

#### Search for New Physics via a Precision Measurement of $\Gamma(K_{e2}) / \Gamma(K_{u2})$ at J-PARC



Michael D. Hasinoff University of British Columbia on behalf of the E36-TREK collaboration

J-PARC Facility

Outline

TREK Program TREK = Time Reversal Experiment with Kaons

**Test of Lepton Universality** Search for Dark Photon Lower intensity Search for Heavy Neutrinos Search for Time Reversal Symmetry Violation

- **Theoretical Motivation**
- **Preliminary Results**
- **Future Plans**
- Summary



## Stopped K<sup>+</sup> Experiments @ K1.1BR

#### • E36 (LFU)

"Measurement of  $R_K = \Gamma(K^+ \rightarrow e^+ v) / \Gamma(K^+ \rightarrow \mu^+ v)$ and a search for dark photons & heavy sterile neutrinos" Collected data during Fall 2015 30-45 kW

#### • E06 (TREK)

"Measurement of the T-violating transverse muon polarization ( $P_T$ ) in  $K^+ \rightarrow \pi^0 \mu^+ \nu$  decay" Stage-1 approved 270 kW (  $\geq 100$  kW )

E06 – awaits a new beamline in the Extended Hadron Hall since K1.1BR has now been decommissioned

## **TREK Collaboration**

#### CANADA

University of British Columbia TRIUMF

#### USA

Hampton University T. Jefferson Nat. Laboratory Iowa State University University of South Carolina

#### **RUSSIA**

Russian Academy of Sciences (RAS) Institute for Nuclear Research (INR)--Moscow

#### **JAPAN**

Osaka University High Energy Accelerator Research Org. (KEK) Chiba University

~20 physicists from 4 countries

## Lepton universality in $K_{\ell 2}$ and $\pi_{\ell 2}$ decays



#### Expected Exp' tal precision ~ 0.25%, presentation to PAC11

2016/8/4 Michael Hasinoff, UBC Rencontres du Vietnam -- HISEBSM

## Lepton universality violation in $K_{\ell^2}$

#### • Possible New Physics

- MSSM with LFV
- ➢ MSSM w. *R*-parity violation
- Pseudo-scalar interaction
- Scalar w. loop correction

#### • SUSY with LFV for K<sub>e2</sub>

$$R_{K}^{LFV} = R_{K}^{SM} \left( 1 + rac{m_{K}^{4}}{M_{H^{+}}^{4}} \cdot rac{m_{ au}^{2}}{m_{e}^{2}} \Delta_{13}^{2} an^{6} eta 
ight)$$

- Charged Higgs H<sup>+</sup> mediated LFV SUSY
- > Large enhancement from  $m_{\tau}^2/m_e^2$
- > A sizable effect up to  $\Delta R_{\rm K}/R_{\rm K} \sim 1.3\%$  possible



Masiero, P. Paradisi, & R. Petronzio, Phys Rev D74(2006) 011701, JHEP 11(2008) 042 J. Girrbach and U. Nierste, JHEP 05 (2010) 026; arXiv:1202.4906;

#### Neutrino mixing

- R<sub>K</sub> sensitive to neutrino mixing parameters within SM extensions with 4<sup>th</sup> generation of quarks and leptons or sterile neutrinos
  - H. Lacker and A.Menzel, JHEP 1007 (2010) 006; A. Abada et al., arXiv: 1211.3052

Rencontres du Vietnam -- HISEBSM

Quy Nhon, Vietnam

## Present Experimental Status of $R_{\kappa}$

- KLOE @ DAFNE (in-flight decay) (2009)
  - $R_{K} = (2.493 \pm 0.025 \pm 0.019) \times 10^{-5}$ [ Eur. Phys. J. <u>C64</u> (2009) 627 ]
- NA62 @ CERN-SPS (in-flight decay) (2013)<sup>500</sup>

 $- R_{K} = (2.488 \pm 0.007 \pm 0.007) \times 10^{-5}$ [ Phys. Lett. <u>B719</u> (2013) 326 ]

- World average (2013)  $\Delta R/R \approx 0.4\%$ 
  - $R_{K} = (2.488 \pm 0.010) \times 10^{-5}$
- Different Systematics :
  - In-flight-decay experiments: -- kinematics overlap
  - E36 stopped K<sup>+</sup> decay experiment: --

#### detector acceptance and target interactions proposed $\Delta R_{\kappa}/R_{\kappa} \approx \pm 0.20 \pm 0.15$ %



## LFV in SUSY

[Masiero, Paradisi and Petronzio; JHEP 11 (2008) 042 ]

- LFV effect may be found in  $\Delta R_{\rm K}$
- $\Delta R_{\rm K}/R_{\rm K} \approx 1\%$  corresponds to  $BR(\tau \rightarrow eX) \le 10^{-10}$ 
  - Strong correlation to BR (  $\tau \rightarrow e\eta$  )
  - Additive to  $R_{K}^{SM}$  (no interference:  $R_{K} > R_{K}^{SM}$ )
- Strong constraint on  $M_{\rm H}$  for large tan $\beta$  (equal to  $a_{\mu}$ )



#### Extended more refined LFV calculation J.Girrbach and U.Nierste -- arXiv:1202.4906

- study of dependence on  $\mu$  (lighest stau mass),  $\theta_{\rm t}({\rm stau})$ , tan $\beta$ ,  $M_{\rm H}$ 

$$\begin{split} \Delta r_{\max,\text{LFV}}^{\mu-e} &\approx 0.006 \left(\frac{500\,\text{GeV}}{M_H}\right)^4 \left(\frac{\tan\beta}{50}\right)^6 \left(\frac{\delta_{RR}^{13}}{0.5}\right)^2 \left(\frac{\mu}{800\,\text{GeV}}\right)^2.\\ \text{valid for } m_{\tilde{\tau}l} &= 120\,\text{GeV}, M_1 = 100\,\text{GeV}, m_{\tilde{e}_R} = 200\,\text{GeV}. \end{split}$$



Figure 3:  $\Delta r^{\mu-e}$  for  $\delta_{RR}^{13} = 0.5$ ,  $M_H = 500$  GeV and  $\tan \beta = 50$ . Left: As a function of  $\theta_{\tau}$  for different values of  $\mu$ : 800 GeV (red), 400 GeV (blue dashed), 200 GeV (green dotted). Right: In dependece of  $\mu$  for different values of  $\theta_{\tau}$ : 26° (red), 45° (blue dashed), -18° (green dotted).

#### **Parameter Constraints**

#### J.Girrbach and U.Nierste -- arXiv:1202.4906



Figure 5: For different values of  $\delta_{RR}^{13} = 0.15$  (yellow), 0.25 (red), 0.5 (green), 0.75 (blue) (from top to bottom) we plot the regions in which  $\Delta r^{\mu-e}$  is below the future experimental sensitivity of 0.002 in the  $M_H$ -tan  $\beta$  plane with  $\mu = 800$  GeV (left) and in the  $\mu$ -tan  $\beta$  plane with  $M_H = 500$  GeV (right) and stau mixing angle  $\theta_{\tau} = 26^{\circ}$ . I.e. if  $\delta_{RR}^{13} = 0.25$ , the white and yellow areas correspond to  $\Delta r^{\mu-e} \ge 0.002$ .

## Model Independent -- $\Delta r_{\min, LFC}$

J.Girrbach and U.Nierste -- arXiv:1202.4906

10

#### Calculation of LFC contribution from $\delta^{13}_{LL} \delta^{13}_{RR}$

i.e. -- double LFV insertion

$$\Delta r_{\text{min,LFC}}^{\mu-e} = -4 \frac{m_K^2 \tan^2 \beta}{M_H^2 (1 + \epsilon_s \tan \beta)} \sim -0.005 \quad \text{Negative !!}$$
$$M_H = 300 \text{ GeV}$$
$$\epsilon_S \tan\beta = 0.3$$

## Sterile neutrino mixing

"Tree-level lepton universality violation in the presence of sterile neutrinos: impact for  $R_{\rm K}$  and  $R_{\pi}$ " Abada, Das, Teixeira, Vicente & Weiland -- JHEP 02 (2014) 091



#### Neutrino mixing matrix : $U^{ij}$

- SM neutrinos = 3
- Sterile singlet neutrinos = N<sub>s</sub>



#### Inverse seesaw model



 $\tilde{\eta} = 1 - |\text{Det}(\tilde{U}_{\text{PMNS}})|$ 

 $m_{\rm N1}$  = lightest sterile v mass

#### Deviation of mixing matrix from unitarity

Blue : in agreement with standard cosmology Red : requiring non-standard cosmology Grey : already excluded by  $BR(\mu -> e\gamma)$ 

12

#### **New Pseudoscalar Interaction**

$$\begin{split} R_K^P &\sim R_K^{SM} \left[ 1 \pm \frac{\sqrt{2}\pi}{G} \frac{1}{\Lambda_{eP}^2} \frac{m_K^2}{m_e(m_d + m_u)} \right] \\ \frac{R_K^P}{R_K^{SM}} &\sim 1 + \left(\frac{1\text{TeV}}{\Lambda_{eP}}\right)^2 \times 10^3, \\ \Delta R_K / R_K = 0.25\% \\ & \checkmark \\ \Lambda_{eP} \sim 750 \text{ TeV} \end{split}$$

13

## Lepton universality?



Mat Charles – LHCP – Lund – 13 June 2016

## E36 Apparatus

#### **Central Detectors**



## $R_{\kappa}$ determination



### MC – External Brems spectra



2016/8/4

## Subtraction of SD y Bkgd



Rencontres du Vietnam -- HISEBSM

2016/8/4

Quy Nhon, Vietnam

## $e/\mu$ PID – Aerogel Cherenkov Detector

- Momentum measurement of e<sup>+</sup>, μ<sup>+</sup>
- TOF measurement between TOF<sub>1</sub> and TOF<sub>2</sub>
- e<sup>+</sup> tagged by Aerogel Cherenkov detector, & PGC





Rencont

Positron Efficiency (%)

ADC

## Segmented Scintillating Fibre Target

#### For better tracking resolution

- 256 pieces of
- 3 x 3 x 200 mm<sup>3</sup> Scintillator
- WLS fibre L = 1.4m
- MPPC (SiPMT) readout
- **EASIROC** electronics
- Production in Canada



65

## Target pattern analysis



- Determination of  $K^+$  stopping point and lepton depth inside the target
- Measurement of lepton emission azimuthal angle to determine SFT-Z
- Innermost element for 5-point tracking (intersection point of track and K<sup>+</sup> cluster)
- Inclusion of LG ADC completes the target track (when HG signal is missing)
- Development of Target Analysis Algorithm is nearly completed

22

### **Cosmic Ray SFT--Tracking Analysis**

EVENUUSPIAY.C -- TARGET & SPI

File Edit View Options Tools



2016/8/4

# MWPC Momentum analysis

- The charged particle momentum is now determined by 4 point tracking (C2, C3, C4 MWPCs and target-xy)
- The tracking performance will be improved by introducing the 5 point tracking (C2, C3, C4 MWPCs, target, and SFT-Z).
- Events are selected by requiring track consistency with the target and SFT and TOF1 TOF2 gap.
- Monochromatic peaks due to  $K_{\mu 2}$  and  $K_{\pi 2}$  are clearly seen.
- Momentum resolution σ ~ 1.4%
   -- this will be improved to 1% by optimizing the target energy loss correction.



#### Particle Identification by AC, PGC, and TOF

- Positrons are selected by aerogel Cherenkov (AC), leadglass Cherenkov (PGC), and TOF PID detectors.
- The PID performance by combining the three detectors is now being optimized.
- TOF time walk correction has not yet been applied.



#### Improved MWPC Tracking using TOF1(u-d)



## CsI(TI) Pileup Analysis

#### CsI(TI) wave form analysis

- The photon energy and timing were obtained from pulse shape data by FADC (TRIUMF VF48)
- The wave form analysis was established, as well as for the case of pileup.
- Kµ2 calibration data determines the gain parameters.
- Timing extraction is now being optimized



J-PARC 22th PAC meeting S.Shimizu

2016/7/27

2016/8/4

#### Combined analysis of CsI(TI) and spectrometer

- Kπ2 events are selected by analyzing the momentum and PID.
- π<sup>0</sup> invariant mass is reconstructed by selecting two-cluster events
- Large π<sup>+</sup> -- π<sup>0</sup> opening angle is obtained
- This confirms that the E36 system works correctly and is consistent with E246





## Acceptance – Use $K_{\mu 2}$ peak



#### $\succ$ Error arises from the uncertainty of corrections, *n* and $\beta$

# Acceptance calibration: $K_{\mu 2}$ normalization method

- Magnetic field was changed B<sub>cal</sub> = (236/247) B<sub>exp</sub>
- The Kmu2 trajectories with B<sub>cal</sub> field are the same as the Ke2 trajectories in the production runs (B<sub>exp</sub>).
- The acceptance ratio was determined by normalizing the number of K<sup>+</sup>. Therefore, a good stable beam flux was essential.
- A counter telescope was placed at the exit of the muon hole for Gap-12 for beam normalization.
- Small effect due to magnet non-linearity was corrected with MC simulation



## Preliminary results for the $K_{\mu 2}$ norm method

- The acceptance defined as N(Kµ2)/N<sub>K</sub> was determined using 3 magnet settings around P<sub>eff</sub>=247 MeV/c.
- We can determine the acceptance ratio using these values.
- Statistical error was estimated.
- Small effect due to DAQ dead time has been corrected

Michael Hasinoff, UBC



## Calibration: $K_{\pi 2}/K_{\mu 2}$ ratio method

- The Kπ2 and Kµ2 yields are obtained using data with 20 magnetic field settings (1.35--1.53T), and the acceptance ratio is derived.
- We assume that the spectrometer acceptance ( $\Omega$ ) can be described by a polynomial function of the effective momentum,  $P_{eff} = 236 MeV/c \cdot (B_0/B)$ :

#### $\Omega(p) = a_0 + a_1 p + a_2 p^2 + a_3 p^3 + a_4 p^4$

- Parameters a<sub>0</sub> a<sub>4</sub> can be determined from the 20 measured ratios by fitting.
- Small effect due to magnet nonlinearity will be corrected with Monte Carlo simulation.





Preliminary results --  $K_{\pi 2}/K_{\mu 2}$  ratio method

- a. Spectrometer excitation curve
- b. Observed momentum spectrum
- c.  $K_{\pi 2}/K_{\mu 2}$  as a function of magnetic field.
- d. Acceptance curve for B = 1.5T



### Search for Dark Photons

Explore U(1) extension of the Standard Model with photon-like massive gauge boson A'.

Motivation: Explain anomalies in astrophysics and particle physics, proton radius puzzle, ...

Constrain dark photon parameter space with rare kaon-decay data.





## A' Parameter Exclusion Limits



T. Beranek and M. Vanderhaeghen, Phys. Rev. D 87, 015024 (2013)

Fig. from M. Pospelov, PEB2013 workshop (2013)

#### Projected TREK E36

Full reconstruction of the  $\mu^+ v e^+ e^-$  and  $\pi^+ e^+ e^-$  final states Possible improvement with projected E36 results:  $\epsilon^2 \approx 10^{-6}$ 

#### Signal:

- Peak in M(e<sup>+</sup>e<sup>-</sup>) spectrum measured in the CsI(Tl) calorimeter
- Peak in the  $\pi^{\scriptscriptstyle +}$  momentum spectrum for  $K^{\scriptscriptstyle +} \to \pi^{\scriptscriptstyle +} A'$

$$K^+ \to \mu^+ \nu A' \to \mu^+ \nu e^+ e^-$$
  
 $K^+ \to \pi^+ A' \to \pi^+ e^+ e^-$ 

# Byproduct studies using $K^+ \rightarrow \ell^+ e^+ e^- v$ events

- We can measure K<sup>+</sup> → l<sup>+</sup> e<sup>+</sup> e<sup>-</sup> v decays by the Toroidal spectrometer for l<sup>+</sup> and the CsI(TI) calorimeter for the e<sup>+</sup> e<sup>-</sup> pair.
- e<sup>+</sup> and e<sup>-</sup> are identified by the aerogel Cherenkov counter surrounding the K<sup>+</sup> stopping target.
- Main backgrounds are  $K^+ \rightarrow \ell^+ \pi^0 \nu$ and  $\pi^0 \rightarrow e^+ e^- \gamma$
- Dark photon  $X^0$  through  $K^+ \rightarrow \ell^+ X^0 \nu$  $\rightarrow \ell^+ e^+ e^- \nu$  process can be studied.





## Summary & Outlook

TREK has completed a LFV expt at J-PARC



 $K_{e2}/K_{\mu 2}$  measurement to test lepton universality (2014-15) & search for Dark Photons

- Measurement of the T-violating transverse muon polarization in K<sub>µ3</sub> decay (~201x) – needs Extended HH
  - Large potential for discovery of New Physics beyond the SM with a fully upgraded E-246 setup and a new stopped K<sup>+</sup> beam.





# Thank you Merci beaucoup cho tôi biết Arigato Gozaimasu

2016/8/4 Michael Hasinoff, UBC Rencontres du Vietnam -- HISEBSM Quy Nhon, Vietnam