Status of the SoLid experiment

Search for Oscillation with Lithium-6 Detector

Benoît GUILLON

guillon@in2p3.fr

for the SoLid Collaboration

Normandie Univ, ENSICAEN, UNICAEN, CNRS/IN2P3, LPC Caen, 14000 Caen, France

Rencontres du Vietnam

High sensitivity experiments beyond the SM

• Search for Short-Baseline Oscillation (RAA) ----->

> $\Delta m^2 = 0.44 \text{ eV}^2$, $\sin^2 2\theta_{14} = 0.13$ $\Delta m^2 = 1.75 \text{ eV}^2$, $\sin^2 2\theta_{14} = 0.10$ observed / no osc. expected $\Delta m^2 = 0.9 \text{ eV}^2, \sin^2 2\theta_{14} = 0.057$ 1.1 SoLid 0.9 Bugey3,4+ SRPI-Ha SRP Rovno Gosgen ⊢ Krasn 0.8 0.7 10 100 distance from reactor [m]

J. Kopp et al., JHEP 1305:050 (2013)

Light sterile neutrino $(\Delta m^2 \sim eV^2)$

• 235U V_{e-} spectrum measurement \longrightarrow

Insight for predictions & reactor model

tal systematic uncertaint

F. P. An et al., Phys. Rev. Lett. 116, 061801 (2016)

All 3 θ_{13} reactor experiments observes an excess ('bump') between 4 and 6 MeV

• New Segmented Solid neutrino detector ... Neutron detection, non-proliferation

1.0

0.8

0.6

1

2

3

4

5

6

7

Visible Energy (MeV)

8

Search for relative shape distortion in identical detector at different baselines

Detector

High resolution

Energy (Large statistics, low systematics) Spatial (Good vertex reconstruction)

Effective background rejection
 Low overburden (almost on surface)
 Reactor radiation (neutron, γ)

Reactor

- Compact core
- Understanding of the fuel composition
- Access as close as possible
- Security implications (e.g data rates, access rights, safety issue....)

3

SoLid overview

• Detector : $1.6 \rightarrow 3 t$ fiducial

Composite solid scintillators (PVT / ⁶LiF:ZnS) Highly Segmented (8 000 voxels/m³)

• BR2 @ SCK-CEN (Mol, Belgium)

HEU(²³⁵U) : $P_{th} = 50 - 80 \text{ MW}$ SoLid @ 5.5 \rightarrow 12 m Low background (neutron, γ) Compact : $\Phi_{eff} = 50 \text{ cm}, h = 90 \text{ cm}$

• Physics run scheduled to begin end 2016

Parameters	Objectives
Total mass	1.6 t
IBD efficiency	30 %
Threshold	200 - 500 keV
Anti-neutrinos	~1000 d ⁻¹
Signal/Background	~3
Energy resolution	14 % à 1 MeV
Systematic uncertainty	2.5 - 4.5 %

SoLid collaboration

DXFOR

Oxford University
Bristol University
Imperial College

SCK-CEN Antwerp University Vrije University Bruxel Gent University

Virginia-Tech

A. Weber, S. Ihantola, N. Ryder D.Newbold, D.Cussans, K.Petridis, G.Pommery, J.Rademacker, D.Saunders <u>A. Vacheret</u> (new group being formed)...

B. Coupé, S. Kalcheva, E. Koonen, L. Ghyrs N van Remortel, Y. Abreu, A. De Roeck, X. Janssen, I. Piñera, J. D'Hondt, P. Van Mulders, S. Vercaemer, L. Kalousis M. Labare, C. Moortgat, D. Ryckbosch, I. Michiels

G. Ban, D. Durand, B. Guillon, G. LehautF. Yermia, M. Fallot, L. Giot, B. ViaudM. Bongrand, L. Simard, M-H Schune, Y. Amhis, D. Boursette

J. Link, P. Huber, C. Mariani, J. Park

Detection Principle

- Inverse Beta Decay (PVT) : $\bar{\nu}_e + p \rightarrow e^+ + n$
- Delayed neutron capture (⁶LiF:ZnS) : $n + {}^{6}Li \rightarrow {}^{3}H + \alpha$ (4.8 MeV)

Highly-segmented (8 000 voxels/m³)
 Cube detection elements (5x5x5cm³)
 Light collection by (2 →4) WLS (3x3 mm³)
 Read-out by (2 →4) MPPC (Hamamatsu S12572-050P)
 16x16 cubes lattice / plane (80x80 x5 cm³)
 Optically isolated by Tyvek wrapping

• Good light yield : $\delta E / \sqrt{E} \sim 20 \rightarrow 14 \%$

SoLid features

• Pulse Shape Analysis \longrightarrow Neutron Tag (trigger) !

3D topology reconstruction ----> Background identification/rejection !

High granularity allows for signal localization and thus enhances significantly background rejection

7

Belgian Reactor 2 @ SCK-CEN

• Major MTR-type reactors

Material testing/Isotopes production... No others project in fondamental/particle physics Non-proliferation : statutory tasks

SCK-CEN collaboration

Support, funding (shielding, source,...)Reactor calculation expertiseLarge working area & No time limitation

• Neutrino parameters

Operating power : $P_{th} \sim 65 (125) \text{ MW}_{th}$ Highly Enriched Uranium : $93\% {}^{235}\text{U}$ Neutrino flux : $\sim 10^{19} v_e/\text{s}$ Compact : $\Phi_{eff} = 50 \text{ cm}, \text{ h} = 90 \text{ cm}$ Duty cycle : 150 days/year

SoLid @ BR2

- Adjustable Base-Line SoLid @ $5.5 \rightarrow 12 \text{ m}$
- Reactor On-Axis
- Low vertical overburden < 10 m WE

• Low level of Reactor core background (no beam-pipe (bio-shielded), concrete) Background measurement campaign ... confirmed by NEMENIX and SM1 results

Oxford neutron detector (MARS)

x 40

SoLid

1.6 t - 50 planes (2 t) 12 800 voxels - 3200 channels

SM1

288kg - 9 planes 2304 voxels - 288 channels

NEMENIX

8kg - 64 voxels 32 channels

Proof of Concept

- 1. Demonstrate neutron PID
- 2. Measure Backgrounds
- 3. Measure Coincidence Rate

2013

Real Scale Systems

80 cm

80 cm

- 1. Demonstrate scalability
- 2. Production/Assembly test
- 3. Demonstrate segmentation capabilities

45 cm

4. Physics and Background studies

2014-2015

Physics Scale Detector

- 1. Optimize Performance
- 2. Implement Neutron Trigger
- 3. Spectrum measurements
- 4. Oscillation Search

end 2016 ...

x 5

NEMENIX prototype

8kg 64 voxels 32 channels

- Moved @ 5.5 m from BR2 [08/2013]
 → 30 (19) days reactor ON (OFF)
- Neutron Calibration @ NPL [2015]
- BiPo measurements @ Boulby [2016]

• Detection principle approved ... *technical paper in preparation*

SM1 detector

Full scale 'prototype'
 288kg
 9 planes (16x16 lattice)
 2304 voxels / 288 readout channels
 Aluminium frame structure

HPDE neutron reflector

• Assembly and Built @ Gent/Antwerp (~ 6 months)

2300 cubes machined, assembled, wrapped with Tyvek

Carefully weighted : # of protons determined with better than 1 % accuracy

SM1 detector

• Deployement @ BR2 [12/2014]

ADC : 62.5MHz rate (16 ns sample) Light yield : 25 PA/MeV (X+Y) Energy resolution : $\delta E / \sqrt{E} \sim 20\%$ 50 ns (XY) coincidence window 600 keV threshold

• Improvised trigger and no passive shielding !!

• Data from February to April 2015 : ~ 2 days reactor ON / ~ 1 month reactor OFF

Period	Dates	Exposure Time (h)
Reactor ON	00:00 21 st Feb to 08:00 24 th Feb	50.91
Reactor OFF	00:00 27 th Feb to 00:00 13 th Mar, and	525.51
	00:00 27^{th} Mar to 00:00 11^{th} Apr	
	Exposure time ratio (ON/OFF)	0.0969

► 87% good/stable cube

Data over time

+ dedicated calibration runs : ⁶⁰Co, ¹³⁷Cs, AmBe, ²⁵²Cf

SM1 Neutron ID

- IBD neutron capture efficiency : 55% MCNP/Geant4 benchmark
- Pulse shape analysis to tag neutrons
 PID = Integrale/Amplitude ± Cor_{chan}
 Coincidence X/Y

• Can distinguish a neutron in 10 millions events !

SM1 Cosmic muons response

• Excellent muons tracker (>95% efficiency)

PSD, deposit energy, topology, timing

• Monitor detector stability over time (@ % level)

Energy-scale and resolution

• Cube inter-calibration (fibre attenuation) to better than 1% for majority of channels

• $dE/dx : \delta E / \sqrt{E} \sim 20 \%$

• In agreement with ⁶⁰Co run, ²⁰⁷Bi test-bench and AmBe data (4.4MeV γ)

Time-correlated signal

• Muon correlated time signals

• Power of segmentation on background rejection ($0.1 < \Delta t (\mu s) < 250$)

IBD candidate

Cosmic simulation - neutron generation

• Full Geant4 BR2 model implemented & 3 independent muons generators (CRY, Reyna, Guang)

• Spallation Neutrons generation (CRY & Gordon)

SoLid improvements

- Neutron capture efficiency
 - Additional LiF:ZnS sheets
 - New screens with improved transparency
 - Li capture efficiency 0.55 to 0.7 : +30%
 - Reduced capture time 105 to 66 μs

Light yield and uniformity of response

Double readout : $2 \rightarrow 4$ fibre/MPPC per cube Thick Tyvek wrapping

Cube polishing

- ▶ 37 PA/cube/MeV : +66%
- 7% total variation across detector planes
- On target for $14\% / \sqrt{E}$ resolution

attenuation in an improved Solid with 4 fibers plane

SoLid improvements - Neutron trigger

- Neutron signal : large number of photons but distributed in time and large range of light output
- SM1 had a rather low neutron detection efficiency of ~ 5%, due to high trigger threshold (~6.5 PA)

• Neutron trigger implementation (at the firmware level)

Limit data size, rate and dependance to threshold & Maximise neutron and IBD efficiency

• Can recover neutron detection efficiency from 5% to 70% !

Calibration - neutron efficiency and energy resolution (% level)

- PVT response linear in range [0.1-20] MeV
- Sources : Muons, ¹³⁷Cs, ⁶⁰Co, ..., AmBe, n(H)
- R&D on dedicated trigger system : ²⁰⁷Bi, ²²Na

Off-site calibration system (CALIPSO)

Individual automated X-Y scanning

Plane characterization and commissioning Cube to cube equalization

In-situ calibration system (CROSS)

In-situ radioactive sources deployment

Absolute energy scale and neutron detection efficiency determination at a few %

Summary

• Successful NEMENIX and SM1 runs

Excellent neutron/EM identificationMuons tracking opportunitiesBackground studies & rejection capabilitiesIBD analysis ongoing ... 2 papers in preparation

positron + neutron (accidental gammas)

• SoLid Phase I under construction : 1.6 t (2t) / 50 planes modular

Funded by ERC (EU), ANR (Fr), and FWO (B)

Better light yield/energy resolution

Read-out improvements : cooling, DAQ/electronics, triggers

In-situ calibration (γ , neutron, e⁻)

Passive shielding (50 cm borated water)

Cosmic veto umbrella (under studies)

• Deploiement for phase I data taking at the end of 2016

