High Precision Nuclear Beta Spectroscopy

Leendert Hayen

Weak Interactions Group

Instituut voor Kern- en Stralingsfyica KU Leuven

HiSEBSM, August 5 2016, Quy Nhon

Leendert Hayen (IKS KU Leuven)

High Precision Beta Spectroscopy

HiSEBSM, Aug. 5 2016 1 / 30

= nac

Intermezzo: Reactor Neutrino Anomaly

ELE NOR

Main goal: Understand Standard Model & Go Beyond

Where to look for it? Weak Interaction!

How? Nuclear β decay, because it's

- Experimentally 'easy'
- Wealth of different transitions
- Many available observables

3 × 4 3 × 3 1 × 0 0 0

Main goal: Understand Standard Model & Go Beyond

Where to look for it? Weak Interaction!

How? Nuclear β decay, because it's

- Experimentally 'easy'
- Wealth of different transitions
- Many available observables

 $\mathsf{Complex}\xspace$ system \rightarrow need accurate theoretical predictions from different areas of physics

A ∃ ► A ∃ ► ∃ | = \0 Q Q

General Hamiltonian

$$\mathcal{H} = \sum_{j=V,A,S,P,T} \langle f | \mathcal{O}_j | i \rangle \langle e | \mathcal{O}_j [C_j + C_j \gamma_5] | \nu \rangle + h.c.$$

General Hamiltonian

$$\mathcal{H} = \sum_{j=V,A,S,P,T} \langle f | \mathcal{O}_j | i \rangle \langle e | \mathcal{O}_j [C_j + C_j \gamma_5] | \nu \rangle + h.c.$$

Questions:

In Standard Model only $V-A \rightarrow$ where are the others?

Leendert Hayen (IKS KU Leuven)

High Precision Beta Spectroscopy

< □ > < 書 > < 클 > < 클 > 三 = つ Q (?) HiSEBSM, Aug. 5 2016 4 / 30

General Hamiltonian

$$\mathcal{H} = \sum_{j=V,A,S,P,T} \langle f | \mathcal{O}_j | i \rangle \langle e | \mathcal{O}_j [C_j + C_j \gamma_5] | \nu \rangle + h.c.$$

Questions:

In Standard Model only $V-A \rightarrow$ where are the others?

QCD influences \rightarrow *induced* currents, what about nuclear structure?

Exploring the Standard Model and Beyond via the β spectrum shape:

$$rac{dN}{dE_e} \propto 1 + rac{b_{\mathsf{Fierz}}}{E_e} \gamma rac{m_e}{E_e} + b_{WM} E_e$$

b_{Fierz}: Proportional to scalar (Fermi) and tensor (Gamow-Teller) couplings

 b_{WM} : Weak Magnetism (main induced current), poorly known for A > 60, forbidden decays

▲ Ξ ▶ ▲ Ξ ▶ Ξ Ξ

Exploring the Standard Model and Beyond via the β spectrum shape:

$$rac{dN}{dE_e} \propto 1 + rac{b_{\mathsf{Fierz}}}{E_e} \gamma rac{m_e}{E_e} + b_{WM} E_e$$

b_{Fierz}: Proportional to scalar (Fermi) and tensor (Gamow-Teller) couplings

 b_{WM} : Weak Magnetism (main induced current), poorly known for A > 60, forbidden decays

This requires knowledge of the theoretical spectrum shape to $\leq 10^{-3}$ level!

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目目 のなる

General description

General matrix element: Combination of \mathcal{H}_{β} and Coulomb effects.

$$M_{fi} = -2\pi i \delta(E_f - E_i) \langle f | T \left[\exp\left(-i \int_0^\infty dt \mathcal{H}^Z(t)\right) \right] \\ \times \mathcal{H}_\beta(0) T \left[\exp\left(-i \int_{-\infty}^0 dt \mathcal{H}^{Z'}(t)\right) \right] |i\rangle$$

Immediately two main parts:

- Electromagnetic corrections
- 2 Nuclear & recoil corrections

ELE NOR

Specifically...

Expanding slightly:

- Electromagnetic corrections
 - Fermi function
 - Radiative corrections
 - Atomic effects
 - Molecular effects
- 2 Nuclear & recoil corrections
 - Finite nuclear size & mass
 - Nuclear structure

ELE SOC

Specifically...

Expanding slightly:

- Electromagnetic corrections
 - Fermi function \surd
 - Radiative corrections \surd
 - Atomic effects
 - Molecular effects
- Nuclear & recoil corrections
 - Finite nuclear size & mass $\sqrt{}$
 - Nuclear structure

3 × + 3 × 3 = 1 = 000

Specifically...

Expanding slightly:

- Electromagnetic corrections
 - Fermi function \surd
 - Radiative corrections \surd
 - Atomic effects
 - Molecular effects
- Nuclear & recoil corrections
 - Finite nuclear size & mass $\sqrt{}$
 - Nuclear structure

Different formalisms: Behrens-Bühring, Holstein, Wilkinson,

 \rightarrow Problems with double counting, rigour, accessibility

Behrens-Bühring, Clarendon Press, Oxford, 1982; B. Holstein, RMP **46**, 789; D. Wilkinson, NIM A **335**, 172; etc..

Leendert Hayen (IKS KU Leuven)

(ロト (過) (ヨト (ヨト (三)) の()

Quick overview

Our Goal: Fully analytical description to 10^{-4} precision

Result:

$$\begin{split} \mathcal{N}(W)dW &= \frac{G_V^2 V_{ud}^2}{2\pi^3} \ F_0(Z,W) \ L_0(Z,W) \ U(Z,W) \ R_N(W,W_0,M) \\ &\times \ Q(Z,W,M) \ R(W,W_0) \ S(Z,W) \ X(Z,W) \ r(Z,W) \\ &\times \ C(Z,W) \ pW(W_0-W)^2 \ dW \\ &\equiv \frac{G_V^2 V_{ud}^2}{2\pi^3} \ K(Z,W,W_0,M) \ C(Z,W) \ pW(W_0-W)^2 \ dW. \end{split}$$

Where K considers electromagnetic and kinematic effects, and C contains nuclear structure info.

Quick overview

Our Goal: Fully analytical description to 10^{-4} precision

Result:

$$N(W)dW = \frac{G_V^2 V_{ud}^2}{2\pi^3} F_0(Z, W) L_0(Z, W) U(Z, W) R_N(W, W_0, M)$$

$$\times Q(Z, W, M) R(W, W_0) S(Z, W) X(Z, W) r(Z, W)$$

$$\times C(Z, W) pW(W_0 - W)^2 dW$$

$$\equiv \frac{G_V^2 V_{ud}^2}{2\pi^3} K(Z, W, W_0, M) C(Z, W) pW(W_0 - W)^2 dW$$

Corrections and improvements:

Atomic effects: Screening, exchange, atomic mismatch, shake-up & shake-off, molecular & chemical effects Nuclear effects: Spatial variation of wave functions & nuclear structure

Leendert Hayen (IKS KU Leuven)

High Precision Beta Spectroscopy

EL OQO

Final state interactions with atomic electrons.

Powerful analytical treatment by Bühring, coupled with accurate atomic potential

Greatly reduced theoretical uncertainty!

Atomic exchange

Exchange: Probability of decaying into bound state with emission of bound e^-

$$X(E) = 1 + \sum_{n} \eta_{ex}^{ns}(E)$$

where

 $\eta_{\rm ex}^{\it ns}(E) \propto \langle Es' | \it ns
angle$

spatial overlap between continuum and bound wave functions

Atomic exchange

Exchange: Probability of decaying into bound state with emission of bound e^-

$$X(E) = 1 + \sum_{n} \eta_{ex}^{ns}(E)$$

where

$$\eta_{ex}^{ns}(E) \propto \langle Es' | ns \rangle$$

spatial overlap between continuum and bound wave functions

Need accurate wave functions for arbitrary potentials over the entire space \rightarrow numerical!

Atomic Exchange

HiSEBSM, Aug. 5 2016

13 / 30

Atomic Exchange

Contributions from different orbitals \rightarrow sensitive to *atomic* physics!

Leendert Hayen (IKS KU Leuven)

High Precision Beta Spectroscopy

HiSEBSM, Aug. 5 2016 14 / 30

Nuclear Structure & Convolution

Combination of two effects:

- Spatial variation of the leptonic wave functions
- Nuclear structure and induced currents (weak magnetism)

and we write

$$C(Z,E) \equiv {}^{NS}C(Z,E){}^{LC}C(Z,E)$$

Nuclear Structure & Convolution

Combination of two effects:

- Spatial variation of the leptonic wave functions
- Nuclear structure and induced currents (weak magnetism)

and we write

$$C(Z,E) \equiv {}^{NS}C(Z,E)^{LC}C(Z,E)$$

Different formalisms, different strengths \rightarrow rigorous connection combining a 'best of':

- Rigorous treatment of lepton wave functions
- Nuclear structure in single ratio *b*/*Ac* of matrix elements (*b* weak magnetism; *c* Gamow-Teller)

e.g. B. R. Holstein, RMP **46**, 789 (1974) & H. Behrens and W. Bühring, Clarendon Press, Oxford (1982)

Nuclear Structure & Convolution

Leendert Hayen (IKS KU Leuven)

High Precision Beta Spectroscopy

HiSEBSM, Aug. 5 2016

16 / 30

Included Corrections

Item	Effect	Formula
1	Phase space factor	$pW(W_0-W)^2$
2	Neutrino mass	Negligible
3	Forbidden decays	Not incorporated
4	Traditional Fermi function	F_0
5	Finite size of the nucleus	L_0
6	Diffuse nuclear surface	U
7	Recoiling nucleus	R_N
8	Distorted Coulomb potential due to recoil	Q
9	Radiative corrections	R
10	Atomic screening	5
11	Atomic exchange	X
12	Shake-Up	See item 14
13	Shake-Off	See item 14 & $\chi_{ extsf{ex}}^{ extsf{cont}}$
14	Atomic mismatch	r
15	Bound state eta decay	Γ_b/Γ_c
16	Molecular screening	ΔS_{Mol}
17	Molecular exchange	Case by case
18	Shape factor	С

High Precision Beta Spectroscopy

HiSEBSM, Aug. 5 2016

17 / 30

Included Corrections

Item	Effect	Formula
1	Phase space factor	$pW(W_0-W)^2$
2	Neutrino mass	Negligible
3	Forbidden decays	Not incorporated
4	Traditional Fermi function	F_0
5	Finite size of the nucleus	L_0
6	Diffuse nuclear surface	U
7	Recoiling nucleus	R_N
8	Distorted Coulomb potential due to recoil	Q
9	Radiative corrections	R
10	Atomic screening	5
11	Atomic exchange	X
12	Shake-Up	See item 14
13	Shake-Off	See item 14 & $\chi_{ ext{ex}}^{ ext{cont}}$
14	Atomic mismatch	r
15	Bound state β decay	Γ_b/Γ_c
16	Molecular screening	$\Delta S_{ m Mol}$
17	Molecular exchange	Case by case
18	Shape factor	С

L. Hayen et al., Invited for submission to Rev. Mod. Phys. (Soon on arXiv) = , and the submission to Rev.

Leendert Hayen (IKS KU Leuven)

High Precision Beta Spectroscopy

HiSEBSM, Aug. 5 2016

5 2016 17 / 30

All corrections are implemented in C++ generator program. (Still come up with nice acronym)

Will be freely available for use and download, together with custom event generator $\mathsf{CRADLE}{++}$

L. Hayen et al., technical paper to be published.

▲ Ξ ▶ ▲ Ξ ▶ Ξ Ξ

Intermezzo: Reactor Antineutrino Anomaly

Influence from all β spectrum corrections \rightarrow understanding of atomic corrections & weak magnetism is crucial!

A. Hayes et al., PRL 112, 202501 (2014) & J. Kopp et al., JHEP 05 (2013) 050

Leendert Hayen (IKS KU Leuven)

High Precision Beta Spectroscopy

HiSEBSM, Aug. 5 2016 19 / 30

Corrections to RNA Analysis

Several influences currently insufficiently/not included in analysis!

20 / 30

⁴⁵Ca Runs @ LANL (May 2016)

Use UCNA set-up, put Segmented Si Detector (SSD) instead

Collaboration with A. Young and parts of UCNB & Nab groups

Leendert Hayen (IKS KU Leuven)

High Precision Beta Spectroscopy

HiSEBSM, Aug. 5 2016 21 / 30

ELE DOO

Si Detector

A lot of effort into performance, 3 keV FHWM & 7 keV threshold, 4 ns timing resolution

Leendert Hayen (IKS KU Leuven)

High Precision Beta Spectroscopy

HiSEBSM, Aug. 5 2016 22 / 30

EL OQO

(日) (周) (三) (三)

Waveform analysis

Waveform trace

- $\textbf{Online using double trapezoid filter} \rightarrow \texttt{timestamp} + \texttt{energy}$
- **2** 10 μ s trace for offline analysis (52 kB)

Courtesy of A. Sprow

e.g. Jordanov et al., NIM A 353, 261; A. Sprow, To be published

Systematics

Most important systematics

- Backscattering
- Pile-up
- Missed events
- Magnetic reflection
- Foil losses

< □ > < ---->

Systematics

Most important systematics

- Backscattering
- Pile-up
- Missed events
- Magnetic reflection
- Foil losses

Require complete Geant4 simulation, however...

< ■ > < ■ > 三目目 のへの

Geant4 Multiple Scattering

Geant4 Multiple Coulomb Scattering has not been performing in a stable way, nor correct

S. Kim et al., IEEE Trans. Nucl. Sc. 62, 451

-

.∃ >

Dealing with scattering

Geant4 uncertainty of MCS is significant: deal with it or lose!

Recover backscattered events in offline analysis

Central pixel on 'west' detector

Leendert Hayen (IKS KU Leuven)

High Precision Beta Spectroscopy

1.5

Combination of geometry & DAQ allows independent of study of MCS:

Get individual and summed energies, AND:

- **1** Initial pixel hit \rightarrow approximate E^i_{\parallel} & θ^i
- **2** Time difference \rightarrow approximate $E_{\parallel}^1 \& \theta_{out}^1 \& \theta_{in}^2$

▲ Ξ ▶ ▲ Ξ ▶ Ξ Ξ

Combination of geometry & DAQ allows independent of study of MCS:

Get individual and summed energies, AND:

- **()** Initial pixel hit \rightarrow approximate E^i_{\parallel} & θ^i
- **2** Time difference \rightarrow approximate E^1_{\parallel} & θ^1_{out} & θ^2_{in}

Several calibration sources + 1/4 T field \rightarrow larger pixel spread, more precise step 1

Statistics and stability

Statistics:

- 1h run: $\approx 5 \times 10^6$ events
- In total 2 weeks of data, collected about 5 $\times 10^8$ at 1T, same for 1/4T

Stability:

- Calibration runs every 8 hours ¹³⁹Ce. ¹¹³Sn. ¹³³Ba. ²⁰⁷Bi
- \bullet > 15 calibration peaks, $\leq 10^{-3}$ linearity
- Average gain drifts of $\sim 0.04\%/h$

EL OQO

Current status

Analysis has started, working on comparison of waveform and online data

Custom GPU code to guickly analyze waveforms near completion

Complete Geant4 simulation up and running

Currently investigating

- Charge sharing
- Cross-talk
- Gain stability
- ...

Aim is to obtain $\sim 10^{-3} b_{Fierz}$, ⁴⁵Ca is feasibility case (Later e.g. ³²P (1.7 MeV))

29 / 30

Conclusion & Outlook

We have constructed a fully analytical β spectrum, combining

- Atomic & molecular corrections
- Electromagnetic & kinematical corrections
- Nuclear structure effects in a 'best of' way

for the first time, and accurate to a few 10^{-4} . Will be published soon(ish). C++ code will be made freely available, to be published.

A ∃ ► A ∃ ► ∃ | = \0 Q Q

Conclusion & Outlook

We have constructed a fully analytical β spectrum, combining

- Atomic & molecular corrections
- Electromagnetic & kinematical corrections
- Nuclear structure effects in a 'best of' way

for the first time, and accurate to a few 10^{-4} . Will be published soon(ish). C++ code will be made freely available, to be published.

Analysis of ⁴⁵Ca @ LANL is ongoing, expect results within 6-12 months.

▲ Ξ ▶ ▲ Ξ ▶ Ξ Ξ

Conclusion & Outlook

We have constructed a fully analytical β spectrum, combining

- Atomic & molecular corrections
- Electromagnetic & kinematical corrections
- Nuclear structure effects in a 'best of' way

for the first time, and accurate to a few 10^{-4} . Will be published soon(ish). C++ code will be made freely available, to be published.

Analysis of ⁴⁵Ca @ LANL is ongoing, expect results within 6-12 months.

Effects of β spectrum shape on Reactor Neutrino Anomaly are being looked into, looks promising

Numerical calculations are non-trivial, require careful optimisation and not 'user-friendly'

Formula used by X. Mougeot based upon exchange results by Pyper & Harston

$$S(E) = \frac{\int f_c^2(r) \, dr d\Omega}{\int (f_c^2(r) + g_c^2(r)) \, dr d\Omega} \tag{1}$$

 $\textbf{Important: Spatial average} \Leftrightarrow \textbf{amplitude at origin}$

Not theoretically sound! Currently working on *ab initio* approach based on Behrens & Bühring approach

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目目 のなる

Radiative corrections

Seminal work by Sirlin, Zucchini & Marciano. Split into *inner* (nucleus-independent) and *outer* (nucleus-dependent). Focus on *outer*.

$$R(W, W_0) = 1 + \delta_1 + \delta_2 + \delta_3$$

Higher order corrections estimate

$$\delta_{higher} \approx \sum_{n=3}^{n=\infty} \delta_{Z^n \alpha^{n+1}} = \delta_{Z^3 \alpha^4} / (1 - Z \alpha) \; .$$

D. H. Wilkinson, Nucl. Instr. & Methods A 365, 497 (1995) & 401, 275 (1997)

I. S. Towner and J. C. Hardy, Phys. Rev. C 77, 012501 (2014)

▲ Ξ ▶ ▲ Ξ ▶ Ξ Ξ

Radiative Corrections

HiSEBSM, Aug. 5 2016

Final state interactions with atomic electrons.

EL OQO

Final state interactions with atomic electrons.

Change free lepton spinors by Dirac spinors in Coulomb field in matrix element \mathcal{H}_β

$$\int d^3r \, \bar{\Psi}_e(\mathbf{r},\mathbf{p})\gamma_\mu(1+\gamma_5)v(l) \int \frac{d^3k}{2\pi^3} e^{i\mathbf{r}\cdot\mathbf{k}} \left\langle f \right| V^\mu + A^\mu \left| i \right\rangle$$

 Ψ_e not analytically solvable for anything but pure Coulomb $\frac{\alpha Z}{r}$

▲ ■ ▶ ▲ ■ ▶ ■ ■ ■ ● ● ● ●

Effective Lagrangian for β decay

$$\mathcal{L}_{\text{eff}} = -\frac{G_F V_{ud}}{\sqrt{2}} \left[1 + \text{Re} \left(\epsilon_L + \epsilon_R\right)\right] \\ \times \left\{ \bar{e}\gamma_\mu (1 - \gamma_5) \nu_e \cdot \bar{u}\gamma^\mu \left[1 - (1 - 2\epsilon_R) \gamma_5\right] d \\ + \epsilon_S \ \bar{e}(1 - \gamma_5) \nu_e \cdot \bar{u}d \\ + \epsilon_T \ \bar{e}\sigma_{\mu\nu} (1 - \gamma_5) \nu_e \cdot \bar{u}\sigma^{\mu\nu} (1 - \gamma_5) d \right\} + \text{h.c.}$$

Neglecting pseudoscalar contributions + right-handed neutrino's

- T. Bhattacharya et al., PRD 85, 054512 (2012)
- V. Cirigliano et al., JHEP 1302, 046 (2013)

3 × 4 3 × 3 1 × 0 0 0

Current limits on Exotic Currents

Low and High energy physics are **competitive**

O. Naviliat-Cuncic and M. Gonzalez-Alonso, Ann. Phys. 525 (2013) 600

Leendert Hayen (IKS KU Leuven)

High Precision Beta Spectroscopy

ELE NOR

Fermi function

Influence on the spectrum because of Coulomb field of daughter nucleus. Generally

$$F(Z, W) = \lim_{r \to 0} \frac{f_1^2(r) + g_{-1}^2(r)}{2p^2}$$

٠

with

$$\Psi_{\kappa}(\hat{r}) = \left(\begin{array}{c} g_{\kappa}(r)\sum_{\mu}\chi^{\mu}_{\kappa}\\ if_{\kappa}(r)\sum_{\mu}\chi^{\mu}_{-\kappa}\end{array}\right)$$

solution of the radial Dirac equation with some Coulomb field.

▲ Ξ ▶ ▲ Ξ ▶ Ξ Ξ

Fermi function

Influence on the spectrum because of Coulomb field of daughter nucleus. Generally

$$F(Z, W) = \lim_{r \to 0} \frac{f_1^2(r) + g_{-1}^2(r)}{2p^2}$$

٠

with

$$\Psi_{\kappa}(\hat{r}) = \begin{pmatrix} g_{\kappa}(r) \sum_{\mu} \chi^{\mu}_{\kappa} \\ if_{\kappa}(r) \sum_{\mu} \chi^{\mu}_{-\kappa} \end{pmatrix}$$

solution of the radial Dirac equation with some Coulomb field.

Problem: Only solvable for point charge \rightarrow split into

$$F(Z,W)=F_0L_0$$

with L_0 calculated numerically (tabulated by Wilkinson).

D. H. Wilkinson, Nucl. Instr. & Meth. A 335, 203 (1990)

Leendert Hayen (IKS KU Leuven)

Look at modification of Fermi function, only local change.

< □ > < ---->

Look at modification of Fermi function, only **local** change.

Analytically by Behrens & Bühring, however experimental disagreement?

Leendert Hayen (IKS KU Leuven)

Influence of atomic screening on β spectrum shape via Fermi function

'Full': X. Mougeot and C. Bisch, PRA 90, 012501 (2014)

'Buhring': W. Bühring, Nucl. Phys. A 430 (1984) 1-20

'Landolt-Börnstein': Behrens and Jänecke, Landolt-Börnstein Tables, Springer (1969)

Leendert Hayen (IKS KU Leuven)

High Precision Beta Spectroscopy

HiSEBSM, Aug. 5 2016

10 / 16

Weak Magnetism Basics

$$A_{\mu}(q^{2}) = \bar{p}[g_{A}(q^{2})\gamma_{\mu}\gamma_{5} + g_{T}(q^{2})\sigma_{\mu\nu}\gamma_{5}\frac{q_{\nu}}{2M} + ig_{P}(q^{2})\frac{q_{\mu}}{m_{e}}\gamma_{5}]n$$

・同ト (ヨト (ヨト ヨヨ) の()

11 / 16

<u>nuclear β decay</u>:

form factor	formula Imp. App.			
Vector type		- 		
a	$a \cong g_V M_F$	Matrix element	Operator form	
		M_F	$\langle \beta \ \Sigma \tau_i^{\pm} \ \alpha \rangle$	
е	$e \cong g_V(M_F \pm Ag_S)$	M _{GT}	$\langle \beta \ \Sigma \tau_i^{\pm} \overrightarrow{\sigma}_i \ \alpha \rangle$	
b	$b \cong A(g_M M_{GT} + g_V M_L)$	M_L	$\langle \beta \ \Sigma \tau_i^{\pm} \overrightarrow{l}_i \ \alpha \rangle$	
f	$f \cong g_V \sqrt{\frac{2}{3}M \frac{\Delta}{\hbar c^2}M_Q}$	$M_{\sigma r^2}$	$\langle \beta \ \Sigma \tau_i^{\pm} \overrightarrow{\sigma}_i r_i^2 \ \alpha \rangle$	
g	$g \cong -\frac{4}{3}M^2g_V \frac{M_Q}{\hbar c^2}$	$M_{\sigma L}$	$\langle \beta \ \Sigma \tau_i^{\pm} i \overrightarrow{\sigma}_i \times \overrightarrow{l}_i \ \alpha \rangle$	
		M_Q	$\left(\frac{4\pi}{5}\right)^{\frac{1}{2}} \langle \beta \ \Sigma \tau_i^{\pm} r_i^2 Y_2(\hat{r}_i) \ \alpha \rangle$	
Axial vector typ	e	M_{ky}	$\left(\frac{16\pi}{5}\right)^{\frac{1}{2}} \left\langle \beta \ \Sigma \tau_i^{\pm} \sigma_i^2 C_{12k}^{nn'k} \sigma_{in} Y_2^{n'}(\hat{r}_i) \ \alpha \right\rangle$	
c	$c \simeq g_A M_{GT}$		·	
d	$d \cong A(g_A M_{\sigma L} \pm g_{II} M_{GT})$	B. R. Holstein, Rev. Mod. Phys. 46 (1974) 789		
h	$h \cong \frac{-2}{\sqrt{10}} M^2 g_A \frac{M_{1y}}{\hbar c^2} - A^2 g_P M_{GT}$	F.P. <u>Calaprice</u> et al., Phys. Rev. C 15 (1977) 2178		
j_2	$j_2 \simeq -\frac{2}{3}M^2 g_A M_{2y}$			
j ₃	$j_3 \cong \frac{-2}{3} M^2 g_A M_{3y}$			

Weak Magnetism: β decay

for a pure GT transition, and neglecting terms $\propto 1/M^2$ and $\propto m_e^2/E$:

$$H_{0}(E) = c^{2} - \frac{2}{3} \frac{E_{0}}{M} c(c + d \pm b) + \frac{2}{3} \frac{E}{M} c(5c \pm 2b)$$

$$\Rightarrow \quad H_{0}(E) = f_{1} + f_{2}E$$

$$\Rightarrow \quad S(E) \equiv \frac{H_{0}(E)}{H_{0}(E = 0)}$$

$$S(E) \approx 1 + \frac{2}{3M} \left(5 \pm 2 \frac{b}{c} \right) E_{e}$$

Leendert Hayen (IKS KU Leuven)

High Precision Beta Spectroscopy

A ∃ ► A ∃ ► ∃ | = \0 Q Q

< 口 > < 同

Bhattacharya formalism

The full correction goes like

$$rac{dN}{dt} \propto 1 + c_0 + c_1 rac{E_e}{M_N} + rac{m_e}{E_e} ar{b}$$

where

$$c_0 = -\frac{2\lambda(\lambda + \mu_V)}{1 + 3\lambda^2} \frac{E_0}{M_N}$$

$$c_1 = \frac{3 + 4\lambda\mu_V + 9\lambda^2}{1 + 3\lambda^2}$$

$$b = -\frac{m_e}{M_N} \frac{1 + 2\mu_V\lambda + \lambda^2}{1 + 3\lambda^2}$$

Leendert Hayen (IKS KU Leuven)

High Precision Beta Spectroscopy

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Tensor constraints

a(6He) C. Johnston et al., PR 132 (1963) 1149

A(60Co) F. Wauters, N.S. et al., PR C 82 (2010) 055502

α-β-ν(⁸Li) G.Li, G.Savard et al., PRL 110 (2013) 082502

A(67Cu) G. Soti, N.S. et al., (2013) submitted

black band: P_F/P_{GT} A.S. Carnoy et al. PR C 43 (1991) 2825

JI SOCO

Atomic Screening

SACLAY: Screening

HiSEBSM, Aug. 5 2016 16 / 16