 (2013) 82)
- Participation in construction and tests of two prototypes

### Simulation and analysis code developments for PANDA

- Particle IDentification (Bayesian methods/ GEANT hadronic models sensitivity)
- Bremsstrahlung correction using photon detection in EMC B. Ma, PhD, Univ. Paris-Sud. Sept 2014.



• Event Filtering (trigger): fast selection of em channels/suppression of hadronic channels

# Time Like Electromagnetic proton form factors with PANDA



# Further prospects for TL form factor studies with PANDA

- Measurement of  $|G_E|$  and  $|G_M|$  in  $\overline{p}p \rightarrow \mu^+\mu^-$ On-going PhD work I.Zimmermann (Mainz) Contamination by  $\overline{p}p \rightarrow \pi^+ \pi^- S/B^{-1/4}$
- Measurements of the proton form factors in the unphysical region  $q^2 < 4 m_p^2$   $pd \rightarrow ne^+e^-$  *H. Fonvieille and V.A. Karmanov EPJA42 (2009) 287-298.*   $pp \rightarrow \pi^0 e^+e^-$  Feasibility studies by *J. Boucher*, *PhD University Paris-Sud*, *2011).*
- Possibility to access the relative phase of  $G_{\rm E}$  and  $G_{\rm M}$ :

Transverse spin asymmetry  $\rightarrow$  Im( $G_E G_M^*$ ) Development of a transverse polarized proton target for PANDA in Mainz on-going PhD work B. Fröhlich (Mainz)

• Study of hadronic channels: background for electromagnetic channels and reaction mechanisms *on-going PhD work Wang Ying (Orsay)* 

# Phenomenological works related to TL form factors

#### Radiative Corrections

*J. Van de Wiele and S. Ong, EPJ A 49 (2013) 18. E. Tomasi-Gustafsson et al, PRC83 (2011) 04520.* 

- Heavy leptons and Polarisation E. Tomasi-Gustafsson et al, NPA 894 (2012) 20 and PRC83 (2011) 025202.
- Crossed channels and TL-SL Unification E. Tomasi-Gustafsson et al, PLB 712 (2012) 240.
- Reaction mechanisms

E. Tomasi-Gustafsson et al, NPA 920 (2013) 45.

Hadronic channels

E. Tomasi-Gustafsson et al, EPJA 46 (2011) 91. J. Van de Wiele and S. Ong, EPJA 46 (2010) 291 and EPJ C73 (2013) 2640. W. Ying et al. arXiv:1512.05520, subm. to Phys. Lett. B W. Ying JPCS 742 ,012021

# π-N Transition Distribution Amplitudes (TDA)

- TDA=Fourier transforms of non diagonal hadronic matrix elements of three (anti) quark operators on the light cone
- Occur in collinear factorization description of various reactions:
  - Backward hard electroproduction of mesons:  $\gamma^* N \rightarrow \pi N$
  - Associated meson production in  $\bar{p}p$  annihilation:  $\bar{p}p \rightarrow e^+e^- \pi^0$ ,  $\bar{p}p \rightarrow J/\psi \pi^0$



• Parametrized as a function of momentum fractions ( $x_i$ ), skewness ( $\xi$ ) and momentum transferred squared ( $\Delta^2$ = t or u)

- independent of reaction type, s and  $q^2$
- $\pi N$ -TDA: information on the pionic components of the nucleon wave function

# TDA using $\bar{p}p \rightarrow e^+e^-\pi^0$ with PANDA

J.-P. Lansberg et al., Phys. Rev. D 76, 111502 (2007). J.-P. Lansberg et al., Phys. Rev. D85, 054021 (2012)

Feasibility tested at s=5 GeV<sup>2</sup> (p=1.45 GeV/c) and 10 GeV<sup>2</sup> (p=4.3 GeV/c)  $L_{int}$ =2 fb<sup>-1</sup> (~5 months at High lumi)



B. P. Singh et al. [PANDA collaboration] Eur. Phys. J. A (2015) 51:107.

B. Ramstein , GDR meeting

## TDA using $p\bar{p} \rightarrow J/\psi \pi^0 (J/\psi \rightarrow e^+e^-)$ with PANDA

B. Pire et al. Phys. Lett. B 724 99-107 (2013)

TDA from nucleon exchange model



•

## Cross section estimates with TDA model

dN<sub>sig</sub>/dt [Counts/GeV<sup>2</sup>

- Event generator for  $\bar{p}p \rightarrow J/\psi \pi^0 (J/\psi \rightarrow e^+e^-)$ based on TDA model
  - B. Pire et al. Phys. Lett. B 724 99-107 (2013)
  - B. Ma's PhD, université Paris-Sud, Orsay, 2014
- Cross sections consistent with scarce existing data
- Weak dependence of cross sections as a function of  $\sqrt{s}$
- Full feasibility study at s= 12.3, 16.9 ,24.3 GeV<sup>2</sup> ( $p_p = 5.5$ , 8, 12 GeV/c) (E. Atomssa post doc work)





## **Background sources**

#### $\bar{p}p \rightarrow \pi^+\pi^-\pi^0$

- contaminates signal if  $(\pi^+, \pi^-)$  misidentified as (e<sup>+</sup>,e<sup>-</sup>) and invariant mass close to  $J/\psi$  mass
- Total cross sections based on existing data V. Flaminio et al. CERN HERA 79-03 (1984).

| $p_{\bar{p}}~({\rm GeV/c})$ | S/B (production rate) |
|-----------------------------|-----------------------|
| 5.5                         | $1.5 \times 10^{-6}$  |
| 8.0                         | $1.0 \times 10^{-5}$  |
| 12.0                        | 3.6×10 <sup>-5</sup>  |

Hadronic event generator DPM used for distributions

#### $\bar{p}p \rightarrow \pi^+\pi^- \pi^0 X$

- cross sections even larger than for  $\pi^+\pi^-\pi^0$ :  $\sigma(\pi^+\pi^-\pi^0,\pi^0) \sim 3 \times \sigma(\pi^+\pi^-\pi^0)$  $\sigma(\pi^+\pi^-\pi^+\pi^-\pi^0) \sim (8-15) \times \sigma(\pi^+\pi^-\pi^0)$
- simulation based on DPM

#### $\bar{p}p \rightarrow J/\psi \pi^0 \pi^0$

Cross sections not known (will be measured by PANDA) input for simulations:  $\sigma$ = 35, 52 and 40 pb at p= 5.5, 8 and 12 GeV/c respectively  $(= 3-4 \times \text{signal})$  based on conservative estimates Rough estimate from Fermilab :  $\sigma < 3$  pb at p=5.5 GeV/c

Cross section deduced from model at p= 7 GeV/c 30 pb (Chen et al. hepph:0802.2982) 10/11/2016

## Analysis procedure for $\bar{p}p \rightarrow J/\psi \pi^0 (J/\psi \rightarrow e^+e^-)$ Particle IDentification

- Selection of all possible charged track pairs
- Cut on electron identification probability (using information from all detectors)
- $\pi^0$  selection ( $\gamma\gamma$  kinematical correlation)
- Pick most back-to-back  $\pi^0$ -(e<sup>+</sup>e<sup>-</sup>) pair



Before 4 constraint kinematic fit:

- Background with pions in final states reduced to < 20 % level and can be further subtracted using side-band analysis
- Signal eff. ~ 18% (p=5.5 GeV/c)-9%(p=12 GeV/c)
- $\bar{p}p \rightarrow J/\psi \pi^0 \pi^0$  larger (X3) than the signal in our conservative estimates

## Analysis procedure for $\bar{p}p \rightarrow J/\psi \pi^0 (J/\psi \rightarrow e^+e^-)$ kinematical fits



Additionnal cuts on  $\chi^2$  for 4 constraint kinematic fitting of  $\bar{p}p \rightarrow e^+e^-\gamma\gamma$  and  $\bar{p}p \rightarrow e^+e^-\gamma\gamma\gamma\gamma\gamma$ :

Final contamination results

• multipion channels < 4 % (can be further subtracted by side-band analysis)

•  $p\bar{p}\rightarrow J/\psi \pi^0\pi^0 < 2\%$  (conservative estimates, will be measured by PANDA) Signal efficiency 11% (p=5.5 GeV/c)- 7% (p=12 GeV/c)

N. B. Possibility of measurement in parallel with charmonium studies: X(3872), Y(4260),... (no or rare decay to  $J/\psi \pi^0$ ,  $J/\psi \pi^0 \pi^0$  or multipion channels)

### Precision on cross section measurement



Integrated luminosity of  $L_{int}=2 \text{ fb}^{-1}$  (5 months in high luminosity mode ) Efficiency correction based on a separated high statistics signal simulation  $\rightarrow$  Differential distribution reconstructed with good precision  $\rightarrow$  Very promising results for TDA studies

# e<sup>+</sup>/e<sup>-</sup> angular distributions



- Check of collinear factorization accessible for forward emitted  $\pi^0$ .
- Could be accessed also for backward emitted  $\pi^0$  by including tracking in the most forward angles.

Subm. to PRD, Oct. 2016

## $\bar{p}p \rightarrow J/\psi \pi^0$ in Lagrangian models



 $\rightarrow$ PANDA can provide valuable tests of TDA/hadronic models for pp $\rightarrow$ J/ $\psi \pi^0$ 

## Conclusion

- PANDA: bright scientific program in p̄p annihilation
- Offers new possibilities to access nucleon observables
- IPN Orsay:
  - R&D studies for ElectroMagnetic Calorimeter
  - Software developments
  - Feasibility studies and phenomenological developments for time like electromagnetic form factors
  - Recent full scale feasibility study for  $\bar{p}p \rightarrow J/\psi \pi^0$ (test of TDA or hadronic models)

IPNO PANDA team : E. Atomssa, J. Boucher, M. Gumberidze (Sudol), T. Hennino, R. Kunne, B. Ma, D. Marchand, S. Ong, B. R., E. Tomasi-Gustafsson, J. Van de Wiele , Wang Ying R&D: B. Gajewski, M. Imre, C. Le Galliard, G. Minier, P. Rosier, L. Seminor A. Maroni, C. Theneau...

## **PANDA** collaboration





#### Cross Section Estimates of TDA Model

B. Pire et al., Phys. Lett. B. 724 99–107 (2013):  $ar{p}p 
ightarrow J/\psi \pi^0$ 

$$\begin{aligned} \frac{d\sigma}{d\Delta^2} &= \frac{1}{16\pi\Lambda^2(s, \ m_N^2, \ m_N^2)} |\overline{\mathcal{M}_T}|^2, \\ \\ \overline{\mathcal{M}_T}|^2 &= \frac{1}{4} |\mathcal{C}|^2 \frac{2(1+\xi)}{\xi \bar{\mathcal{M}}^8} \left( |\mathcal{I}(\xi, \ \Delta^2)|^2 - \frac{\Delta_T^2}{m_N^2} |\mathcal{I}'(\xi, \ \Delta^2)|^2 \right). \end{aligned}$$

$$\mathcal{C} = (4\pi\alpha_s)^3 \frac{f_N^2 f_{\psi}}{f_{\pi}} \frac{10}{81}, \quad \mathcal{I}(\xi, \Delta^2) = \frac{f_{\pi} g_{\pi NN} m_N (1-\xi)}{(\Delta^2 - m_N^2)(1+\xi)} M_0, \quad \mathcal{I}'(\xi, \Delta^2) = \frac{f_{\pi} g_{\pi NN} m_N}{(\Delta^2 - m_N^2)} M_0,$$

- Collinear factorization (CF) approach prediction of differential cross section
- *I*(ξ, Δ<sup>2</sup>), *I*'(ξ, Δ<sup>2</sup>): convolutions of hard scattering kernels with πN TDAs and phenomenological solutions of the leading twist (anti)nucleon Distribution Amplitudes (DA).
- Strong coupling  $\alpha_s$  fixed to reproduce  $\Gamma(J/\psi \to \bar{p}p)$  together with selected DA

### Cross Section Estimates of TDA Model

B. Pire *et al.*, Phys. Lett. B. 724 99–107 (2013):  $\bar{p}p \rightarrow J/\psi \pi^0$ 

$$\frac{d\sigma}{d\Delta^2} = \frac{1}{16\pi\Lambda^2(s, m_N^2, m_N^2)} |\overline{\mathcal{M}_T}|^2,$$

$$\left|\overline{\mathcal{M}_{\mathcal{T}}}\right|^{2} = \frac{1}{4} \left|\mathcal{C}\right|^{2} \frac{2(1+\xi)}{\xi \overline{M}^{8}} \left(\left|\mathcal{I}(\xi, \Delta^{2})\right|^{2} - \frac{\Delta_{\mathcal{T}}^{2}}{m_{N}^{2}} \left|\mathcal{I}'(\xi, \Delta^{2})\right|^{2}\right).$$

$$\mathcal{C} = (4\pi\alpha_s)^3 \frac{f_N^2 f_{\psi}}{f_{\pi}} \frac{10}{81}, \quad \mathcal{I}(\xi, \Delta^2) = \frac{f_{\pi} g_{\pi NN} m_N (1-\xi)}{(\Delta^2 - m_N^2)(1+\xi)} M_0, \quad \mathcal{I}'(\xi, \Delta^2) = \frac{f_{\pi} g_{\pi NN} m_N}{(\Delta^2 - m_N^2)} M_0,$$

- Collinear factorization (CF) approach prediction of differential cross section
- *I*(ξ, Δ<sup>2</sup>), *I*'(ξ, Δ<sup>2</sup>): convolutions of hard scattering kernels with πN TDAs and phenomenological solutions of the leading twist (anti)nucleon Distribution Amplitudes (DA).
- Strong coupling  $\alpha_s$  fixed to reproduce  $\Gamma(J/\psi \to \bar{p}p)$  together with selected DA

 $\pi^0$  Selection in  $\bar{p}p \rightarrow J/\psi \pi^0$ 



- Significant combinatorial background from uncorrelated  $\gamma\gamma$  pairs
- Distinct signal opening angle energy correlation from combinatorial background

• Sufficient to reduce background with minimal cost on true  $\pi^0$ 's • Mass cut  $110 < M_{\gamma\gamma} [MeV/c^2]^{\text{B. Ramstein}, GDR meeting} < 165$  is also applied