High Sensitivity Experiments Beyond the Standard Model XIIth Rencontres du Vietnam, Quy Nhon, 1 – 6 August, 2016

The STEREO experiment: search for a sterile neutrino

Jacob Lamblin on behalf of the STEREO collaboration

Scientific motivation

Few anomalies in the neutrino oscillation global picture (3 neutrinos):

- LSND/MiniBoone ($\bar{v}_{\mu} \to ~\bar{v}_{e}\,,~v_{\mu} \to ~v_{e}\,$, accelerators) = excess of v_{e}
- «Reactor anomaly» = \overline{v}_e deficit (3 σ) at short distance from reactors (5-100 m)
- «Gallium anomaly» = v_e deficit (3 σ) in gallium solar neutrinos détectors

with calibration sources

Could be an evidence of one (or more) sterile neutrino at 1eV scale (although tensions exist when doing a global fit with all experiments)

The Reactor Antineutrino Anomaly

Nuclear reactors as a source of electronic antineutrinos

HISEBSM - August 2nd 2016

J. Lamblin

2/24

The basic idea is to measure relative distortions of the $\overline{\nu}_e$ energy spectrum as a function of the distance

Survival probability
$$P_{\overline{v}_e \to \overline{v}_e} = 1 - \frac{\sin^2 2\Theta_{14} \sin^2 (1.27 \Delta m_{41}^2 \frac{L}{E})}{41} \leftarrow \text{Distance}$$

 \Rightarrow Independent from the reactor flux normalization

You need:

- a pure source of \overline{v}_e (1-10 MeV) = better if compact and powerful

- a detector at short distance (~10 m) able to measure the energy spectrum at several distances (segmented or movable)

Key parameters

From K.M. Heeger et al. Arxiv 1212.2182v1

HISEBSM - August 2nd 2016

Experiments

From N. Bowden talk @Neutrino2016

Experiment		Reactor	Overburden	Detection	Segmentation	Optical	Particle ID
		Power/Fuel	(mwe)	waterial		Readout	Сараріііту
DANSS		3000 MW	~50	Inhomogeneous	2D, ~5mm	WLS fibers.	Topology only
(Russia)	-	LEU fuel		PS & Gd sheets			
NEOS	1	2800 MW	~20	Homogeneous	none	Direct double	recoil PSD only
(South Korea)		LEU fuel		Gd-doped LS		ended PMT	
nuLat 🐋		40 MW	few	Homogeneous	Quasi-3D, 5cm,	Direct PMT	Topology, recoil
(USA)		²³⁵ U fuel		^⁵ Li doped PS	3-axis Opt. Latt		& capture PSD
Neutrino4		100 MW	~10	Homogeneous	2D, ~10cm	Direct single	Topology only
(Russia)		²³⁵ U fuel		Gd-doped LS		ended PMT	
PROSPECT		85 MW	few	Homogeneous	2D, 15cm	Direct double	Topology, recoil
(USA)		²³⁵ U fuel		^b Li-doped LS		ended PMT	& capture PSD
SoLid		72 MW	~10	Inhomogeneous	Quasi-3D, 5cm	WLS fibers	topology,
(UK Fr Bel US)		²³³ U fuel		°LiZnS & PS	multiplex		capture PSD
Chandler	- 10	72 MW	~10	Inhomogeneous	Quasi-3D, 5cm,	Direct PMT/	topology,
(USA)	-	²³⁵ U fuel		°LiZnS & PS	2-axis Opt. Latt	WLS Scint.	capture PSD
Stereo	No.	57 MW	~15	Homogeneous	1D, 25cm	Direct single	recoil PSD
(France)		²³⁵ U fuel		Gd-doped LS		ended PMT	

The STEREO collaboration

Laboratoire de Physique Subatomique et de Cosmologie

~25 physicists

supported by

The STEREO experiment

ILL site

S T E R E O

- 58 MW research reactor
- High ²³⁵U enrichment
- compact core < 1m
- [8.9–11.1] m from core, possible extension to 12.3 m.
- Overburden of water channel (15 mwe)
- 4x50 days cycles each year

But :

- limited space
- high level of background due to neutron experimental lines

HISEBSM - August 2nd 2016

The STEREO detector

Signature = time coincidence between a prompt light signal (e⁺) and a delayed light signal (n capture).

Outer volume filled with liquid scintillator without Gd to reduce edge effects and tag external backgrounds

 \Rightarrow E_v = E_{prompt} + 0,8 MeV

~ 400 $v_{\rm e}$ / day for E_v > 2.8 MeV

HISEBSM - August 2nd 2016

Liquid scintillator and PMTs

Liquid scintillator

75% LAB + 20% PXE + 5% DIN Light yield \approx 6000 photons / MeV Attenuation length > 5 m

Photomultipliers :

48 PMTs HAMAMATSU R5912-100 Quantum efficiency \approx 30% Peak/valley ratio : 2.7

All PMTs have been tested and installed into the detector

HISEBSM - August 2nd 2016

Detector response

- Energy resolution and similarity between cells are crucial parameters
- Complete GEANT4 model to simulate the detector response.

- Similar response between center and border cell :
 - RMS/Peak(center cell) = 11.5%
 - RMS/Peak(border cell) = 11.7%.

- Neutron efficiency above 5 MeV :
 - 64.5% \pm 0.5% for center cell
 - $60.1\% \pm 0.5\%$ for border cell.

HISEBSM - August 2nd 2016

Prototype validation

HISEBSM - August 2nd 2016

J. Lamblin

12/24

Calibration

LED System = 5 boxes to light on differents parts of the detector

- \rightarrow PMTs calibration and linearity
- \rightarrow Light collection study
- \rightarrow LED UV for liquid properties

Radioactive sources (γ, n) can be deployed at different positions inside and outside the detector cells

- gammas for energy calibration
- neutrons for efficiency of background rejection and IBD detection

HISEBSM - August 2nd 2016

Background

Muon, gamma and neutron background measurements on site have been performed (before any shielding).

Two kinds of background events which can mimic neutrinos:

- accidental coincidences between γ and/or n_{th}
- correlated coincidences = fast neutrons (from reactor or induced by muons)
 → proton recoil + delayed gammas

Background shielding

- Water channel above the detector = 15 mwe muon shielding
- Additionnal external walls of lead, PE and B4C to reduce γ and n fluxes from other experiments
- Passive shielding around the detector

Polyethylene Lead

Veto muon = water cerenkov tank Muon detection efficiency > 99%

Background discrimination

Shields are not enough to reduce the background at an acceptable level.

In addition, we need to do:

1) An event by event discrimination

using Pulse Shape Discrimination (PSD) on prompt signal to discriminate e⁺ (from neutrino interaction) and protons (from fast neutron scattering)

2) Spectrum substraction ON-OFF

Reactor off periods allow to measure the correlated background from cosmic rays

Magnetic shielding

In addition of Lead and PE, μ metal and soft iron are added to shield PMTs against magnetic fields from vicinity experiments (cryomagnets, up to 15T) $\rightarrow \sim 1 \text{ mT}$ @ STEREO location (before shielding).

HISEBSM - August 2nd 2016

Data

Expected counting rates:

$\mu \sim 500$ Hz, $\gamma \sim$ few 100 Hz, n \sim 1-10 Hz, v_e \sim 400 /day => Trigger rate up to 1 kHz

=> need computation quantities online:

- pulse start time using Constant Fraction Discriminator
- total charge (Qtot) and tail charge (Qtail) for PSD

Electronics

Dedicated electronics have been developed

µTCA crate

PMT Linearity

Very good energy linearity is required.

PMT linearity is measured using combinations of several LEDs

PMT non-linearity < 1% up to 10 MeV signals

Status and schedule

The detector has been fully assembled and tested without liquid scintillator. The detector is now ready.

The shield is currently being installed at ILL. Then, the detector will be inserted into the shield, moved to its final location using air cushions and filled with liquid scintillator.

Data taking should start at the end of september.

By the end of 2016, we should have about 50 days of reactor ON data.

Experiment will continue to take data at least until 2018 (~ 300 effective days of reactor ON data).

Expected sensitivity

Expected sensitivity

HISEBSM - August 2nd 2016

- The Reactor Antineutrino Anomaly could be explained either by an error on the flux prediction, either by a mxing with a sterile neutrino
 -> a new measurement at short distance is necessary.
- The STEREO experiment is expected to be sensitive to the parameter space corresponding to the RAA, by looking at relative distortions of the energy spectrum in several detector cells.
- The STEREO detector is being installed at ILL and will start to take data very soon.
- First results are expected for 2017