Probing Dark Energy with neutrons

Guillaume Pignol Rencontres du Vietnam: HiSEBSM August 1, 2016

Outline

1 Dark energy and the chameleon

2 Bouncing neutrons with GRANIT

3 Neutron interferometry

The expansion of the Universe

Velocity-Distance Relation among Extra-Galactic Nebulae.

The expansion accelerates

S. Perlmuter *et al* (1999) + A. Riess *et al* (1998)

Energy budget of the Universe in Λ CDM

Could this be a dynamical scalar field, can we try to probe its coupling to matter?

> 69 % Dark

Energy

5 % normal baryonic matter created by baryogenesis and nucleosynthesis

26% Dark Matter

Quintessence as Dark Energy

Dark Energy is (maybe) due to a cosmological scalar field φ

$$\ddot{\varphi} + 3H\dot{\varphi} + \mathcal{V}'(\varphi) = 0$$

$$w = \frac{p}{\rho} = \frac{\dot{\varphi}/2 - \mathcal{V}(\varphi)}{\dot{\varphi}/2 + \mathcal{V}(\varphi)}$$

Very low energy dynamics: $\Lambda \approx \rho_{\rm DE}^{1/4} = 2.4 \text{ meV}$

Corresponds to a distance scale $\hbar c / \Lambda = 82 \,\mu m$

Should be possible to detect if φ couples to matter!

The Khoury-Weltman mechanism

A way to reconcile gravity tests and cosmology

[Khoury & Weltman PRD 69 (2004)]

Recall: a massive Klein-Gordon field mediates a force with finite range $\hbar c/M$

$$\mathcal{V}_{\rm KG}(\varphi) = M^2 \, \varphi^2$$

Quintessence field coupled with matter:

Understanding the chameleon mechanism

Poisson equation for the electric potential

 $\Delta \varphi = \rho$

Electric field $d\varphi/dx$ proportional to ρ

Understanding the chameleon mechanism

Detection with neutrons?

A neutron is affected by the potential energy

$$V(r) = \beta \frac{m}{M_{\text{Planck}}} \varphi(r)$$

Detection with neutrons?

$$V(r) = \beta \, \frac{m}{M_{\text{Planck}}} \, \varphi(r)$$

Outline

1 Dark Energy and the chameleon

2 Bouncing neutrons with GRANIT

3 Neutron interferometry

Neutron optics, cold and ultracold neutrons

Cold neutrons E < kT = 25 meVhave large wavelength $\lambda > 0.2 \text{ nm}$ They behave like waves, affected by the Fermi potential of matter (order of 100 neV)

Neutrons with energy < 100 neV, are reflected by material walls

they can be stored in material bottles.

Bouncing neutrons: quantum states

Neutrons with energy < 100 neV can bounce above a glass mirror.

The vertical motion is a simple quantum well problem

$$-\frac{\hbar^2}{2m}\frac{d^2\psi}{dz^2} + mgz\,\psi = E\,\psi$$

ma. Vertical energy (peV) 5 10 15 20 25 30 35 40 45 50 Ό Height (µm)

Discovery of the quantum states at ILL Grenoble

Bouncing neutron: quantum music

Gravity resonance spectroscopy

Rabi formula

$$P_{2 \to 1} = \frac{\sin^2(\sqrt{\delta\omega^2 + \Omega^2} t/2)}{1 + \delta\omega^2/\Omega^2}$$

Gravity resonance spectroscopy

How to excite resonant transitions?

Resonant transitions in GRANIT (coming soon)

Searching for a fifth force

$$V(z) = mgz + \beta \frac{m}{M_{\text{Planck}}} \varphi(z)$$

Field profile above the mirror

$$\varphi(z) = \Lambda(\Lambda z/\hbar c)^{2/2+n}$$

Bouncing neutron sensitivity to the chameleon

The GRANIT instrument at ILL level C

First UCNs in GRANIT in 2013.

Full potential of the source not reached yet, it is hard.

First result (July 2016): testing the filter

Outline

1 Dark energy and the chameleon

2 Bouncing neutrons with GRANIT

3 Neutron interferometry

Principle of neutron interferometry 1

Principle of neutron interferometry 2

Phase shift due to the sample:

$$\xi = -\frac{1}{\nu \hbar} \int V(x) \, dx$$

neutron potential in a chameleon field:

$$V(x) = \beta \frac{m}{M_{\text{Planck}}} \varphi(x)$$

The chameleon cell

Idea:

the chameleon field in a cell exists only in vacuum, it is suppressed by a small amount of gas (here helium)

We plot the transverse field profile $\varphi(y,z)/\Lambda$,

The first experiment at the S18 instrument (ILL)

Dedicated vacuum chamber built by the Atominstitut in Vienna

Results of the summer 2013 experiment

Status in 2016

Concluding remarks

Two n.interf experiments: ILL and NIST

Ultimate sensitivity not reached yet. Maybe do interferometry with colder neutrons?

Two n.bouncing experiments: QBounce@ILL and GRANIT@ILL

Neutron bouncer: exciting prospects to test the equivalence principle and to search for exotic forces.

Quantum test of the equivalence principle

$$-\frac{\hbar^2}{2m_i}\frac{d^2\psi}{dz^2} + m_g g \ z \ \psi = E \ \psi$$
Inertial Gravitational

Measuring the wavefunctions one access

Mass

Measuring transition frequencies one access

$$z_0 = \left(\frac{\hbar^2}{2m_i m_g g}\right)^{1/3} \qquad E_0 = m_g g z_0 = \left(\frac{m_g^2}{m_i} \frac{g^2 \hbar^2}{2}\right)^{1/3}$$

Mass

One can tell separately the inertial and gravitational mass !

Searching for a fifth force

