Imperial College London

The COMET Experiment: Searching for Muonto-Electron Conversion

Ben Krikler 4th August 2016

High Sensitivity Experiments Beyond the Standard Model ICISE, Quy Nhon, Vietnam

Charged Lepton Flavour Violation

μ-e conversion process

The COMET experiment

COMET Status and R&D

The COMET Experiment, 4 August 2016

Charged Lepton Flavour Violation

Muon Decay

Conservation of Lepton Flavour:
 I muon → I muon-neutrino
 0 electrons → I electron + I anti electron-neutrino

The COMET Experiment, 4 August 2016

Muon Decay + Neutrino Oscillations

I muon → I electron
No outgoing neutrinos
BUT: would not conserve energy and momentum

The COMET Experiment, 4 August 2016

Muon to Electron Conversion via Neutrino Oscillations

• $\mu^- + N(A, Z) \to e^- + N(A, Z)$

•No outgoing neutrinos

• Atomic nucleus: conserve energy and momentum

• Violates conservation of Charged Lepton Flavour (CLFV)

The COMET Experiment, 4 August 2016

Muon to Electron Conversion via Neutrino Oscillations

Muon to Electron Conversion

Beyond the Standard Model

The COMET Experiment, 4 August 2016

8

CLFV: Beyond mu-e conversion

• Experimentally:

Several anomalies at LHCb and B-factories
Muon g-2 anomaly
Proton radius puzzle

• Charged Lepton Flavour Violation experiments help to understand:

• The neutrino mass generation mechanism, the scale of the active neutrino masses and the possibility of heavy sterile neutrinos

• Baryon assymmetry in the universe [Deppisch et al. PRD 92, 036005]

• Lepton universality in the SM [Glashow et al. PRL 114 (2015) 091801]

• The validity of Minimal Flavour Violation in BSM models?

The COMET Experiment, 4 August 2016

Muon-to-electron Conversion

Muon to Electron Conversion

Charged Lepton Flavour Violation: $\mu^- + N(A, Z) \rightarrow e^- + N(A, Z)$

Require that nucleus is unchanged:
• coherent terms dominate
• conversion rate grows with number of nucleons

 $E_e = m_\mu - B_\mu - E_{\text{recoil}}$

On aluminium, used by COMET: $E_e = 104.9 \text{ MeV}$

Bound Muons

Electromagnetic cascade to the ground state orbital

Typically define the conversion rate as: $\mathcal{R} = \frac{\Gamma(\mu \text{-}e \text{ conversion})}{\Gamma(\mu \text{ capture})}$

Current limit from SINDRUM-II (90% C.L) on Gold: $\mathcal{R} < 7 imes 10^{-13}$

Muon to Electron Conversion

Bound Muon Decay

$\mathcal{BR}=39\%$ in aluminium

Standard Model Processes

 ${\cal BR}=61\%$ in aluminium

Muon Nuclear Capture

The COMET Experiment, 4 August 2016

T= 864 ns

in aluminium

Bound Muon Decay

Maximum electron energy configurations:

Free muon decay

Bound muon decay

• Maximum energy for electrons from free muon decay = Half of muon mass = 55 MeV

• Bound decay around nucleus

• End-point close to muon mass

• Very steeply falling spectrum above 55 MeV

• Theoretical uncertainty on spectrum from initial muon wavefunction

•No accurate measurement at the end point

Czarnecki et al. 2011 DOI: 10.1103/PhysRevD.84.013006

Muon to Electron Conversion

The COMET Experiment, 4 August 2016

The COMET Experiment

COMET: COherent Muon to Electron Transitions

Present limits by SINDRUM-II (2006): $\mathcal{R} < 7 imes 10^{-13}$ **COMET** Single-Event-Sensitivity: Phase-I (2018) = 3×10^{-15} Phase-II (2021) = 3×10^{-17}

 $\mu^- + N(A, Z) \rightarrow e^- + N(A, Z)$

The COMET Experiment, 4 August 2016

COMET at J-PARC

The COMET Experiment, 4 August 2016

The COMET Experiment, 4 August 2016

The COMET Experiment

The COMET Experiment, 4 August 2016

The COMET Experiment Phase-II

Bent Solenoid Drifts

- Uniform B field
- Linear field lines

Circular motion about field lines

- Radial gradient in magnetic field
 - Cylindrical field lines

Circular motion about a drifting centre: $D \propto \frac{p}{\alpha B} f(\theta)$

Phase-II Electron Spectrometer

No line of sight between detector and target
 Select for high momentum electrons using bent solenoid and tuneable dipole field

The COMET Experiment, 4 August 2016

Bent solenoids + Dipole

The COMET Experiment, 4 August 2016

Pulsed Beam and Timing Information

^O Muon lifetime on Aluminium: 864 ns

- Pulsed beam removes beam-related backgrounds, typically up to 200 ns
- Few protons between pulses as possible:
 - Extinction factor:

 $Extinction = \frac{N(Protons between pulse)}{N(Protons in bunch)}$

• Originally aiming for 10-9

• Diamond detector to measure extinction during running

The COMET Experiment, 4 August 2016

Pulsed Beam and Timing Information

^O Muon lifetime on Aluminium: 864 ns

- Pulsed beam removes beam-related backgrounds, typically up to 200 ns
- Few protons between pulses as possible:
 - Extinction factor:

 $\overline{\mathsf{Extinction}} = \frac{\mathsf{N}(\mathsf{Protons \ between \ pulse})}{\mathsf{N}(\mathsf{Protons \ in \ bunch})}$

• Originally aiming for 10-9

• Diamond detector to measure extinction during running

The COMET Experiment, 4 August 2016

Backgrounds

From Phase-I TDR (2016)

_	Type	e Background		Number of events during run Phase-I [28] Phase-II [14]	
	Intrinsic	Muon Decay-in-Orbit		0.01	0.15
		Radiative Muon Captur	`e	0.0019	< 0.001
		μ^- Capture w/ n Emiss	sion	< 0.001	< 0.001
		μ^- Capture w/ Charged Part. Emission			< 0.001
	Prompt	Radiative Pion Capture	;	0.00028	0.05
		Beam Electrons Muon Decay in Flight)	$< 0.1^{*}$
				≥ 0.0038	< 0.0002
		Pion Decay in Flight		J	< 0.0001
	Delayed Cosmic	Neutron Induced		$\sim 10^{-9}$	0.024
		Delayed Radiative Pion Capture		~ 0	0.002
		Anti-proton Induced		0.0012	0.007
		Other delayed B.G.		~ 0	—
		Cosmic Ray Muons		$\Big] < 0.01$	0.002
_		Electrons from Cosmic	Ray Muons	$\int \ge 0.01$	0.002
		Total background		< 0.032	< 0.34
_	Signal (Assuming $B = 1 \times 10^{-16}$)			0.31	3.8
Assumed extinction factors:			F	Run times:	
Phase Is 10-11				hase-l: 150 days	
Pha	ase-I: 10			baco-ll: 1 yoar	
Phase-II: 10 ⁻⁹ (to be updated)				nase-11. I yeal	

The COMET Experiment, 4 August 2016

COMET Phase-I Status and R&D

COMET: Phase-I

Pion Capture Section

Goals of Phase-I

- Understand production system
- Understand bent solenoid dynamics
- Prototype the detector
- Measurement of background sources
- µ-e conversion search at: 3×10^{-15}

StrECAL

CyDet

The COMET Experiment, 4 August 2016

Cylindrical Detector (CyDet)

Phase-I Physics Measurement

• Cylindrical Drift Chamber (CDC) triggered from hodoscopes made of Cherenkov counters and plastic scintillators

• 60 cm inner radius

• Only accept particles with momentum greater than 60 MeV/c

• Avoids beam flash and most electrons from bound muon decay

• Momentum measurement using drift chamber

- Low material budget improves resolution
- All stereo wires to recover Z information

Electrons from Bound Muon Decay

Cylindrical Drift Chamber (CDC)

The COMET Experiment, 4 August 2016

- 20 layers with alternating stereo angles of ±4°
- 20,000 wires total
- Fully strung as of November 2015
- Resonance-based wire tension checking completed in March
- CDC completed in July with installation of inner wall
- Reconstruction software being prepared
- Cosmic and beam tests to optimise gas choice and study resolution and drift time
 - Achieving the 200 keV/c resolution

30

StrECAL Detector Straw Tracker + ECAL

Phase-II Detector prototype Used to characterise beam in Phase-I

The COMET Experiment, 4 August 2016

Straw Tracker

Phase-I Straw Design

 Based on NA62 Straws with single seam weld
 20 micron aluminised mylar
 9.8 mm diameter tubes

• Phase-II possibilities:

5 mm diameter12 micron Al-mylar

• Status

- Phase-I production finished (2500 straws)
- Aging and vacuum tests at KEK
- Resolution studies from beam tests:
 - Better than 200 micron resolution across straw

The COMET Experiment, 4 August 2016

LYSO Crystal Calorimeter

• 2272 LYSO Crystals

• Dimensions: 2x2x12 cm

• Status:

• Crystal purchasing on-going • Test bench being built • Beam tests for resolution studies, PID and DAQ underway • Calibration system being designed The COMET Experiment, 4 August 2016

LYSO is clearer than GSO. (Amp. gain 1/4 in LYSO runs to compensate light yield difference.)

Ben Krikler: bek07@imperial.ac.uk

aluminized mylar

Facility Status and Beamline

Building and hall completed
 Phase-I bent solenoid built and installed
 Detector solenoid under construction

Ben Krikler: bek07@imperial.ac.uk

34

Schedule and Collaboration

The COMET Experiment, 4 August 2016

Summary

Muon-to-electron conversion is a strong probe of new physics

The COMET Experiment, 4 August 2016

Summary

Muon-to-electron conversion is a strong probe of new physics

COMET's staged approach and unique design makes it highly sensitive to this process COMET Phase-I 2018, for 150 days Sensitivity < 3×10^{-15} 3.2 kW proton beam

COMET Phase-II 2021, for 1 year Sensitivity < 3×10^{-17} 56 kW proton beam

Protons	Pions Production	Pion Capture Section
Muc	ons	
Detector Section		

Ben Krikler: bek07@imperial.ac.uk

The COMET Experiment, 4 August 2016

Summary

Muon-to-electron conversion is a strong probe of new physics

COMET's staged approach and unique design makes it highly sensitive to this process

Development and construction are well under way

COMET Phase-I 2018, for 150 days Sensitivity $< 3 \times 10^{-15}$ 3.2 kW proton beam

COMET Phase-II 2021, for 1 year Sensitivity < 3×10^{-17} 56 kW proton beam

Ben Krikler: bek07@imperial.ac.uk

The COMET Experiment, 4 August 2016