JF Donati

IRAP / Obs Midi-Pyrénées, CNRS / Université de Toulouse L Yu, P Petit (IRAP), C Moutou (CFHT), L Malo (UdeM), A Cameron (StAndrews) & the MaTYSSE consortium

O hunting for exoplanets : motivation, techniques & limitations

O hunting for exoplanets : motivation, techniques & limitations

what are hot Jupiters and what do we know about them?

O hunting for exoplanets : motivation, techniques & limitations

what are hot Jupiters and what do we know about them?

A hot Jupiters around young forming Sun-like stars

hunting for exoplanets : motivation, techniques & limitations
 what are hot Jupiters and what do we know about them?
 hot Jupiters around young forming Sun-like stars

future prospects with SPIRou @ CFHT

a quest for origins

origins of the Solar System & origins of life
 study planets / satellites within the Solar System
 detect & study worlds outside the Solar System

https://apod.nasa.gov/apod/ap151205.html

a quest for origins

origins of the Solar System & origins of life study planets / satellites within the Solar System ➡ detect & study worlds outside the Solar System

O unveiling the invisible

technically tricky & only possible since last two decades several techniques to reveal distant exoplanets imaging / velocimetry / photometry / micro-lensing / astrometry

direct imaging

extreme flux contrast : 5-9 orders of magnitude tiny angular separation : I au @ I0 pc = 0.1" (atmospheric turbulence > 0.5") ➡ detect a candle next to a lighthouse from a distance of ~2 000 km coronography / adaptive optics / interferometry ✤ few detections of distant young giant planets, eg HR 8799

high-precision velocimetry

detect & measure the reflex motion of the host star through the Doppler effect radial velocity (RV) signal yields planet mass (m sin i w/ i: orbit tilt wrt line of sight) e.g. Jupiter on the Sun: 13 m/s — Earth on the Sun: 0.08 m/s

- \rightarrow extreme precision required: I m/s = 3 10⁻⁹ x speed of light
- thermally stable (~0.01 K) evacuated spectrographs
- very stable wavelength reference
- ➡ HARPS @ 3.6m ESO telescope at La Silla (Chile)
- most reliable technique & hundreds of planets detected

https://www.eso.org/public/videos/eso1035g/

high-precision velocimetry

detect & measure the reflex motion of the host star through the Doppler effect radial velocity (RV) signal yields planet mass (m sin i w/ i: orbit tilt wrt line of sight) e.g. Jupiter on the Sun: 13 m/s — Earth on the Sun: 0.08 m/s

- extreme precision required: I m/s = 3 10⁻⁹ x speed of light
- thermally stable (~0.01 K) evacuated spectrographs
- very stable wavelength reference
- ➡ HARPS @ 3.6m ESO telescope at La Silla (Chile)
- most reliable technique & hundreds of planets detected

photometric transits

detect & measure the partial occultation of the star by a close-in planet gives access to the planet radius (wrt the stellar radius) e.g. Jupiter on the Sun: 1% = 10 mmag — Earth on the Sun: 0.008% = 80 ppm very high photometric precision (a few tens of ppm) best from space (CoRoT, MOST, KEPLER, TESS, PLATO) needs confirmation w/ velocimetry to validate planet radius + mass yields average bulk density & composition thousands of planets & hundreds of systems detected with KEPLER

https://www.eso.org/public/videos/eso1011c/

photometric transits

detect & measure the partial occultation of the star by a close-in planet gives access to the planet radius (wrt the stellar radius) e.g. Jupiter on the Sun: 1% = 10 mmag — Earth on the Sun: 0.008% = 80 ppm very high photometric precision (a few tens of ppm) best from space (CoRoT, MOST, KEPLER, TESS, PLATO) needs confirmation w/ velocimetry to validate planet radius + mass yields average bulk density & composition thousands of planets & hundreds of systems detected with KEPLER

opollution by stellar activity

stellar magnetic fields generates spots & plages at the surface of the host star impacts RVs & photometry on timescales of days to months & years (rotation, cycle) chromatic signature from activity as opposed to achromatic signature from planet \Rightarrow activity of the Sun: a few m/s and 100 ppms at optical wavelengths \Rightarrow distort / drown signal from planet :(\Rightarrow need to model & filter-out activity

opollution by stellar activity

stellar magnetic fields generates spots & plages at the surface of the host star impacts RVs & photometry on timescales of days to months & years (rotation, cycle) chromatic signature from activity as opposed to achromatic signature from planet
activity of the Sun: a few m/s and 100 ppms at optical wavelengths
distort / drown signal from planet :(

- nood to model & filter out activity
- need to model & filter-out activity

What is a hot Jupiter ?

close-in giant gaseous planet at a distance of <0.5 au from its host star
◆ orbital period < 10 d and mass > 0.2 M_a
◆ large RV signal, typical semi amplitude of ~100 m/s or more
◆ large photometric transit depth of a few %

What is a hot Jupiter ?

close-in giant gaseous planet at a distance of <0.5 au from its host star

- I orbital period < 10 d and mass > 0.2 Ma
- large RV signal, typical semi amplitude of ~100 m/s or more

large photometric transit depth of a few %

first planets detected w/ velocimetry easiest to detect thanks to their large RV signal 51 Peg b (Mayor & Queloz 1995) HD 209458 b (Mazeh et al 2000)

What is a hot Jupiter ?

close-in giant gaseous planet at a distance of <0.5 au from its host star

- I orbital period < 10 d and mass > 0.2 Ma
- large RV signal, typical semi amplitude of ~100 m/s or more
- large photometric transit depth of a few %

first planets detected w/ velocimetry casiest to detect thanks to their large RV signal
 51 Peg b (Mayor & Queloz 1995)
 HD 209458 b (Mazeh et al 2000)

Confirmed with photometry HD 209458 b (Charbonneau et al 2000) independent discovery (Henry et al 2000)

What is a hot Jupiter ?

close-in giant gaseous planet at a distance of <0.5 at close-in giant gaseous planet at a distance of <0.5 at constant of a logo of a

first planets detected w/ velocimetry easiest to detect thanks to their large RV signal
 51 Peg b (Mayor & Queloz 1995)
 HD 209458 b (Mazeh et al 2000)

Confirmed with photometry HD 209458 b (Charbonneau et al 2000) independent discovery (Henry et al 2000)

RV transit signal
 Rossiter McLaughlin effect
 tilt of orbital axis to spin axis
 coplanar orbit for HD 209458 b

O occurrence rate of hot Jupiters

only ~1% of mature Sun-like stars host hot Jupiters (eg Wright et al 2012) less for low-mass stars / M dwarfs higher occurence rates from RV surveys than from photometric transits ? more frequent (~5%) in dense open clusters (Brucalassi et al 2016)?

occurrence rate of hot Jupiters

only ~1% of mature Sun-like stars host hot Jupiters (eg Wright et al 2012) less for low-mass stars / M dwarfs higher occurence rates from RV surveys than from photometric transits? more frequent (~5%) in dense open clusters (Brucalassi et al 2016)

O orbital properties

most have circular orbits, some w/ elliptical / tilted orbits most show prograde orbits, sometimes retrograde orbital alignement for cool host stars (eg Brown et al 2017)

occurrence rate of hot Jupiters

only ~1% of mature Sun-like stars host hot Jupiters (eg Wright et al 2012) less for low-mass stars / M dwarfs higher occurence rates from RV surveys than from photometric transits ? more frequent (~5%) in dense open clusters (Brucalassi et al 2016) ?

orbital properties

most have circular orbits, some w/ elliptical / tilted orbits most show prograde orbits, sometimes retrograde orbital alignement for cool host stars (eg Brown et al 2017)

planet properties

inflated radii by up to 2x (eg Zhao et al 2014) atmospheres detected from transit photometry & spectroscopy evaporating atmospheres / mass loss ?

Occurrence rate of hot Jupitersonly ~1% of mature Sun-like stars host hot Jup less for low-mass stars / M dwarfs higher occurence rates from RV surveys than more frequent (~5%) in dense open clusters (

orbital properties

most have circular orbits, some w/ elliptical most show prograde orbits, sometimes ret orbital alignement for cool host stars (eg B

planet properties

inflated radii by up to 2x (eg Zhao et al 2014) atmospheres detected from transit photometry & spectroscopy evaporating atmospheres / mass loss ?

Star / planet formation

Star / planet formation

dark cloud collapsing on its own weight; forming accretion disc accretion disc yielding central star (T Tauri) and protoplanetary disc giant planets / hot Jupiters shape early planetary system architecture key role in formation of planetary systems

in-situ formation ?

Star / planet formation

dark cloud collapsing on its own weight, forming accretion disc accretion disc yielding central star (T Tauri) and protoplanetary disc giant planets / hot Jupiters shape early planetary system architecture key role in formation of planetary systems

in-situ formation ?

not enough disc material to form hot Jupiters in situ giant planet first formed at several au's, then migrate inwards formed by accretion of smaller planets (Batygin et al 2016; Boley et al 2016) possible for hot Neptunes, unlikely to occur for hot Jupiters

planet-planet / star-planet interaction

giant planet formed at several au's beyond ice line kicked on elliptical orbit through gravitational interaction w/ nearby planet / star orbit aligned & circularized through tidal effects with host star able to produce both aligned & misaligned hot Jupiters needs 100-1000 Myr to align & circularize orbits

planet-disc interaction

giant planet depletes co-orbital region & generate spiral density structures (wakes) differential torque from inner & outer wakes induces inward (type-II) migration hot Jupiters migrate on timescales of 0.01-0.1 Myr

generates hot Jupiters on circular orbits (Lin et al 1996)

planet-disc interaction

giant planet depletes co-orbital region & generate spiral density structures (wakes) differential torque from inner & outer wakes induces inward (type-II) migration hot Jupiters migrate on timescales of 0.01-0.1 Myr

◆ generates hot Jupiters on circular orbits (Lin et al 1996)

Formatio

planet-disc interaction

giant planet depletes co-orbital res differential torque from inner & ou hot Jupiters migrate on timescales erates hot Jupiters on

magnetospheric gaps

host stars trigger strong large-scale dynamo magnetic fields
forces disc material into corotation w/i smallest of either Alfven / Kepler radius
disrupts the central disc regions, generate magnetospheric gap & accretion funnels
stop planet migration at inner disc edge (Lin et al 1996)
hot Jupiters survive if disc dissipates before field weakens

validating hot Jupiter formation w/ young stars ?

TTauri stars (TTSs)

young Sun-like stars (0.5-15 Myr) no longer embedded in dust cocoon contraction not completed yet, w/ radii 3-1.2 R_{\odot} for a 1 M_{\odot} star either accreting from their discs (classical) or disc-free (weak-line)

T Tauri stars (TTSs)

young Sun-like stars (0.5-15 Myr) no longer embedded in dust cocoon contraction not completed yet, w/ radii 3-1.2 R_{\odot} for a 1 M_{\odot} star either accreting from their discs (classical) or disc-free (weak-line)

Totation & activity

rotation rates 3-100x faster than the Sun (periods 8-0.25 d)
 extremely active stars with strong large-scale magnetic fields
 very difficult to detect planets, even hot Jupiters

© M Garlick

Hot Jupiters aro

T Tauri stars (TTSs)

young Sun-like stars (0.5-15 Myr) no long contraction not completed yet, w/ radii 3either accreting from their discs (classical)

rotation & activity

rotation rates 3-100x faster than the S extremely active stars with str very difficult to detect planets

the MaTYSSE programme

spectropolarimetric monitoring of TTSs from CFHT (Hawaii) & TBL (Pic du Midi) model magnetic fields & activity w/ tomographic imaging search for potential hot Jupiters

M Garlick

HYPERON

1950 : LE GROUPE PMS BLACKETT DECOUVRE UNE NOUVELLE Particule a l'observatoire du pic du midi

1953 : LE CONGRES INTERNATIONAL SUR LE RAYONNEMENT Cosmidue Reuni a Bagneres nomme cette particul " Hyperon "

CE MONUMENT REPRESENTE LA TRACE DE L'HYPERON

pic du Midi 1953

HYPERON

1950: LE GROUPE PMS BLACKETT DECOUVRE UNE NOUVELLE Particule a l'observatoire du pic du midi

1953 : LE CONGRES INTERNATIONAL SUR LE RAYONNEMENT Cosmidue Reuni a Bagneres nomme cette particul " Hyperon "

CE MONUMENT REPRESENTE LA TRACE DE L'HYPERON

rotational modulation of spectral lines

magnetic spots generate line profile variations & Zeeman signatures
induce RV variations of several km/s, much larger than those from hot Jupiters
compute average line profiles from ~7000 spectral lines
monitor temporal variations / modulation of line profiles

rotational modulation of spectral lines

magnetic spots generate line profile variations & Zeeman signatures
induce RV variations of several km/s, much larger than those from hot Jupiters
compute average line profiles from ~7000 spectral lines
monitor temporal variations / modulation of line profiles

rotational modulation of spectral lines

magnetic spots generate line profile variations & Zeeman signatures
induce RV variations of several km/s, much larger than those from hot Jupiters
compute average line profiles from ~7000 spectral lines
monitor temporal variations / modulation of line profiles

tomographic imaging

reconstruct 2D brightness & magnetic map from series of (ID) line profiles use maximum entropy principle to infer simplest map compatible with data
large fraction of the star covered with cool spots / warm plages
large-scale field 2-3 orders of magnitude stronger than solar
surface differential rotation shearing the surface
temporal evolution of surface features
use results to filter-out RV curves from "activity jitter"

tomographic imaging

reconstruct 2D brightness & magnetic map from series of (ID) line profiles use maximum entropy principle to infer simplest map compatible with data
large fraction of the star covered with cool spots / warm plages
large-scale field 2-3 orders of magnitude stronger than solar
surface differential rotation shearing the surface
temporal evolution of surface features
use results to filter-out RV curves from "activity jitter"

tomographic imaging

reconstruct 2D brightness & magnetic map from series of (ID) line profiles use maximum entropy principle to infer simplest map compatible with data
large fraction of the star covered with cool spots / warm plages
large-scale field 2-3 orders of magnitude stronger than solar
surface differential rotation shearing the surface
temporal evolution of surface features

use results to filter-out RV curves from "activity jitter"

tomographic imaging

reconstruct 2D brightness & magnetic map from series of (ID) line profiles use maximum entropy principle to infer simplest map compatible with data
large fraction of the star covered with cool spots / warm plages
large-scale field 2-3 orders of magnitude stronger than solar
surface differential rotation shearing the surface
temporal evolution of surface features

• use results to filter-out RV curves from "activity jitter"

tomographic imaging

reconstruct 2D brightness & magnetic map from series of (ID) line profiles
use maximum entropy principle to infer simplest map compatible with data
large fraction of the star covered with cool spots / warm plages
large-scale field 2-3 orders of magnitude stronger than solar
surface differential rotation shearing the surface
temporal evolution of surface features
use results to filter-out RV curves from "activity jitter"

filtering RV curves from activity jitter w/ tomographic imaging youngest known hot Jupiter detected on ~2 Myr-old TTS V830 Tau planet RV signal ~20x smaller than activity jitter, small eccentricity

filtering RV curves from activity jitter w/ tomographic imaging youngest known hot Jupiter detected on ~2 Myr-old TTS V830 Tau planet RV signal ~20x smaller than activity jitter, small eccentricity

filtering RV curves from activity jitter w/ tomographic imaging youngest known hot Jupiter detected on ~2 Myr-old TTS V830 Tau planet RV signal ~20x smaller than activity jitter, small eccentricity

 modeling activity using Gaussian Process Regression (GPR) model activity as correlated noise, eg a Gaussian process (GP) of known covariance assume pseudo-periodic covariance function (eg Haywood et al 2014)
 reproduces rotational modulation & spot evolution

modeling activity using Gaussian Process Regression (GPR)
 model activity as correlated noise, eg a Gaussian process (GP) of known covariance
 assume pseudo-periodic covariance function (eg Haywood et al 2014)
 reproduces rotational modulation & spot evolution

Covariance function

c(t,t') = $9^2 \exp[-(t-t')^2 / \varphi^2 - \sin^2\{\pi(t-t')/\chi\} / \psi^2]$ with 9, φ , χ and ψ four hyper parameters characterizing the GP 9 amplitude - φ spot lifetime - χ rotation period - ψ allowed smoothness

@ modeling activity using Gaussian Process Regression (GPR) model activity as correlated noise, eg a Gaussian process (GP) of known covariance assume pseudo-periodic covariance function (eg Haywood et al 2014) reproduces rotational modulation & spot evolution

covariance function

 $c(t,t') = 9^2 \exp[-(t-t')^2 / \phi^2 - \sin^2{\pi(t-t')/\chi} / \psi^2]$ with 9, ϕ , χ and ψ four hyper parameters characterizing the GP 9 amplitude - φ spot lifetime - χ rotation period - ψ allowed smoothness

O likelihood estimation & Bayesian formalism subtract planet signal & model activity for given set of GP parameters estimate likelihood w/ log \mathscr{L} = -n log(2 π) / 2 - log |C+ Σ | / 2 - y^T (C+ Σ)⁻¹ y / 2

where C is the covariance matrix and Σ the diagonal variance matrix

modeling activity using Gaussian Process Regression (GPR) model activity as correlated noise, eg a Gaussian process (GP) of known covariance assume pseudo-periodic covariance function (eg Haywood et al 2014)
reproduces rotational modulation & spot evolution

covariance function

c(t,t') = $\vartheta^2 \exp[-(t-t')^2 / \varphi^2 - \sin^2\{\pi(t-t')/\chi\} / \psi^2]$ with ϑ , φ , χ and ψ four hyper parameters characterizing the GP ϑ amplitude - φ spot lifetime - χ rotation period - ψ allowed smoothness

We be an expression of a set of a set of a subtract planet signal & model activity for given set of GP parameters estimate likelihood w/ log \mathscr{L} = -n log(2 π) / 2 - log [C+ Σ] / 2 - y^T (C+ Σ)⁻¹ y / 2 where C is the covariance matrix and Σ the diagonal variance matrix

MCMC simulation

derive posterior distributions of planet & GP parameters at the same time

filtering RV curves from activity jitter with GPR
 planet RV signal confirmed with GPR & Bayesian approach
 posterior distributions on planet (& GP) parameters

filtering RV curves from activity jitter with GPR
 planet RV signal confirmed with GPR & Bayesian approach
 posterior distributions on planet (& GP) parameters

hot Jupiters detected on disc-less TTSs

0.70 Ma hot Jupiter detected at 0.057 au around the 2-Myr-old V830 Tau 1.3 Ma hot Jupiter detected at 0.10 au around the 15-Myr-old TaP 26 planets detectable around active stars hot Jupiters w/ circular orbits present at early stage of planet formation most likely produced through planet-disc interaction

hot Jupiters detected on disc-less TTSs

0.70 Ma hot Jupiter detected at 0.057 au around the 2-Myr-old V830 Tau 1.3 Ma hot Jupiter detected at 0.10 au around the 15-Myr-old TaP 26 planets detectable around active stars bot Jupiters w/ circular orbits present at early stage of planet formation most likely produced through planet-disc interaction

O open questions

more frequent than on mature stars? role of magnetic fields on planet survival? impact on early architecture of planetary systems? temperature / luminosity of newborn planets? io-Jupiter like star-planet interactions? transiting planets?

Future prospects

Characterize newborn hot Jupiters

Future prospects

Characterize newborn hot Jupiters

new extensive monitoring campaign about to begin for both stars multi wavelengths observations, including nIR spectroscopy & radio (LOFAR) high-precision photometry with Kepler / K2 to detect potential transit & Louise Yu starting her PhD thesis @ IRAP / OMP

SPIRou @ CFHT & SPIP @ Pic du Midi

high-precision velocimeter / spectropolarimeter for CFHT focus on star / planet formation & planetary systems of nearby M dwarfs integrated at IRAP / OMP now, first light @ CFHT in 2017 SPIP: twin copy for Pic du Midi, funded, first light in 2020

SPiRou

- ➡ spirou.irap.omp.eu
- ✤ @SPIRou_astro on twitter

Future prospects

C characterize newborn hot Jupiters

new extensive monitoring campaign about to begin for both stars multi wavelengths observations, including nIR spectroscopy & radio (LOFAR) high-precision photometry with Kepler / K2 to detect potential transit & Louise Yu starting her PhD thesis @ IRAP / OMP

SPIRou @ CFHT & SPIP @ Pic du Midi

high-precision velocimeter / spectropolarimeter for CFHT focus on star / planet formation & planetary systems of nearby M dwarfs integrated at IRAP / OMP now, first light @ CFHT in 2017 SPIP: twin copy for Pic du Midi, funded, first light in 2020

➡ spirou.irap.omp.eu

➡ @SPIRou_astro on twitter

https://vimeo.com/47408739

WORLDS

THE KEPLER PLANET CANDIDATES

© Alex Parker