

Luca Stanco, INFN-Padova

Steriles at Long- and Short- Baseline

(with accelerators)

- The **NEUTRINO** scenario and the "sterile" issue at 1 eV mass scale
- LBL, results for $v_{\mu} \rightarrow v_{\tau}$, v_{e} appearances and $v_{\mu} \rightarrow v_{\mu}$ disappearance (OPERA, MINOS)
- SBL, is there any chance with accelerators ? (T2K, SBN and missing NESSiE)
- Perspectives and Conclusions

High Sensitivity Experiments Beyond the Standard Model

Quy Nhon, Vietnam, July 31 – August 7, 2016

The present neutrino scenario

From masses to flavours:

$$\boldsymbol{v}_{e} \rangle = \boldsymbol{U}_{e1} |\boldsymbol{v}_{1}\rangle + \boldsymbol{U}_{e2} |\boldsymbol{v}_{2}\rangle + \boldsymbol{U}_{e3} |\boldsymbol{v}_{3}\rangle$$

$$\boldsymbol{v}_{\mu} \rangle = \boldsymbol{U}_{\mu 1} |\boldsymbol{v}_{1}\rangle + \boldsymbol{U}_{\mu 2} |\boldsymbol{v}_{2}\rangle + \boldsymbol{U}_{e\mu 3} |\boldsymbol{v}_{3}\rangle$$

$$\boldsymbol{v}_{\tau} \rangle = \boldsymbol{U}_{\tau 1} |\boldsymbol{v}_{1}\rangle + \boldsymbol{U}_{\tau 2} |\boldsymbol{v}_{2}\rangle + \boldsymbol{U}_{\tau 3} |\boldsymbol{v}_{3}\rangle$$

U is the 3 × 3 Neutrino Mixing Matrix,

mixing given by 3 angles, θ_{23} , θ_{12} , θ_{13} and one phase δ (CPV for $\delta \neq 0,\pi$).

Oscillations have <u>amplitudes</u> driven by the mixing angles and <u>frequencies</u> by $\delta m_{solar}^2 = \Delta m_{21}^2$ $\Delta m_{atm}^2 = |\Delta m_{31}^2| \approx |\Delta m_{32}^2|$ (with L, E experimental parameters)

E.g. if only two flavours are taken, at leading order, neglecting interference terms, and with some approxs:

$$P(v_{\alpha} \rightarrow v_{\beta}) = \sin^{2} 2\theta_{\alpha\beta} \sin^{2} \left(\frac{\Delta m_{31}^{2}L}{4E}\right)$$

APPEARANCE

$$P(v_{\alpha} \rightarrow v_{\alpha}) = 1 - \sin^{2} 2\theta_{\alpha\alpha} \sin^{2} \left(\frac{\Delta m_{31}^{2}L}{4E}\right)$$

DISAPPEARANCE
amplitude frequency

2

The oscillation scenario in terms of distance L from the (*reactor*) source

 \rightarrow for L/E >>1 the disappearance averages to ½ of mixing strength: sin²(Δ m²L/4E)=0.5

The recent Neutrino History

L. S., Rev. in Phys. 1 (2016) 90

The wonderful frame pinpointed for the **3 standard neutrinos**, beautifully adjusted by the θ_{13} measurement, left out some

relevant questions:

- Leptonic CP violation
 Mass of neutrinos
- Apomalies and discrepancies in some measurements
- Dark Matter

before really entering in the precision era, there are still 4 results to be obtained, at least at first order :

- 1) Leptonic CP violation
- 2) Mass ordering (MO)
- 3) (θ_{23} octet)

4) Presence or not of sterile neutrinos at eV scale

One or two states at higher mass ? L. S., S. Dusini and M. Tenti, arXiv:1606.09454

Mass Ordering

A.Palazzo: arXiv:1509.03148

These 4 items are interconnected, They are ALL crucial for the near future !

L. S., Rev. in Phys. 1 (2016) 90

 $\sin^2\theta_{12}$

on MO

F. Capozzi et al., Nuclear Physics B 908 (2016) 218 6

 $\sin^2\theta_{13}$

 $sin^2\theta_{23}$

How steriles at 1 eV mass scale may wash out results on MH and δ_{CP}

It is MANDATORY to close this SBL sterile story in the *near* future.

The "sterile" issue at eV mass scale

and the Reactor anomaly: Mention et al, PRD 83 (2011) 073006; upd in WP, arXiv:1204.5379 and the Gallium anomaly: M. Laveder et al., PRC 83 (2011) 065504

The "sterile" issue (cnt.)

W

The oscillation picture is working wonderfully. So it should stay whenever extensions are allowed !

Exploit 3+1 or even 3+2 oscillating models, by adding one or more "sterile" neutrinos

$$\begin{bmatrix} U_{e1} & U_{e2} & U_{e3} & U_{e4} \\ U_{\mu1} & U_{\mu2} & U_{\mu3} & U_{\mu4} \\ U_{\tau1} & U_{\tau2} & U_{\tau3} & U_{\tau4} \\ U_{s1} & U_{s2} & U_{s3} & U_{s4} \end{bmatrix} \longrightarrow \begin{bmatrix} P(v_{\alpha} \rightarrow v_{\beta}) = \sin^{2} 2\theta_{\alpha\beta} \sin^{2}\left(\frac{\Delta m_{41}^{2}L}{4E}\right) \\ P(v_{\alpha} \rightarrow v_{\alpha}) = 1 - \sin^{2} 2\theta_{\alpha\alpha} \sin^{2}\left(\frac{\Delta m_{41}^{2}L}{4E}\right) \\ \text{DISAPPEARANCE} \\ \text{when } \Delta m_{21}^{2} << \Delta m_{31}^{2} << \Delta m_{41}^{2} \text{ and } |U_{s4}^{2}| \le 1 \\ \text{ith } \sin^{2} 2\theta_{e\mu} = 4|U_{e4}|^{2}|U_{\mu4}|^{2} \\ \text{for APPEARANCE} \end{bmatrix} \text{ and } \begin{bmatrix} \sin^{2} 2\theta_{ee} = 4|U_{e4}|^{2}\left(1 - |U_{e4}|^{2}\right) \\ \sin^{2} 2\theta_{\mu\mu} = 4|U_{\mu4}|^{2}\left(1 - |U_{\mu4}|^{2}\right) \\ \sin^{2} 2\theta_{\mu\mu} = 4|U_{\mu4}|^{2}\left(1 - |U_{\mu4}|^{2}\right) \\ \text{for DISAPPEARANCE} \end{bmatrix}$$

sterile: not weakly interacting neutrinos (B. Pontecorvo, JETP, 53, 1717, 1967)

The "sterile" issue (cnt.)

→ Experimental hints for more than 3 standard neutrinos, at eV scale
 → Strong tension with any formal extension of 3x3 mixing matrix

ν_{e} disappearance

Reactor anomaly ~2.5σ

Re-analisys of data on antineutrino flux from reactor short-baseline (L~10-100 m) shows a small deficit of

R=0.943 ±0.023

G.Mention et al, Phys.Rev.D83, 073006 (2011), A.Mueller et al. Phys.Rev.C 83, 054615 (2011).

Gallex/SAGE anom

Deficit observed by Containing from a ⁵¹Cr and ³⁷Ar sources

R = 0.76 + 0.09 - 0.08

C. Giunti and M. Laveder, Phys.Rev. C83, 065504 (2011), arXiv:1006.3244

ν_e appearance

2.50 on antieactor -100 m) of 83 , 073006 's.Rev.C 83, 10 1

No hint so far for

- v_{μ} appearance/disappearance
- v_{τ} appearance/disappearance

Tau appearance in the presence of a sterile neutrino (3+1)

$$\begin{split} \begin{bmatrix} \Delta_{ij} = \frac{\Delta m_{ij}^2 L}{2E} \end{bmatrix} & \stackrel{\text{$"$ standard oscillation}}{||} & \text{$$ pure exotic oscillation} \\ \hline \\ \begin{bmatrix} \text{neglect solar driven} \\ \text{oscillation } \Delta_{21} & \text{$"$ 0} \end{bmatrix} & P_{\nu_{\mu} \rightarrow \nu_{\tau}} = 4 |U_{\mu3}|^2 |U_{\tau3}|^2 \sin^2 \frac{\Delta_{31}}{2} + 4 |U_{\mu4}|^2 |U_{\tau4}|^2 \sin^2 \frac{\Delta_{41}}{2} \\ & + 2 \Re [U_{\mu4}^* U_{\tau4} U_{\mu3} U_{\tau3}^*] \sin \Delta_{31} \sin \Delta_{41} \\ & - 4 \Re [U_{\mu4}^* U_{\tau4} U_{\mu3} U_{\tau3}^*] \sin^2 \frac{\Delta_{31}}{2} \sin \Delta_{41} \\ & + 8 \Re [U_{\mu4}^* U_{\tau4} U_{\mu3} U_{\tau3}^*] \sin^2 \frac{\Delta_{31}}{2} \sin^2 \frac{\Delta_{41}}{2} \\ & + 4 \Re [U_{\mu4}^* U_{\tau4} U_{\mu3} U_{\tau3}^*] \sin \Delta_{31} \sin^2 \frac{\Delta_{41}}{2} \\ & + 4 \Re [U_{\mu4}^* U_{\tau4} U_{\mu3} U_{\tau3}^*] \sin \Delta_{31} \sin^2 \frac{\Delta_{41}}{2} \\ & + 4 \Re [U_{\mu4}^* U_{\tau4} U_{\mu3} U_{\tau3}^*] \sin \Delta_{31} \sin^2 \frac{\Delta_{41}}{2} \\ & + 4 \Re [U_{\mu4}^* U_{\tau4} U_{\mu3} U_{\tau3}^*] \sin \Delta_{31} \sin^2 \frac{\Delta_{41}}{2} \\ & + \frac{1}{2} C \sin 2\theta_{\mu\tau} \cos \phi_{\mu\tau} \sin \Delta_{3} \sin \Delta_{41} \\ & + \frac{1}{2} C \sin 2\theta_{\mu\tau} \cos \phi_{\mu\tau} \sin^2 \frac{\Delta_{31}}{2} \sin \Delta_{41} \\ & - C \sin 2\theta_{\mu\tau} \sin \phi_{\mu\tau} \sin^2 \frac{\Delta_{31}}{2} \sin \Delta_{41} \\ & + C \sin 2\theta_{\mu\tau} \sin \phi_{\mu\tau} \sin \Delta_{3} \sin^2 \frac{\Delta_{41}}{2} \\ \end{array}$$

Sensitive to mixing "sterile" angles, MH and phase CP-violation

Separate analyses for NH and IH and maximize Likelihood as $L(\phi_{\mu\tau}, \sin^2 \theta_{\mu\tau}, C^2)$ Use $|\Delta m^2_{31}|=0.00243 \text{ eV}^2$ for NH and 0.00238 eV^2 for IH effective mixing of sterile with v_{μ} and v_{τ} oscillation

OPERA search for v_{τ} sterile "anomalies"

published in JHEP, 6, 69 (2015) and arXiv:1503.01876, based on 4 taus' candidates

Separate analyses for "high" and low $|\Delta m^2_{41}|$

For $|\Delta m^2_{41}| > 1 \text{ eV}^2$

 $sin^2 2\theta_{\mu\tau} < 0.116 \text{ at } 90\% \text{ C.L.}$ when integrating over ϕ (quasi-equal results for NH and IH)

Note: 0.069 obtained if neglect interference terms

OPERA observed a 5th candidate (PRL 115, 121802, arXiv:1507.01417)

Channel		Expected b	Expected signal	Observed		
	Charm	Had. re-interac.	Large μ -scat.	Total		
$\tau \to 1 h$	0.017 ± 0.003	0.022 ± 0.006	_	0.04 ± 0.01	0.52 ± 0.10	3
au ightarrow 3h	0.17 ± 0.03	0.003 ± 0.001	_	0.17 ± 0.03	0.73 ± 0.14	1
$ au ightarrow \mu$	0.004 ± 0.001	—	0.0002 ± 0.0001	0.004 ± 0.001	0.61 ± 0.12	1
$\tau \to e$	0.03 ± 0.01	—	—	0.03 ± 0.01	0.78 ± 0.16	0
Total	0.22 ± 0.04	0.02 ± 0.01	0.0002 ± 0.0001	0.25 ± 0.05	2.64 ± 0.53	5

Preliminary update of the analysis with 5 v_{τ} candidates

L. Stanco (OPERA) at EPS2015, and arXiv:1510.04151

Interplay of interference

Full analysis with GLOBES (matter effects, Δm_{21}^2 included, profiled out on Δm_{31}^2)

OPERA can perform similar analysis based on v_e observation

Old result from 2008+2009 data sample (30% of total): JHEP 4, 1307 (2013) and arXiv:1303.3953

E<20 GeV

ν_{e} candidates	19	4	
background	19.8±2.8	4.6	

Compatible with expectation from intrinsic v_e component in the CNGS v_u beam: 0.9%

put rough limits to exclude mixing on θ_{14} with a 2 flavour model

Approximate analysis, see OPERA previous result and e.g. A.Palazzo, PRD 91, 91301(R) (2015)

Waiting for the ν_{e} analysis on the full data sample

(3.5 more statistics)

v_e candidates selected by Emulsion Analysis

2008-2012 preliminary distribution

 \rightarrow Observed 34 v_e events

Expected v_e events : v_e beam contamination 36.7 ± 5 Background $\tau \rightarrow e + mis - id'd \pi^0 1.2 \pm 0.1$

From 3-flavour oscillation: $v_{\mu} \rightarrow v_{e} 2.9 \pm 0.4 \text{ evts}$ $(\sin^{2}(2\theta_{13}) = 0.098)$

Numbers are preliminary.

D. Duchesneau@NEUTRINO2016

To increase signal-to-background ratio: E < 30 GeV 13 observed events for 9.2 ± 1 background expected + 1.4 ± 0.2 (from $v_{\mu} \rightarrow v_{e}$)

MINOS(+) Analysis on v_{μ} v_{μ} / v_{e}

MINOS

10.56x1020 PoT MINOS neutrino-mode 5.80x1020 PoT MINOS+ neutrino-mode 3.36x1020 PoT MINOS antineutrino-mode

<u>J. Evans @ NEUTRINO2016</u>

MINOS(+) Analysis on $v_{\mu} \rightarrow$

Near detector used to produce a Far Detector prediction
Expect 56.7 events, observe 78
▶ 2.3σ excess
Three times more data to come

EXCLUDED

 10^{-1}

 $sin^2\theta_{24}sin^22\theta_{14}$

MINOS(+) on v_{μ} sterile "anomalies"

CC and NC searches:

- Excellent agreement with best-fit with 3 flavors
- Extended range in Δm^2 due to large energy span

Re-analysis of MINOS and Daya-Bay, including old Bugey-3 data

Adding MINOS+

- possible to double the dataset
- Preliminary result with antineutrino (limit around 0.08)

Putting all together

same for new Icecube results (see backup slides)

and... 90% C.L. ?? One should use 95% C.L.

Short-Baseline at accelerators

Life is much easier, but choose the right baseline ←→ energy, and the right detectors/system

But contributions from interplayed oscillations can wash out the disentanglement

T2K Near (ND280) detector (v_e disappearance)

The Fermilab Short-Baseline Program

arXiv:1503.01520

Caution on Proposal Sensitivities

Jonathan Link at TAUP2015

Too optimistics or something present?

A valid alternative: NESSiE proposal at FNAL (not approved)

Why not directly going to measure the v_{μ} disappearance?

Search for sterile neutrinos in the v_{μ} disappearance mode at FNAL arXiv:1503.01876v2

A conclusive experiment to determine the ν_{μ} disappearance behaviour at 1 eV mass scale, with spectrometers exploited to provide muon charge assignment and momentum measurement

Key-points for NESSiE

1. The v_{μ} disappearance is mandatory

- either in case of null result on electron-neutrino the presence of sterile neutrino could be hidden due to interference modes and data mis-interpretation for the interplay between ve appearance/disappearance
- or in case of positive result on electron-neutrino at SBL to address the correct interpretation of sterile neutrino oscillation, see current tension between ve /vµ appearance/disappearance

••

5. No R&D/refurbishing/upgrade: robustness of the program (technologically, time- and cost-wise

- 80% of re-used well proven detectors,
- straightforward extension,
- low power needed at each site

(Two - really cloned - sites with 1 kton of Iron interleaved with RPC muon detectors)

Unique feature of NESSiE for the anti-neutrino mode

Conclusions and perspectives

- Sterile mixing angle, if it exists, corresponds to low values (order of 1%)
- The sterile issue at eV mass scale can be studied also at ${\mbox{LBL}}\,\nu_{\mu}$ beams
- Many results from OPERA, MINOS, Super-K are already available
- New preliminary result from OPERA on possible v_{τ} sterile "anomalies" Soon new results (without too restrictive assumptions) from OPERA on v_{e} oscillation
- New results from MINOS/MINOS+ on ν_{e} and ν_{μ} oscillation
- **SBL** project at FNAL: technologically challenging, physically limited
- Necessary to do an experiment on v_{μ} disappearance, exploiting high statistics ("brute force") and muon ID
- We urge results in next 2-3 years from on-going projects
- New specific experiments should be settled and approved

BACKUP

OPERA search for v_{τ} sterile "anomalies"

JHEP, 6, 69 (2015) and arXiv:1503.01876, based on 4 taus' candidates

Number of expected v_{τ} sterile events

Booster Beam

MiniBooNE

MicroBooNE 9

SciBooNE Near Detector

Booster Beam

BNB Target

Proposal: FNAL-P-1057, arXiv:1404.2521, arXiv:1503.07471v2

ABSOLUTE nb. interactions in the FAR fiducial volume, 3 years data taking

Compare Sensitivities at 90% C.L.

IceCube new v Sterile Results

Next generation sterile (reactor/source) experiments are almost ready

Experiment		Reactor Power/Fuel	Overburden	Detection Material	Segmentation	Optical Readout	Particle ID Canability
		i owei/i dei	(inve)	Wateria		neadout	capability
DANSS	N MARK	3000 MW	~50	Inhomogeneous	2D, ~5mm	WLS fibers.	Topology only
(Russia)	Ven 1 No.	LEU fuel		PS & Gd sheets			
NEOS	100	2800 MW	~20	Homogeneous	none	Direct double	recoil PSD only
(South Korea)		LEU fuel		Gd-doped LS		ended PMT	
nuLat 🐋		40 MW	few	Homogeneous	Quasi-3D, 5cm,	Direct PMT	Topology, recoil
(USA)		²³⁵ U fuel		⁶ Li doped PS	3-axis Opt. Latt		& capture PSD
Neutrino4		100 MW	~10	Homogeneous	2D, ~10cm	Direct single	Topology only
(Russia)		²³⁵ U fuel		Gd-doped LS		ended PMT	
PROSPECT		85 MW	few	Homogeneous	2D, 15cm	Direct double	Topology, recoil
(USA)		²³⁵ U fuel		⁶ Li-doped LS		ended PMT	& capture PSD
SoLid		72 MW	~10	Inhomogeneous	Quasi-3D, 5cm	WLS fibers	topology,
(UK Fr Bel US)		²³⁵ U fuel		⁶ LiZnS & PS	multiplex		capture PSD
Chandler	26	72 MW	~10	Inhomogeneous	Quasi-3D, 5cm,	Direct PMT/	topology,
(USA)	-	²³⁵ U fuel		⁶ LiZnS & PS	2-axis Opt. Latt	WLS Scint.	capture PSD
Stereo	Since P	57 MW	~15	Homogeneous	1D, 25cm	Direct single	recoil PSD
(France)		²³⁵ U fuel		Gd-doped LS		ended PMT	

e.g. SOX at LNGS (Borexino)

